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1. Introduction

Recent development of algorithms and computational resources has enabled extensive studies
of dynamical lattice QCD simulations at small quark masses where the chiral symmetry plays
an essential role. Such studies are indispensable to investigate the chiral dynamics of QCD and
to determine hadronic matrix elements with the precision required by present and future flavor
physics. Among lattice fermion actions, the overlap fermion [1, 2] has attractive features for these
purposes. The overlap fermion operator is represented as

D = m0 [1+ γ5 sign(HW (−m0))] , (1.1)

where HW = γ5DW is the hermitian Wilson-Dirac operator with a large negative mass −m0. This
operator satisfies the Ginsparg-Wilson relation [3], and thus holds an exact chiral symmetry on the
lattice [4, 5]. The exact chiral symmetry significantly simplifies the structure of operator mixing in
calculations of the matrix elements. The overlap fermion corresponds to the infinite Ns limit of the
domain-wall fermion, which means that one does not have to take care of the residual mass. On
the other hand, numerical implementation of the overlap fermion is expensive, because of the eval-
uation of the sign function of HW . Furthermore, the discontinuity of the operator at λ = 0, where
λ is an eigenvalue of HW , makes the molecular-dynamics evolution much involved. Therefore,
dynamical simulations of the overlap fermion have become feasible only recently with improved
algorithms and large computational power.

We are running a large-scale lattice QCD simulation project with 2 and 2+1 flavors of dynam-
ical overlap fermions. Our physics goals are to explore the chiral regime of QCD with an exact
chiral symmetry, and to compute hadronic matrix elements with controlled chiral extrapolation.
Present simulations are performed with a spatial lattice size of 16 and a ' 0.12 fm. For the gauge
action, we adopt the Iwasaki’s renormalization group improved action, as well as a topology fixing
term which suppresses near-zero modes of HW [6, 7, 8]. Thus our simulation is performed in a
fixed topological charge sector. By avoiding the discontinuity of the overlap operator at λ = 0, the
numerical cost of HMC is significantly reduced.

This report explains our strategy of simulations and presents several recent results. In the next
section, we address why the fixed topology simulation is feasible, and how it can extract physical
observables with controlled systematic errors. Section 3 describes the numerical algorithms which
are essential for dynamical overlap simulations. In Section 4, our simulation set-up is summarized.
Some of recent results at N f = 2 are shown in Section 5. The last section is devoted to a conclusion
and outlook.

2. Simulations at fixed topology

2.1 Topology fixing term

Dynamical simulations of the overlap fermions are quite nontrivial, because the sign function
in Eq. (1.1) has a discontinuity at λ = 0, where λ is an eigenvalue of HW . Vanishing λ may
occur during molecular-dynamics steps of the HMC update, at which the topological charge of
the system changes its value. To keep the acceptance rate of HMC, one needs to take care of this
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discontinuity so as to conserve the Hamiltonian precisely. One option is the reflection/refraction
prescription [9]. This method first determines the time step at which λ vanishes, and there the
change of the pseudofermion action is computed. Like the light traveling across a surface of water,
if the momentum of the mode is larger than the change of the pseudofermion action, it is refracted,
while otherwise reflected. This method requires additional inversions of D(m) at λ = 0, and thus
the numerical cost quickly increases when the low-mode density becomes large.

We instead employ a topology fixing term, which is implemented with an extra Wilson fermion
and a twisted mass ghost as [6, 7, 8]

det
(

H2
W

H2
W + µ2

)

=

∫

Dχ†
Dχ exp(−SE), (2.1)

SE = χ†
[

(DW + iγ5µ)(D†
W DW )−1(DW + iγ5µ)†

]

χ . (2.2)

This term is irrelevant in the continuum limit, and considered as a part of the gauge action. The
numerator of Eq. (2.1) suppresses near-zero modes of HW , while contribution from large frequency
modes are compensated by the denominator. Since λ = 0 is prohibited, the topological charge
is fixed during the molecular-dynamics update, and hence the reflection/refraction is no longer
needed. We set the twisted ghost mass µ = 0.2 throughout this work. As was shown in Refs. [8,
10, 11], this term successfully suppresses the near-zero modes of HW .

As an alternative approach, the tunneling HMC has been proposed recently in Ref. [12]. This
method also employs the extra Wilson fermion term, and thus near-zero modes of HW are sup-
pressed, but it projects out a few lowest-lying modes during the molecular-dynamics steps so as to
enable topology changes. The tunneling HMC does not avoid λ = 0, and the reflection/refraction
prescription is necessary. Practical feasibility test is to be performed.

