
Trieste Meeting of the TMR Network on Physics beyond the SM1

PROCEEDINGS

(Thermo)dynamics of D-brane probes

E. Kiritsis∗, T. Taylor#

∗ Physics Department, University of Crete, 71003, Heraklion, GREECE
# Physics Department, Northeastern University, Boston, MA 02115, USA

E-mail: kiritsis@physics.uch.gr, taylor@neu.edu

Abstract: We discuss the dynamics and thermodynamics of particle and D-brane probes moving

in non-extremal black hole/brane backgrounds. When a probe falls from asymptotic infinity to the

horizon, it transforms its potential energy into heat, TdS, which is absorbed by the black hole in

a way consistent with the first law of thermodynamics. We show that the same remains true in

the near-horizon limit, for BPS probes only, with the BPS probe moving from AdS infinity to the

horizon. This is a quantitative indication that the brane-probe reaching the horizon corresponds to

thermalization in gauge theory. It is shown that this relation provides a way to reliably compute the

entropy away from the extremal limit (towards the Schwarzschild limit).

1. Introduction and conclusions

The black D-brane solutions of type II super-

gravity [1] and their near-horizon geometry [2]

are the central elements of CFT/Anti-deSitter

(AdS) correspondence [3, 4, 5]. In particular,

the (3+1)-dimensional world-volume of N coin-

ciding, extremal D3-branes is the arena of N=4
supersymmetric SU(N) Yang-Mills (SYM) the-

ory which in the large N limit, according to the

Maldacena conjecture [3], is linked to type IIB

superstrings propagating on (the near-horizon)

AdS5×S5 background geometry. Recently, there
has been an interesting proposal [6] linking the

thermodynamics of large N , N=4 supersymmet-
ric SU(N) Yang-Mills theory with the thermo-

dynamics of Schwarzschild black holes embed-

ded in the AdS space [7]. The classical geom-

etry of black holes with Hawking temperature

T encodes the magnetic confinement, mass gap

and other qualitative features of large N gauge

theory heated up to the same temperature. At

the computational level, the quantity that has

been discussed to the largest extent [8, 6, 9] is

the Bekenstein-Hawking entropy which, in the

near-horizon limit, should be related to the en-

tropy of Yang-Mills gas at N → ∞ and large ’t
∗Talk presented by the second author.

Hooft coupling g2YMN .

The SYM/AdS correspondence and its ther-

mal black hole generalizations emerge in a par-

ticular limit of N D-branes coinciding at one

point in the transverse space; this corresponds

to a conformal point in the SYM moduli space,

with zero vacuum expectation values (vevs) of

all scalar fields. Before taking the near-horizon

limit one could also consider some other configu-

rations, obtained for instance by placing a num-

ber of D-branes in the bulk of AdS; this corre-

sponds to switching on some scalar vevs on the

Higgs branch of the gauge theory. In this work,

we consider the case of a single D-brane probe

in the background of a near-extremal black hole

with a large number of coinciding D-branes. We

consider a probe moving from asymptotic infin-

ity towards the black hole horizon. As the probe

moves through the horizon, the black hole re-

ceives the quantity of heat that is determined

by the first law of thermodynamics. The cor-

responding change in black hole entropy is con-

sistent with thermodynamical identities. Hence

from the thermodynamical point of view, the D-

brane gas is physically located at the black hole

horizon.

We can then consider a similar process in

the near-horizon limit description. That is, a
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probe brane is falling from the boundary of the

appropriate space (AdS5 for D3-branes) rather

than from spatial infinity, to the horizon. We

find again, for BPS probes, that the potential

energy released is equal to the heat, TdS, ab-

sorbed by the black hole. Thus, this process can

be used to calculate the entropy of gauge theory

in an alternative way by integrating back the po-

tential energy. Moreover, this process has now

an interpretation in terms of the spontaneously

broken SU(N + 1)→ SU(N)× U(1) gauge the-
ory. At T = 0, any Higgs expectation value is

stable, since it is a modulus protected by su-

persymmetry. Once T > 0, supersymmetry is

broken, and the Higgs acquires a potential with

an absolute minimum at zero expectation value.

