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1. Introduction

In this talk we introduce a Metropolis-type updating procedure, which uses approximate heat-
bath probabilities for its proposals, so that an acceptance rate close to 1 is achieved without any un-
due shrinking of the proposal range. This introduces a bias in the probability ratio of the Metropo-
lis accept/reject step, and we call the algorithm Biased Metropolis-Heatbath Algorithm (BMHA),
while we use the notation HBA for HeatBath Algorithm. Details of the application of the BMHA
to SU(2) and U(1) gauge theories are already published in [1].

2. SU(2) Pure Gauge Theory Example

Here we explain the SU(2) example. The action is

S({U}) =
1

Nc
∑
�

ReTr(U�) (2.1)

with U� = Ui1 j1U j1i2Ui2 j2U j2i1 , where the sum is over all plaquettes of a 4D simple hypercubic
lattice, i1, j1, i2 and j2 label the sites circulating about the plaquette and U ji is a SU(2) matrix
(Nc = 2) associated with the link 〈i j〉. The reversed link is associated with the inverse matrix.
While working at a particular link 〈i j〉, we need only to consider the contribution to S, which
comes from the staples containing this link. We denote by Ut,k, k = 1, . . . ,6, the products which
interact with the link in question. Then the probability density of this link matrix is

dP(U) ∼ dU exp

[

βg

Nc
ReTr

(

U
6

∑
k=1

Ut,k

)]

. (2.2)

Using the property of SU(2) group elements that any sum of them is proportional to another SU(2)

element we define a SU(2) matrix Ut by

Ut =
1
st

6

∑
k=1

Ut,k, st =

√

√

√

√det

(

6

∑
k=1

Ut,k

)

. (2.3)

Let V = U Ut, using the invariance of the group measure, dV = dU , one finds

dP(V ) ∼ dV exp

[

βg

2
st ReTr(V )

]

. (2.4)

In the basis of Pauli matrices, ~σ , V is conveniently parametrized:

V = a0 I + i~a ·~σ , a2
0 +~a2 = 1 ⇒ Tr(V ) = 2a0 . (2.5)

The group measure is dV =
√

1−a 2
0 da0 dΩ with dΩ being solid angle of the three dimensional

~a. Let us denote α = βg st, then

dP(V ) ∼ dΩda0

√

1−a 2
0 exp(α a0) . (2.6)
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Figure 1: Cumulative distribution function Fα(a0) with the level map in α–a0 (x–y) plane.

As nothing depends on the solid angle, ~a is generated uniformly on a sphere of a radius
√

1−a 2
0

and the main step is to generate a0 in the interval −1 ≤ a0 ≤ 1 with probability density

Pα(a0) ∼
√

1−a 2
0 exp(α a0) . (2.7)

The cumulative distribution function (CDF) is

Fα(a0) = Nα

∫ a0

−1
da′0

√

1−a
′ 2
0 exp

(

α a′0
)

(2.8)

where Nα ensures the normalization Fα(1) = 1 and, evidently, Pα(a0) = dFα(a0)/da0.
Fα(a0) is a function of two variables: the parameter α , which incorporates the effect of inter-

action with the neighbors, and a0, the variable being updated. In the following we will associate
α to the x-, a0 to the y-, and Fα(a0) to the z-axis. Also, we will consider SU(2) gauge theory
at a coupling βg = 2.3, close to the critical point. In this case 0 ≤ α ≤ 6βg = 13.8. With these
conventions Fα(a0) is plotted on Fig. 1. Contour lines on the surface represent levels where Fα(a0)

increases from 0 to 1 by a chosen constant value (in this case 1/8). Lines in α–a0 (x–y) plane are
projections of these contours and constitute a level map similar to those used to encode height on
maps in geography. What we need to construct a BMHA is a discretized version of this level map.

3. Constructing the Algorithm

3.1 Heatbath Algorithm

The HBA generates a0 for a given α by converting a uniformly distributed random number
0 ≤ z < 1 into a0 = F −1

α (z). For SU(2) it was first introduced by Creutz [2] and improved in
Ref. [3] and [4]. As F −1

α (z) is approximated one needs a repeat until accepted (RUA) step to
generate the correct distribution. The acceptance rate (AR) of the updates, defined as the ratio of
updated links over the number of visited links, is always 1 for the HBA [5].
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Figure 2: m×n partitioning of 4ai, j
0 for SU(2) at

βg = 2.3 for the table values discussed in the text.
Figure 3: Discretization of the cumulative distri-
bution function Fα11(a0) for SU(2) at βg = 2.3.

3.2 Metropolis Algorithm

In the conventional Metropolis scheme a0,new is generated uniformly in the range [−1,1] and
then accepted with probability

pMet = min

{

1,
Pα(a0,new)

Pα(a0,old)

}

= min







1,

√

1−a 2
0,new exp(α a0,new)

√

1−a 2
0,old exp(α a0,old)







. (3.1)

It may have a low AR in the region of interest. Possible cures are to decrease the proposal range,
which makes the moves small, or multi-hit Metropolis, which needs a fixed number of hits (i.e.
cannot be transformed into a RUA step).

3.3 Biased Metropolis-Heatbath Algorithm

Let us discretize the parameter α (x axis) into m = 2n1 = 16 (n1 = 4) bins. For simplicity
we choose equidistant partitioning, although other discretizations are possible too. In each α i bin
we discretize Fα i(a0) (z axis) into n = 2n2 = 16 (n2 = 4) values and store ai, j

0 which satisfy the
condition: j/n = Fα i(ai, j

0 ). In this way we achieve a discretized version of the level map at the
bottom of Fig. 1, which is shown in Fig. 2.