2.2 Simulations at fixed topology

Simulations at fixed topology are especially useful in the ε-regime where 1/mπ � L (see
Sec. 5.1). In the ε-regime, the topological charge dependence of physical observables is manifest
and the fixed topology simulation is useful to determine the low-energy constants appearing in the
effective chiral Lagrangian. On the other hand, in the ordinary regime (p-regime), precision calcu-
lations are possible only when the following two conditions are satisfied; (1) A physical observable
in the θ vacuum is related to those in the fixed-Q vacua as a systematic expansion in terms of V −1,
where V is the spacetime volume. (2) The topological susceptibility, χt = 〈Q2〉/V , is calculable and
reproduces the known behavior from ChPT, which ensures that the local fluctuation of topological
charge is active so as to produce relevant physics in a finite volume. Here we explain these points
along Refs. [13, 14, 15].

What we want to compute is an expectation value in the θ vacuum, which is related to the
“vacua” with fixed values of Q through the Fourier transformation,

Z(θ) = ∑
Q

e−iθQZQ, ZQ =
∫ π

−π

dθ
2π

eiθQZ(θ). (2.3)

While the cluster property does hold for the former, the global topology becomes irrelevant in the
infinite volume limit and the local fluctuation of topological charge is responsible to the physics.
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In practice, however, the volume is inevitably finite. For a large enough volume, χtV � 1, and for
Q � χtV , the saddle point analysis is applicable and it leads to the conclusion that the distribution
of Q is Gaussian and physical observables are represented as 〈O〉Q = 〈O〉θ + (finite V corrections).
As an explicit example, a CP even correlator is represented as

GQ = G(0)+G(2)(0)
1

χtV

[

1− Q2

χtV
− c4

2χ2
t V

]

+G(4)(0)
1

8χ2
t V 2 +O(V−3), (2.4)

where G(n)(θ) is the n-th derivative of G(θ) with respect to θ , and c4 = −(〈Q4〉−3〈Q2〉2)/V . To
quantify the O(1/V ) effect in Eq. (2.4), G(2) must be known. This is determined with a help of the
chiral perturbation theory (ChPT). For example, the O(V −1) fixed topology effect to the PS meson
mass is calculated in Ref. [13] at the tree-level of ChPT. It is also possible to determine G(2) in
numerical simulations by comparing the results in different Q sectors.

In the above formula, the topological susceptibility χt plays a key role. For a self-contained
calculation, χt must be computed on the fixed-Q configurations. χt is represented as a correlation of
the local topological charge ω(x), which is also subject to Eq. (2.4). From the clustering property
in the θ vacuum,

lim
|x|→∞

〈ω(x)ω(0)〉Q =
1
V

(

Q2

V
− χt −

c4

2χtV

)

+O(V−3). (2.5)

Using the axial Ward-Takahashi identity,

lim
|x|→∞

〈mP0(x)mP0(0)〉Q = lim
|x|→∞

〈ω(x)ω(0)〉Q, (2.6)

where P0(x) is the flavor singlet pseudoscalar density. Thus the topological susceptibility can be
extracted from the long range behavior of the correlation function carrying the quantum number
of η ′ meson. If the determined χt in a simulation exhibits a reasonable value, it implies that in
that system the local fluctuation of topological charge is active enough, and the system size is
sufficiently large. Extraction of χt in our N f = 2 simulation will be described in Sec. 5.2. Such
a method is useful not only in the fixed topology simulations but also in standard HMC updates,
because the changes of topological charge with a continuous variation of link variables become
increasingly rare as approaching the continuum limit.

These arguments indicate that the fixed topology simulations can provide a framework to de-
termine the physical observables in the θ vacuum in a self-contained manner with the finite size
effects under control.