Starting with the theory at the top of the po-

tential (very large expectation value) the Higgs

will start rolling down. The Higgs field reaching

an expectation value of the order of the electric

mass corresponds in supergravity to the probe

reaching the horizon. At this point, the energy

stored in the Higgs field is thermalized and equal

to the overall heat received by the thermal Yang-

Mills system. This makes more precise a similar

picture described in [10]. From the supergrav-

ity point of view the brane continues to move,

crossing the horizon. It is not obvious what this

motion corresponds to in gauge theory (but see

[10] for a proposal).

We consider also the effects of higher order

α′ corrections to the probe action. Such correc-
tions have been partially computed for the appro-

priate backgrounds directly in the near-horizon

limit [11]. We argue that that although there are

α′ corrections to the D-brane world-volume ac-
tion, they do not influence the calculation of the

heat in our argument.

In all of the examples analyzed here, the

probe method can be viewed as an independent

method of “measuring the entropy” by integrat-

ing the heat, TdS. In particular, it provides a

first order partial differential equation for the en-

tropy in terms of mass M and charge Q. α′-
corrections do not modify the leading equation.

The only source of stringy corrections to the en-

tropy equation comes from bulk α′-corrections
to the RR gauge potential at the horizon. This

equation is important since it can be used in con-

junction with entropy calculations, done near the

limit where supersymmetry is restored (and thus

the calculation is reliable) and then extrapolated

to the Schwarzschild region where supersymme-

try is completely broken and calculations are dif-

ficult to control.

This talk is based on results obtained in col-

laboration with Constantin Bachas [12]. We will

first describe in detail the case of Reissner-Nordström

black holes in four dimensions and their near-

horizon limit. Then we will describe arbitrary

black Dp-branes and finally focus on the near-

horizon limit of D3-branes.

2. Reissner-Nordström black holes

In order to see how probes can be used to study

black hole thermodynamics, it is instructive to

consider first the case of a point particle propa-

gating in the background geometry of a charged

black hole. The Reissner-Nordström (RN) met-

ric for a charged black hole with ADM mass M

and electric charge Q reads

ds2 = −
(
1−
2l2pM

r
+
l2pQ

2

r2

)
dt2+

(
1−
2l2pM

r
+

+
l2pQ

2

r2

)−1
dr2 + r2dΩ22 (2.1)

where GN = l
2
p is Newton’s constant. There is

also a static electromagnetic potential, which can

be obtained from Gauss’ law, A0 =
Q
r . The outer

and inner horizons are located at r+ and r− with
r± = l2p

(
M ±

√
M2 −Q2/l2p

)
. The standard

expression for the Bekenstein-Hawking entropy,

S(M,Q) =
Area

4GN
=
πr2+
l2p
, (2.2)

can be thought of as the ‘equation of state’ in the

microcanonical ensemble. From it we can obtain

the temperature and ‘chemical potential’ of the

black hole

1

T
≡ ∂S
∂M

∣∣∣∣∣
Q

=
4πr2+
r+ − r−

, µ ≡ −T ∂S
∂Q

∣∣∣∣∣
M

=
Q

r+
.

(2.3)

The free energy and grand canonical potential

can also be obtained by the standard thermo-

dynamic expressions, F ≡ M − TS and A ≡
M − TS − µQ.
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Consider next the process in which a probe

particle with mass m and electric charge q falls

inside the black hole. The black hole plus par-

ticle form an isolated system, with total mass

M +m and total charge Q+ q, which will even-

tually reach thermal equilibrium. The entropy

will therefore change by an amount

δS =
∂S

∂M

∣∣∣∣∣
Q

m+
∂S

∂Q

∣∣∣∣∣
M

q . (2.4)

Using the explicit form of the chemical potential,

derived from the ‘equation of state’, we find

TδS = m− Qq
r+
. (2.5)

This equation admits a simple interpretation as

the heat released by the probe particle while falling

inside the black hole. The action for such a par-

ticle indeed reads

Γ = m

∫
dτ
√
−Gµν ẋµẋν + q

∫
dτAµẋ

µ . (2.6)