Two two-dimensional arrays are needed: one for storing ai, j
0 (levels themselves) and an-

other for 4ai, j
0 = ai, j

0 − ai, j−1
0 (distances between levels). Let us assume that for a link being

updated α falls into the 11th bin, so i = 11. Finding i is achieved by an operation of the form:
integer[mα/αmax] with αmax = 6βg = 13.8 for βg = 2.3. This is our first step.

Then Fα11(a0) is given by a cross section in the y–z plane shown on Fig. 3. The next step is to
determine the bin label jold which belongs to the (known) value a0,old . This can be done in n2 steps
using the recursion j → j + 2i2 sign(a0 −ai, j

0 ), i2 → i2 −1. Once jold is known it gives a length
of the bin: 4ai, jold

0 .

The next step is to propose a0,new. Two uniform random numbers (r1 and r2) are needed:
one to pick up an integer jnew in the range 1, ...,n (as jnew = integer[nr1]), another to propose
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Table 1: Efficiency of the SU(2) algorithms on a 4×163 lattice at βg = 2.3.

HBA [3, 4] Metropolis BMHA

CPU time 194,873 [s] 181,321 [s] 199,244 [s]

Acceptance rate 1 (1.043 proposals) 0.111 0.975

〈Tr(U�)/2〉 0.603147 (17) 0.603066 (52) 0.603111 (21)

τint 49.8 (3.5) 409 (66) 48.2 (3.8)

a0,new = ai, jnew−1
0 + r24ai, jnew

0 . Then the new value of a variable is accepted with probability:

pBMA = min

{

1,
Pα(a0,new)

Pα(a0,old)
·
4ai, jnew

0

4ai, jold
0

}

= min







1,

√

1−a 2
0,new exp(α a0,new)

√

1−a 2
0,old exp(α a0,old)

·
4ai, jnew

0

4ai, jold
0







. (3.2)

pBMA in (3.2) differs from pMet in (3.1) by a bias 4ai, jnew
0 /4ai, jold

0 .
We need to distinguish two issues here. First, the underlined updating procedure stays fully

equivalent to the conventional Metropolis algorithm for any discretization ai, j
0 . Detailed balance

for (3.2) can be proven the same way as for usual Metropolis without explicit knowledge of 4ai, j
0 .

Choosing, for example, equidistant partitioning for a0 (4ai, j
0 = 4ai,k

0 for any j, k) would turn the
bias into 1 and simply get us back to original Metropolis algorithm. Hence, the bias influences only
the acceptance rate in (3.2). This draws us to the second issue: when partitioning ai, j

0 is achieved by
discretizing the cumulative distribution function, then in the limit m,n → ∞ the BMHA approaches
the HBA and the acceptance rate approaches 1. The limit m → ∞ simply means α i → α , the actual
value. For the n → ∞ limit let us turn to the Fig. 3. The discretization step on z = Fα(a0) axis is
4z = 1/n and a0 = F −1

α (z). Therefore, as n → ∞, 4z → 0:

4a0

4z
→

d
dz

F −1
α (z) =

(

d
da0

Fα(a0)

)−1

=
1

Pα(a0)
. (3.3)

Then,

Pα(a0,new)

Pα(a0,old)

4ai, jnew
0

4ai, jold
0

=
Pα(a0,new)

Pα(a0,old)

4ai, jnew
0 /4z

4ai, jold
0 /4z

→
Pα(a0,new)

Pα(a0,old)

1/Pα(a0,new)

1/Pα(a0,old)
= 1. (3.4)

The table building process and the updating procedure are discussed in a more formal way in [1].

4. Performance

In our simulations we used a finer discretization, m = 32 and n = 128. Table 1 illustrates the
performance of the SU(2) BMHA for a long run on a 4×163 lattice at βg = 2.3. At this coupling
the system exhibits critical slowing down, because of its neighborhood to the deconfining phase
transition (see for instance [6] and references therein). We used 16,384 sweeps for reaching equi-
librium and, subsequently, 32×20,480 sweeps for measurements. Simulations were performed on
2GHz Athlon PCs with the -O2 option of the (freely available) g77 Fortran compiler.

Our comparison is with the Fabricius-Haan-Kennedy-Pendleton HBA [3, 4], which at this
coupling is more efficient than Creutz’s HBA [2], and with the conventional Metropolis. A direct
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measure for the performance of an algorithm is the integrated autocorrelation time τint. It is given
in the Table 1 for the Wilson plaquette together with the expectation value of this operator. Error
bars are given in parenthesis and apply to the last digits. They are calculated with respect to 32 bins
(jackknife bins in case of τint), relying on the data analysis software of [7].

5. Summary and Conclusions

Using BMHA may be beneficial in several lattice gauge theory situations:

• When a HBA implementation exists, but the inversion of the cumulative distribution function
in question is relatively inefficient. An example is U(1) lattice gauge theory explored in [1].

• When a HBA implementation does not exist. An example is SU(2) lattice gauge theory in
the mixed fundamental-adjoint representation (work in progress [9]).

• In multi-variable case to which the BMHA generalizes for the price of increasing dimensions
of the tables.

• In (checkerboard) parallelization the updating speed of the BMHA is uniform over all nodes.
This is not the case for a HBA if a RUA step is involved (as for SU(2)).

When the canonical CDF similar to (2.8) is a priori unknown a HBA becomes impossible, but
there are still good chances for a Biased Metropolis Algorithm (BMA). In this case an estimator
of the CDF may be constructed empirically as it was explored for biophysical applications in [8],
where a BMA of the type discussed here was first proposed within a Rugged Monte Carlo scheme.
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