3. Algorithm

3.1 Overlap operator

The overlap operator with a quark mass m is written as

D(m) =
(

m0 +
m
2

)

+
(

m0 −
m
2

)

γ5sign[HW (−m0)]. (3.1)

m0 is set to 1.6 throughout this work. The sign function means that an eigenmode (λ ,vλ ) of HW is
transformed to (sign(λ ),vλ ). Since the calculation of all the eigenmodes is impractical, some kind

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
0
1
8

Exploring the chiral regime with dynamical overlap fermions Hideo Matsufuru

of approximation of the sign function is required. We employ the Zolotarev rational approximation
[16, 17],

1
√

H2
W

=
d0

λmin
(h2

W + c2n)
N

∑
l=1

bl

h2
W + c2l−1

, (3.2)

where hW = HW/λmin with λmin the eigenvalue having the smallest absolute value. d0, cl , bl are
easily calculable parameters. Although (h2

W +c2l−1)
−1 must be calculated N times, these terms can

be obtained simultaneously by the multi-shift CG method [18, 19]. Thus, the numerical cost mildly
depends on N. This formula is valid in the region |λ | ∈ [λmin,λmax]. Since the error of the formula
scales as exp(−λminN), the smaller λmin requires the larger N to keep the precision unchanged.
Instead, if one calculates low-lying eigenvalues of HW of |λ | < λthrs, one can determine the sign
function of these modes explicitly and project them out from HW . Then λthrs replaces λmin in the
above formula, leading to

sign(HW ) =
Nev

∑
j=1

sign(λ j)v j ⊗ v†
j + sign(HW )PH , (3.3)

where PH = 1−∑Nev
j=1 v j ⊗ v†

j , and Nev the number of modes with |λ j| < λthrs. The approximation
formula is applied to the second term of this equation. The numerical cost depends on the density of
low modes, since the determination of the low modes requires non-negligible computational time,
and also projecting out the low modes from the sign function requires additional operations. Also in
this sense, employing the topology fixing term improves the simulations of overlap fermions. In this
work, we adopt λthrs = 0.045 and N = 10, which lead to an accuracy of |sign2HW −1| ' 10−(7−8).

3.2 Solver algorithms

Since the overlap operator must be inverted at each step of the molecular-dynamics evolution,
the improvement of the solver algorithm may significantly reduce the simulation cost. We have
tested two algorithms; the nested CG (or 4DCG) method [20] and the 5-dimensional CG (5DCG)
method [21, 22]. The nested CG method is a straightforward implementation of the overlap solver.
It contains two nested CG iterations: an outer loop for operating D(m) and an inner loop for
the calculation of (H2

W + c2l)
−1. The numerical cost can be reduced by applying the relaxation

technique, which relaxes the convergence criterion of the inner loop as the outer loop iteration
proceeds. Instead of the CG method, one can apply other Krylov subspace algorithms such as
GMRES and SUMR. Since in HMC only the inversion of D†D appears and the CG method almost
achieves the best performance, we compare the CG method with the 5D algorithm in the following.

The 5-dimensional CG solver is based on the Schur decomposition [21, 22]. Let us consider a
5-dimensional block matrix (the N = 2 case is displayed as an example),

M5 =















HW −√
q2 0

−√
q2 −HW

√
p2

HW −√
q1 0

−√
q1 −HW

√
p1

0
√

p2 0
√

p1 Rγ5 + p0H















=

(

A B
C D

)

. (3.4)
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Figure 1: Comparisons of the overlap solvers. The left panel shows the residual of the CG solver without
the low-mode projection. The right panel shows the required time for the convergence in the case with the
projection of 8 low modes of HW .

Since M5 can be decomposed as

M5 =

(

1 0
CA−1 1

)(

A 0
0 S

)(

1 A−1B
0 1

)

, (3.5)

where S = D−CA−1B is called the Schur complement. One can solve a 4D linear equation Sψ4 =

χ4 by solving a 5D equation

M5

(

φ
ψ4

)

=

(

0
χ4

)

. (3.6)

Setting the parameters R, p0, pi and qi (i = 1, . . . ,N) in Eq. (3.4) appropriately, the 5D solver can
be used to invert the overlap operator approximated by Eq. (3.2). The 5D solver is accelerated
by applying the even-odd preconditioning. Then one needs to solve a reduced linear equation,
(1−M−1

ee MeoM−1
oo Moe)ψe = χ ′

e, where even/odd blocks of M5 is denoted by Mee, Meo, etc. The
inversions M−1

ee and M−1
oo are easily calculated by forward/backward substitutions. The projection

of low-modes is not straightforward for the even-odd preconditioned 5D solver, since the operation
of M−1

ee (or M−1
oo ) becomes much involved. Nevertheless it can be implemented cheaply, because

the subspace of the matrix is spanned by xe, γ5xe, v je, γ5v je ( j = 1, . . . ,Nev) [23].
Figure 1 compares the 4D and 5D solvers. The left panel shows the behavior of the residual