In the static gauge, t = τ , it takes the form

Γ =

∫
dt V (r) + velocity terms (2.7)

with V the static potential,

V (r) = m

√(
1−
2l2pM

r
+
l2pQ

2

r2

)
+
qQ

r
. (2.8)

Notice that the potential includes the self-energy

m of the probe, and is constant in the extremal

limit for both source (M = Q/lp) and probe

(m = q/lp), consistently with the absence of a

static force in this case. Now as the particle

moves from spatial infinity to the outer horizon,

the difference in potential energy, δV = V (∞)−
V (r+), is converted to kinetic energy and then

eventually dissipated as heat. This is precisely

the content of eq. (2.5).

The argument can also be run backwards.

Starting from the static potential eq. (2.8), and

assuming that the potential energy of the probe

is converted to heat at the outer horizon, leads to

eq. (2.5). Comparing with eq. (2.4) then gives

µ = A0(r+) =
Q

r+
⇐⇒ − ∂S

∂Q

∣∣∣∣∣
M

= A0(r+)
∂S

∂M

∣∣∣∣∣
Q

.

(2.9)

This partial differential equation can be integrated

for the equation of state S(M,Q), provided we

know already the answer on some (initial) curve

in the (M,Q) plane, such as for Schwarzschild

black holes Q = 0 or extremal black holes, M =

Q/lp. Notice that even though the thermody-

namic properties of a Schwarzschild black hole

are in an essential way quantum (h̄ enters in the

expressions for both temperature and entropy),

the extension to charged black holes follows from

the simple classical argument outlined here. Such

a differential equation may turn out to be prac-

tically important. Several thermodynamic prop-

erties seem to be more easily computable on or

close to the extremal limit. There, supersymme-

try is of help as evidenced by recent D-brane/black

hole calculations [13]. Being able to calculate at

the extremal boundary of the (M,Q) plane, one

can use (2.9) to extrapolate the calculation to

the whole plane, most importantly in the region

Q = 0 where supersymmetry is completely bro-

ken. It should be noted though that imposing

a boundary condition at the extremal boundary

M = Q maybe problematic since in most cases

the partial derivatives diverge there (T = 0).

This is the case here as well as for the Dp-branes

with p < 5. We could however impose bound-

ary conditions on a line just outside the extremal

boundary (at near-extremality) where computa-

tions are still reliable. This point is conceptually

important and needs further investigation.

The reader may of course object that these

considerations depend on our choice of a minimal

probe action. Quantum gravity effects or stringy

effects (controlled respectively by lp and ls) can

give rise to curvature terms and/or non-minimal

electromagnetic couplings, which would modify

the potential (2.8). Nevertheless, assuming ther-

modynamic equilibrium, the relation

TδS = V (∞)− V (r+) = m− qA0(r+) (2.10)

continues, as we will now argue, to be valid. This

is of course consistent with the fact that for a

neutral particle TδS = m is simply the first law

of thermodynamics.

To see why the potential difference is always

given by eq.(2.10), consider possible corrections

to the action Γ of the particle. These must be of

3
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the form

δΓ =

∫
ds f(R,F, ẋ) , (2.11)

with ds ≡ dτ
√
ẋµẋµ the invariant proper time

element, and f a scalar made out of the electro-

magnetic field strength, the Riemann tensor, the

probe velocity, and covariant derivatives thereof.

Note that corrections of the form
∫
dxµAµf̃ are

not allowed, because gauge invariance forces the

scalar function f̃ to be a constant.1 Now in the

quasi-static limit xµ = (τ, 0 · · · 0), the invariant
element ds tends to dt at spatial infinity, and

vanishes at the horizon, when expressed in terms

of the asymptotic time. The scalar f on the

other hand must vanish at spatial infinity where

both F and R go to zero. Thus, provided f stays

smooth at the event horizon, these higher-order

terms will not contribute to the static potential

either at r = r+ or at r =∞, as advertised.
To show that f cannot indeed diverge at the

horizon, note first that this is automatic for a

scalar function of the background fields, since the

horizon singularity is a coordinate artifact. Sup-

pose next that f is the pull back on the world-line

of a space-time tensor

f = Tµ1···µn
dxµ1

ds
· · · dx

µn

ds
= T0···0

dt

ds

n

+ · · ·
(2.12)

with T a function of F , R and their covariant

derivatives and the dots stand for kinetic terms.