against the numbers of the Wilson-Dirac operator multiplications, in the case of no low-mode
projection [28]. The relaxation accelerates the nested CG by a factor of two, while the 5D solver
exhibits much faster convergence for practical values of N. The required time to solve the linear
equation is compared in the right panel for the case that the number of projected low modes is 8.
This shows that the 5D solver is 3–4 times faster than the 4D solver in the whole region of quark
mass used in this work. Therefore we mainly use the 5D solver in HMC. For the computation of the
quark propagator, we adopt the nested 4D solver because of an advantage to obtain the propagators
with several valence quark masses simultaneously with the multi-shift CG algorithm.

Here let us compare the cost of simulations with the domain-wall fermion. Let us consider the
cost to solve a linear equation Dx = b. At m ' ms/2 , a−1 ' 1.7 GeV, and on 163 ×32 lattices, the

6
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domain-wall solver requires O(800) iterations for a precision |r|/|b|< 10−10 according to Ref. [24],
while the overlap solver requires O(1200) iterations. To convert to the numbers of the Wilson-
Dirac operator multiplications, 2Ns and 2N +1 are multiplied for the domain-wall and the overlap
fermions, respectively. Then the difference amounts to a factor of about 2.5. In HMC, the overlap
solver must be called twice, while the domain-wall solver is applied to D†D. This leads to another
factor of 2 difference leading to the total difference of O(5).

3.3 Hybrid Monte Carlo algorithm

Implementation of the HMC algorithm for the overlap operator with the approximation for-
mula (3.2) is straightforward except for the discontinuity at λ = 0. Since we employ the topology
fixing term, λ = 0 does not appear and no reflection/refraction prescription is required. In order
to improve the performance of HMC, we adopt the mass preconditioning [25] together with the
multi-time step procedure [26]. Introducing a preconditioning term with a heavier quark mass m ′

than the dynamical quark mass m, the fermion action becomes SF = SPF1 +SPF2,

SPF1 = φ †
1 [D(m′)†D(m′)]−1φ1, SPF2 = φ †

2

{

D(m′)[D(m)†D(m)]−1D(m′)†}φ2. (3.7)

The forces from the preconditioner (PF1), the preconditioned dynamical quark (PF2), the gauge
field (G), and the extra Wilson fermion/ghost field (E) have a hierarchical structure,

FG ∼ FE � FPF1 � FPF2. (3.8)

Thus we set
∆τ(PF2) � ∆τ(PF1) � ∆τ(G) = ∆τ(E). (3.9)

∆τ(E) is set to be the same as the gauge part also to ensure the disappearance of near-zero modes
of HW . The cost to calculate FE is negligible compared to the overlap fermions. In the case
of N f = 2 + 1, the time steps of the two-flavor and one-flavor parts are set equal. In this work,
∆τ(PF2)/∆τ(PF1) and ∆τ(PF1)/∆τ(G) are set to 4–6.

In the N f = 2 simulation, we employ the noisy Metropolis test [27] together with a less precise
5D solver without the projection of low-modes of HW [10, 28]. During the molecular dynamics,
the calculation of the low-lying modes of HW is skipped. We fix the value of λthrs, the lower-bound
of the region where the approximation formula (3.2) is valid, though the modes with |λ | < λthrs

may appear. The error with this setting is corrected by the noisy Metropolis test performed at the
end of each MD evolution in addition to the usual Metropolis test. This algorithm is twice faster
than the case with the 4D solver with the projection of low-modes of HW , which was used in an
early stage of the simulation.

The N f = 2+1 simulation has been started recently [23]. The one-flavor part is implemented
with one of the chirality sectors [29, 30] making use of the fact that H(m)2 commutes with γ5, thus

H2 = P+H2P+ +P−H2P− ≡ Q+ +Q−, detH2 = detQ+ ·detQ−. (3.10)

Except for the trivial contribution from the zero-modes, the determinant of one chirality sector cor-
responds to the contribution of one flavor. Thus, the pseudofermion action SF = φ †

σ Q−1
σ φσ , where

σ can be either + or −, represents the one-flavor of dynamical fermion. The same acceleration

7
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Figure 2: The left panel shows the lattice scale a(r0) set by r0 = 0.49fm. The right panel shows the β -
dependence of a(r0) for N f = 2 and 0, together with the result of the clover fermion.

techniques as N f = 2 are applicable to the one-flavor part. For the N f = 2 + 1 simulation, we
adopt the 5D solver with the projection of low-modes of HW , which no longer requires the noisy
Metropolis test [23].

4. Simulation

Numerical simulations are performed mainly on IBM Blue Gene/L system at KEK. At present
the sustained performance on one rack of Blue Gene/L (1024 nodes, 5.7 TFlops of peak perfor-
mance) is about 30% for the Wilson operator [31], and 10–15% for the overlap HMC.

The N f = 2 simulations are performed on 163 ×32 lattices at β = 2.3. We use 6 quark masses,
0.015, 0.025, 0.035, 0.050, 0.070, and 0.100, roughly corresponding to m phys

s /6 – mphys
s . 10,000

trajectories of a length 0.5 are generated at each sea quark mass in the Q = 0 sector. For mud = 0.050
(' mphys

s /2), configurations in Q = −2 and −4 sectors are also generated. In addition, we perform
a simulation in the ε-regime at β = 2.35 with a quite small quark mass, mud ' 3 MeV. To generate
one trajectory, 11–26 minutes are needed on one rack of Blue Gene/L. The acceptance rate is kept
to 80–90% at each quark mass. The locality of the overlap operator was examined in Ref. [32].

The N f = 2+1 simulations have been started recently on 163×48 lattices with almost the same
parameters as N f = 2, while each trajectory has a length 1.0 [23]. We use 5 values of mud covering
the same quark mass region as the N f = 2 case for each of 2 strange quark masses, ms = 0.080 and
0.100, around the physical strange quark mass mphys

s . Present performance is around 2 hours for
one trajectory on one rack of Blue Gene/L.

The lattice scale is set by the hadronic radius r0 which is defined through

r2V (r)
∂ r

∣

∣

∣

∣

r=r0

= 1.65, (4.1)

by setting the physical value r0 = 0.49 fm. The static quark potential V (r) is calculated with
the standard procedure. Figure 2 shows the result of the lattice spacing. The left panel displays
the result for N f = 2 extrapolated to the chiral limit, as well as a preliminary result for N f =

2 + 1. A linear extrapolation of the N f = 2 data gives a(mud = 0) = 0.1184(12)stat (11)syst fm.
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The right panel shows the β -dependence of a in the chiral limit for N f = 0 and 2 together with
the clover fermion case. The shift of β (a) with respect to the number of flavors is milder for the
overlap fermion than for the Wilson-type fermions. This behavior is consistent with the perturbative
calculation.

5. Results

On the N f = 2 lattices, we finished the generation of gauge configurations and are currently
calculating various physical observables. The following calculations are in progress.

• ε-regime [33, 34, 35, 36]
• Topological Susceptibility [37, 38]
• Pion mass and decay constant [39]
• Pion form factor [40]
• B meson bag parameter [41]
• π+-π0 mass difference [42]
• Pion scattering length [43]

In the following, we briefly describe the first three subjects, which are the first testing ground of
the viability of our simulations.

5.1 ε-regime

The chiral condensate is related to the spectral density of the Dirac operator through the Banks-
Casher relation [44],

Σ ≡−〈q̄q〉 = lim
m→∞

lim
V→∞

πρ(0)

V
, (5.1)

where ρ(λ ) = ∑k〈δ (λ − λk)〉 is the spectral density of the Dirac operator. The accumulation of
low modes generate the spontaneous chiral symmetry breaking. Two limits, m → ∞ and V → ∞,
in the above equation are not commutable. However, it is also convenient to consider the opposite
order of the limit. The ε-regime is defined through the condition

1/ΛQCD � L � 1/mπ (5.2)

which implies m � 1/ΣV . In the ε-regime, the low energy effective theory is applied with the
same parameters as the infinite V case. Because of the finiteness of the volume, the topological
charge dependence of observables becomes manifest, and hence it is convenient to determine the
parameters of the low energy effective Lagrangian in the fixed topology simulations. Another
advantage of the ε-regime simulations is that the chiral random matrix theory (RMT) is expected
to describe the behavior of the low-lying modes.

The results in the ε-regime for N f = 2 are displayed in Figure 3 [34, 35]. We find good
agreement with the RMT prediction for the level distribution. The lowest level distribution gives a
value of the chiral condensate which is consistent with other determinations. Another agreement
with the RMT prediction is found for the so-called topology-flavor duality, as shown in the right
panel of Figure 3. With the nonperturbative renormalization, we obtaine

ΣMS(2GeV) = (251±7(stat)±11(syst) MeV)3. (5.3)

The main source of the systematic error is O(ε 2), which can be corrected using meson correlators
[36].