Near the horizon ( dt
ds
)2 = G00 diverges. Never-

theless f must remain regular, or else the scalar

invariant Tµ1 ···µnT µ1 ···µn could not possibly be
finite.

The only remaining possibility is that f de-

pends on extrinsic invariants, or on other higher-

derivative terms of the coordinate functions. They

are constructed by using the covariant acceler-

ations Ωµn. For n = 1, this is the usual four-

velocity, Ωµ1 = ẋ
µ. For n = 2, this is the acceler-

ation

Ωµ2 = ẍ
µ − 1
2
∂τ log(Gνρẋ

ν ẋρ)ẋµ + Γµνρẋ
ν ẋρ

(2.13)

1This does not imply that the electromagnetic cou-

pling must be minimal, since (2.11) may depend non-

trivially on the field strength.

and so on. Notice that Ωµn are tensors both of the

target space diffeomorphisms as well as world-

line reparametrizations. The piece of the accel-

eration that contributes to the potential is

Ωµ2

∣∣∣∣pot = −12G00,0G00
δµ0 + Γ

µ
00 (2.14)

This in principle can give singular contributions

on the horizons via invariants of the form GµνΩ
µ
m

Ωνn. We can show however that in the usual on-

shell perturbative derivation of the higher α′ cor-
rections such invariants cannot appear. The rea-

son is that the first non-trivial correction is com-

puted by matching on-shell some scattering am-

plitude involving the particle with a combination

of higher velocity or acceleration terms. How-

ever, on-shell Ωµ2 ∼ Fµν ẋν . Thus, the Ω2 is re-
dundant and does not appear on-shell in the first

correction terms. Consequently the corrected ac-

tion involves only velocities, and the corrected

equations will equate Ω2 to velocities again. Thus,

to any finite order of perturbation theory, we do

not have the dangerous acceleration terms. This

is supported by a recent calculation of (part of)

the O(α′2) terms for D0-branes [11].
The upshot of the previous argument is that

the right-hand side of eq. (2.10) is universal, and

hence so is the differential equation (2.9) which

one can integrate for the equation of state. One

immediate corollary, assuming the entropy stays

smooth in the extremal limit where T = 0, is

that A0(r+)
∣∣∣
extremal

= 1/lp always.

There is, to be sure, still a lot of room for

string or quantum-gravity corrections to the ther-

modynamic functions. Both the chemical po-

tential, A0(r+), away from extremality, and the

equation of state for, say, neutral holes S(M, 0),

are expected in general to receive such correc-

tions. It is also conceivable that, like finite-size

effects, string and/or quantum gravity correc-

tions invalidate our thermodynamic treatment of

the problem.

3. Near-extremal near-horizon limit

To discard quantum gravity effects we will now

assume that lp is vanishingly small compared to

all other length scales in the problem. We will

furthermore take the near-extremal limit, and

4
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concentrate on the near-horizon geometry of the

black hole,

lp � δr ∼ (r+ − r−) � r+ . (3.1)

In order to analyze this limit, it is convenient to

define the new coordinates

r ≡ l2pM (1 + u) and t ≡ l2pM t̃ , (3.2)

in terms of which the metric reads

(l2pM)
−2 ds2 = − f(u)(

1 + 1
u

)2 dt̃2 +
(
1 +
1

u

)2
×

×
(
du2

f(u)
+ u2dΩ22

)
, (3.3)

where

f(u) = 1−(u0
u
)2 and r± ≡ l2pM (1±u0) . (3.4)

The outer and inner horizons are located in the

new coordinates at u = ±u0, while the electric
potential takes the form

A0 ≡ (l2pM)−1 Ã0 =
√
1− u20

lp(1 + u)
. (3.5)

Finally the potential of a point probe can be

worked out easily with the result

V (u) = m

√
u2 − u20
1 + u

+
q

lp

√
1− u20
1 + u

. (3.6)

Consider now the limit (3.1) which can be

written equivalently as (lpM)
−1 � u, u0 � 1.

In this limit the metric simplifies to

(l2pM)
−2 ds2 = −f(u)u2 dt̃2 + du2

f(u)u2
+ dΩ22 .

(3.7)

The extremal case ( f = 1) gives the AdS2 × S2
space, also known as the Bertotti-Robertson uni-

verse. For finite u0, on the other hand, one has

a two-dimensional black hole embedded in this

asymptotic geometry.2 For the thermodynamic

quantities, we obtain3

S = πQ2 + 4π2Q3T lp +O(l2p) (3.8)

2This solution is different from the one discussed in

[14].
3A similar result was obtained in [15].

U =
Q

lp
+
Q3

2
(2πT )2 lp + 2Q

4(2πT )3l2p +O(l3p)

(3.9)

Φ =
1

lp
− 2πTQ− 6π2Q2T 2 lp +O(l2p) (3.10)

Note here that the leading contributions to U

and Φ are singular. This will also be the case for

Dp-branes.

The static potential of a point probe reads

in this limit [16]

V (u) =
q

lp
− q
lp
u+m

√
u2 − u20 . (3.11)

For a generic probe m > q/lp, so that the poten-

tial grows linearly at the spatial infinity of AdS2
space. For an extremal probe, on the other hand,

the potential goes to a constant at infinity, and

the potential difference δV = V (∞) − V (u0) =
q
lp
u0 is well defined. We can therefore use our

thermodynamic argument to derive the expres-

sion for the chemical potential

µ =
1− u0
lp

, (3.12)

in agreement with the near-extremal expansion

of the electrostatic potential at the horizon µ =

A0(u0). Note that, as with most other thermody-

namic quantities, one has to keep the first sub-

leading correction in the near-extremal expan-

sion of µ, in order to find the leading temperature

dependence.

A heuristic rephrasing of the main message of

this section is as follows: a near-extremal black

hole exerts no net force on an extremal probe

at long distance. The potential energy, is thus

converted to kinetic energy and eventually re-

leased as heat while the probe falls in the near-

horizon geometry. To leading order in the ex-

tremality parameter one can therefore compute

the chemical potential by ignoring the physics in

the asymptotically-flat region.

4. Black Dp-branes

We consider now the background geometry (in

the string frame) of a near-extremal black hole

describing a number of coinciding Dp-branes [1]:

ds210 =
−f(r)dt2 + d~x · d~x√

Hp(r)
+
√
Hp(r)

(
dr2

f(r)
+

5
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+r2dΩ28−p
)

(4.1)

Hp(r) = 1 +
L7−p

r7−p
, f(r) = 1− r

7−p
0

r7−p
(4.2)

The parameters L and r0 determine the AdS

throat size and the position of horizon, respec-

tively. They are related to the ADM mass M

and the (integer) Ramond-Ramond charge N in

the following way:

M =
Ω8−pVp
2κ210

[
(8− p)r7−p0 + (7− p)L7−p

]

N =
(7− p)Ω8−p
2κ210Tp

L(7−p)/2
√
r7−p0 + L7−p (4.3)

where Ωn is the volume of a unit n-dimensional

sphere, and Vp is the common p-dimensional D-

brane (flat) volume. The relations (4.3) involve

the D-brane tension Tp and the 10-dimensional

gravitational constant κ10. The RR charge N

is quantized, with each D-brane carrying a unit

charge so that N is equal to the number of D-

branes. Finally,

L7−p =

√(
2κ210TpN

(7− p)Ω8−p

)2
+
1

4
r
2(7−p)
0 − 1

2
r7−p0

(4.4)

The RR charge is the source of the p-form

field

C012···p(r) =
2κ210TpN

Ω8−p(7− p)(r7−p + L7−p)
=

=

√
1 +
r7−p0
L7−p

Hp(r) − 1
Hp(r)

. (4.5)

All other components vanish, except in the case

of p = 3, when the self-duality condition

Fµ1···µ5 =
1

5!
√
det g

εµ1···µ5ν1···ν5F
ν1···ν5 (4.6)

requires non-zero p-form components in the trans-

verse directions. There is also a dilaton back-

ground (constant for p = 3): eφ = H
(3−p)/4
p (r).