9
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Figure 3: The result in the ε-regime at N f = 2. The left panel shows the spectral density of the overlap-Dirac
operator. The right panel compares the level spacings in the cases of different Q and N f .

5.2 Topological susceptibility

Now let us go back to the p-regime. We first need to show that the topological susceptibility
is successfully determined in the fixed-Q “vacua” from the correlation function (Sec. 2.2). The
topological susceptibility χt is extracted from the correlation function

Cη ′(t) =
1
L3 ∑

~x
〈mqP0(x)mqP0(0)〉Q, (5.4)

where P0(x) is the flavor singlet pseudoscalar density. For the overlap fermions,

P0(x) =
1

N f

N f

∑
f =1

ψ̄ f (x)γ5

[

1− aD(mq = 0)

2m0

]

ψ f (x). (5.5)

At large t,

Cη ′(t) =
1
V

(

Q2

V
− χt −

c4

2χtV

)

+O(V−3)+O(e−mη′ t), (5.6)

hence the value of χt is extracted from the plateau of Cη ′(t).
The measurement of χt is performed on N f = 2 and Q = 0 lattices at every 20 trajectories, thus

with statistics of 500. Prior to measuring the correlator, we calculate 50 pairs of low-lying eigen-
modes of the overlap operator D(0) by the implicitly restarted Lanczos algorithm. Since these
low-modes can be explicitly inverted, the solver algorithm is applied to the operator projected out
these modes, whose condition number is reduced from the original one. This low-mode precon-
ditioning accelerates the calculation of the quark propagators by a factor of 8. These low-modes
are also used in the low-mode averaging, which is an average of correlators over all the spacetime
source points for the low-mode contributions [45, 46]. For the disconnected part of the correlator
(5.4), the quark propagator is approximated by 50 pairs of the low-eigenmodes, by observing these
modes dominate the correlator.

The result is shown in Figure 4. The left panel displays the correlator −Cη ′(t) at mq = 0.025.
The data are fitted to a function A+B(e−Mt +e−M(T−t)). Assuming |c4| � 2χtV , we obtain a4χt =

3.40(27)×10−5 at mq = 0.025. The right panel shows the extracted χt as a function of sea quark
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Figure 4: The result of the topological susceptibility for the N f = 2 simulation. The left panel shows the
extraction of the topological susceptibility χt from the η ′ correlator at mq = 0.025. The right panel displays
χt r4

0 versus the sea quark mass mqr0.

mass in units of r0. For the smallest three quark masses, the data are well fitted to a linear function
whose intercept is consistent with zero. This behavior is consistent with the prediction of the chiral
perturbation theory [47],

χt =
mqΣ
N f

+O(m2
q). (5.7)

From the slope of the fit result, a value of the chiral condensate is obtained as r3
0Σ = 0.182(6). In

order to convert it to a physical value, we use the renormalization factor Z MS
m (2GeV) = 0.742(12),

which is obtained nonperturbatively through the RI/MOM scheme on the lattice [48, 39]. This
leads to a value

ΣMS(2GeV) = (254±5(stat)±10(syst) MeV)3, (5.8)

which is consistent with the value in Eq. (5.3) independently obtained in the ε-regime. The statisti-
cal error includes those of a−1 and ZMS

m , and the systematic error is of the higher order effects such
as the c4 term.

We also measure χt on the N f = 2 lattices with Q = −2 and −4 at mq = 0.050 with statistics
of 250 configurations. The extracted values of χt are consistent with the value at Q = 0.

These results indicate that the local fluctuation of the topological charge is active enough to
produce relevant chiral dynamics on the fixed-Q vacua. The successful extraction of χt enables us
to quantify the finite size effects for other observables represented in Eq. (2.4).

5.3 Pion mass and decay constant

Among hadronic observables, the pion mass and decay constant are the primary quantities to
be tested with the chiral perturbation theory. Here we briefly present our results of the N f = 2
simulation for mπ and fπ [39].
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Figure 5: The results of chiral extrapolation for m2
π/mq (left panel) and fπ (right) in physical units as

functions of ξ . Three types of fits, NLO, NNLO, and NNLO’ are performed using all the available data
points.