By using standard methods of black hole ther-

modynamics, it is straightforward to determine

the Hawking temperature, entropy and chemical

potential corresponding to the solution (4.1,4.5).

They are respectively:

T =
7− p
4π

r
(5−p)/2
0√
r7−p0 + L7−p

(4.7)

Φ = VpTp
L(7−p)/2√
r7−p0 + L7−p

(4.8)

S =
4πΩ8−pVp
2κ210

r
(9−p)/2
0

√
r7−p0 + L7−p , (4.9)

It is easy to check that these quantities sat-

isfy the thermodynamic identitydU = TdS +

ΦdN with U =M .

We consider now a Dp-brane probing the above

solution, with zero background values for all other

fields. In this case, the D-brane probe action is

Γp = Tp e
−φ
∫ √

det ĝ + Tp

∫
Ĉ (4.10)

where we have also set the world-volume Fαβ =

0. Using the solution above we obtain the static

potential [17]

V (r) = VpTp

[√
f(r)

Hp(r)
+ C(r)

]
= VpTp

[√
f(r)

Hp(r)
+

+

√
1 +
r7−p0
L7−p

Hp(r) − 1
Hp(r)


 (4.11)

where C(r) ≡ C012···p(r). Note that, like in the
RN case, the horizon value C(r0) is equal to the

chemical potential Φ. The values of the potential

at infinity and at the horizon are, respectively,

V (∞) = VpTp and V (r0) = Φ.
A Dp-brane probe is a BPS state with the

mass ∆M = VpTp and charge ∆N = 1. As it

moves from infinity to the horizon, its potential

energy changes by ∆E = V (r0) − V (∞), and
the quantity of heat received by the black hole is

again dE = −∆E. On the other hand, the black
hole gains mass dM = ∆M = VpTp and charge

dN = ∆N = 1. This process is described by the

equation

dE = V (∞)− V (r0) = dM − ΦdN =

= dU − ΦdN = TdS (4.12)

which does indeed hold. As expected, the probe

motion, governed by the background field ac-

tion of eq.(4.10), is consistent with black hole

thermodynamics and provides a similar partial

equation of state as in the RN case. The ar-

gument concerning the absence of α′ corrections
here is more involved. Unlike the case of one-

dimensional world-volumes, here the equations

6
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of motion do not set the accelerations (second

fundamental forms) to be a function of velocities

[11]. At this point we can argue that to order

O(α′2) there are no corrections using the explicit
results of [11]. It turns out that the second fun-

damental form enters in such a way that there are

no extra corrections again on the horizon. More-

over the appearance of a non-zero five form is

not expected to change the previous statement.

Here we must also investigate the higher anoma-

lous CP-odd couplings. The relevant case is that

of D3 branes and the coupling

Sθ = −T3
(4πα′)2

48

∫
a [p1(T )− p1(N )] (4.13)

where p1 denotes the first Pontriagin class and

T ,N stand for the tangent and normal bundles
to the brane respectively It can be shown that

this vanishes for diagonal metrics with the re-

quired Poincaré symmetry. Thus, there is no

correction to the heat up to order O(α′2) and
we suspect that this is true to all orders. This

would imply again that all corrections come from

the corrected background fields.

5. D3-branes in the near-horizon limit

The case of D3-branes is particularly interesting

because the world-volume action of N coincid-

ing D-branes involves a four-dimensional N=4
supersymmetric SU(N) Yang-Mills theory. Ac-

cording to the Maldacena conjecture [3], the large

N limit of this gauge theory is related to the near-

horizon AdS geometry of the extremal (r0 = 0)

black D3-brane solution (4.1). Witten [6] has ex-

ploited the AdS/SYM correspondence in order to

study the largeN dynamics of non-supersymmetric

SYM, withN=4 supersymmetries broken by non-
zero temperature effects. According to this pro-

posal, the non-extremal solution (4.1) may be

used to study SYM at T identified with the Hawk-

ing temperature (4.8) as long as T � 1/L, so
that the metric remains near-extremal (r0 � L).
In the Maldacena limit, α′ ≡ l2s → 0 at u ≡ r/α′
and T fixed, the solution (4.1) describes an AdS-

Schwarzschild black hole [7]:

ds2 = l2s

[
u2

R2
(−f(u)dt2 + d~x · d~x) +R2 du

2

u2f(u)
+

+R2dΩ25

]
+O(l4s) , (5.1)

where

f(u) = 1− u
4
0

u4
, R4 ≡ 4πgsN = λ (5.2)

u0 = πTR
2 , (5.3)

where λ is the t’Hooft coupling. The limiting

value of the four-form (4.5) is

C0123 = 1 + l
4
s

(
(πTR)4

2
− u

4

R4

)
+O(l8s), (5.4)

As in the near-horizon limit of the RN black-hole,

here also the gauge field diverges at the boundary

of AdS5, u→∞.
A D3-brane probe in the bulk of the AdS

space corresponding to N background D3-branes

can be thought of as a realization of SU(N + 1)

gauge theory in the SU(N) × U(1) symmetric
Higgs phase. In the following, we examine some

aspects of the probe dynamics and thermody-

namics in the near-horizon limit, in order to show

that it is well-defined and it leads to sensible re-

sults also in the Higgs phase. To that end, we will

use the following expansions in the string length

scale ls:

L4 = R4l4s

(
1− 1
2
π4R4T 4l4s

)
+O(l12s ) (5.5)

r0 = πTR
2l2s

(
1 +
1

4
π4T 4R4l4s +O(l8s)

)
(5.6)

which follow from relations written in the previ-

ous section. Similarly,

M = NV3T3 +
3

8
π2V3N

2T 4 +O(l4s) (5.7)

S =
1

2
π2V3N

2T 3 +O(l4s) (5.8)

Φ = V3T3 −
1

4
π2V3NT

4 +O(l4s) (5.9)

Note that T3 ∼ 1/l4s → ∞. As pointed out be-
fore in ref.[9], the limiting entropy (5.8) is 3/4 of

the corresponding quantity in the weakly coupled

SU(N) SYM.

Taking the limit in the static potential (4.11),

we obtain4

V (u) = V3T3


1 + l4s u

4

R4



√
1−

(
πTR2

u

)4
− 1+

4We disagree with the potential obtained in the near-

horizon limit in [18].
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+
1

2

(
πTR2

u

)4]
+O(l8s)

}
(5.10)

so that the interaction energy is

V int(u) = V (u)− V3T3 =
V3

(2π)3gs

u4

R4
×

×



√
1−

(
πTR2

u

)4
− 1 + 1

2

(
πTR2

u

)4+O(l4s)
(5.11)

and has a smooth limit as ls → 0. Since the

probe is BPS, V int(∞) = 0 as in the RN case.
The thermodynamic argument is still valid.

We let the probe fall until it reaches the horizon.

The heat supplied by the black hole to the probe

is

dE = V (∞)− V (u0) = V3T3 − V (u0) =

= ∆M − Φ∆N = 1
4
π2V3NT

4 (5.12)

where ∆N = 1. On the other hand, taking

the limit of the equations of the previous sec-

tion we obtain that the black hole cools down by

dT = −T/(2N) which is sufficient to prove di-
rectly that dE = TdS, with the entropy given

by eq.(5.8). We thus find as before consistent

thermodynamics, when we allow the probe brane

to move from the boundary of AdS space to the

horizon. This (gravitational) equality corresponds

to the qualitative expectation that an ultraviolet

fluctuation in N=4 SYM spreads until it reaches

the size of the thermal wavelength and thus ther-

malizes [10].
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