The meson correlators are computed at every 20 trajectories. The low-mode preconditioning
and the low-mode averaging described in the previous subsection are applied to the meson correla-
tors. The pion mass and decay constant are extracted from the pseudoscalar meson correlators with
point and smeared sources by a simultaneous fit. fπ is obtained through the axial Ward-Takahashi
identity,

fπ = 2mq〈0|P(0)|π〉/m2
π , (5.9)

without further renormalization. Note that we are using the fπ = 130 MeV normalization. The
quark mass is renormalized with the renormalization factor ZMS

p (2GeV) = 0.742(12), which is
obtained nonperturbatively through the RI/MOM scheme on the lattice [48, 39].

The pion mass and decay constant receive two kinds of finite size effect (FSE): the standard
FSE and that from fixed Q. The former effect is evaluated by the formulae determined by Colan-
gelo et al. [49], which is developed from the Lüscher’s formula for the relation between the pion
scattering amplitude and the mass-shift in a finite box [50]. We use the NNLO results of Ref. [49]
and the values of low energy constants estimated in Ref. [51]. For our lightest quark mass, they
amount to 4.5% and 6.0% for m2

π/mq and fπ , respectively. The FSE from the fixed topological
charge is subject to Eq. (2.4). The O(V−1) corrections to mπ and fπ are determined at NLO of
ChPT. The correction to mπ starts at the tree-level. In the small quark mass region, it shifts the
value of m2

π/mq with the same size as the standard FSE while in the opposite direction. Thus the
two effects almost cancel each other. The fixed-Q correction to fπ starts at NLO of ChPT, and gives
small effect on the result of fπ .

Figure 5 shows the results of m2
π/mq and fπ after correcting FSEs. To compare with the ChPT

expansion, we chose ξ ≡ (mπ/4π fπ )2 as an expansion parameter, where fπ is the measured value
at each quark mass. We apply three types of ChPT fit: NLO, NNLO, and a simplified NNLO
called NNLO’ hereafter. The NNLO’ formulae are obtained from those of NNLO by using an
approximation ξ 2 lnξ ≈−2.5ξ 2, which is numerically reasonable in our target range, 0 < ξ <∼ 0.1.
Explicit functional forms are given in Ref. [39]. The results of fits are displayed in Figure 5. We
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Figure 6: Comparisons of physical quantities obtained from the chiral fit ansatze: f (upper left), Σ1/3

(upper right), l̄phys
3 (lower left) and l̄phys

4 (lower right). In each panel, the red circles and blue squares are
corresponding to the fits with 6 and 5 lightest data points, respectively.

note that the fit to the NNLO formulae is performed by a simultaneous fit for m2
π/mq and fπ , and

thus the value of χ2 cannot be compared directly to other fits.
These fits determine the following quantities: f , Σ = B0 · f 2/2, l̄phys

3 , and l̄phys
4 . Figure 6

compares the results of fits with the phenomenologically determined values ( f [52] and l̄phys
3 l̄phys

4
[51]). The result of Σ is compared with our calculation in the ε-regime in Sec. 5.1 [34]. Except
for the case of l̄phys

3 , the results of NLO fit are inconsistent with NNLO and the phenomenological
estimates. This implies the failure of the NLO formulae to describe our data. The results of NNLO
and NNLO’ fits are consistent with each other and with the phenomenological estimates.

To quantify the FSEs more accurately, we need simulations with a larger lattice size, as well
as a comparison with the result at Q 6= 0. We emphasize that these results indicate that the overlap
simulations with fixed topology provide a framework for precision calculations of the spectrum and
the matrix elements in the chiral regime.

6. Conclusion

We are performing large-scale simulations with N f = 2 and N f = 2 + 1 dynamical overlap
fermions. The range of sea quark mass covers mphys

s /6 – mphys
s . The simulations are performed in

fixed topological charge sectors. The results of the topological susceptibility and the pion mass and
decay constant indicate that these simulations can provide a ground for precision computations of
matrix elements with controlled chiral extrapolation.

We completed a generation of N f = 2 gauge configurations on 163 ×32 lattices with a ' 0.12
fm. Numbers of measurements are in progress and planned. The N f = 2+1 simulations on 163×48
lattices are also in progress. These configurations will be supplied to ILDG soon after the first
publication of the result of the spectrum.

For further investigation of finite size effects and for more extended objects than mesons,
simulations at larger lattice sizes are desired. The target size of the spatial extent is 24, which
requires further improvements of numerical algorithms.
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