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1. Introduction

Past LGT simulations of the deconfining transition focused primarily on bayncbnditions
(BCs), which are favorable for reaching the infinite volume quantum coatmlimit (thermo-
dynamic limit of the textbooks) quickly. ON; NS lattices these are periodic BCs in the spatial
volumeV = (aNs)3, wherea is the lattice spacing. The temperature of the system is given by

1 1
In the following we set the physical scale by
T¢=174 MeV, (1.2)

which is approximately the average from QCD estimates with two light flavorkgudihis implies
for the temporal extension
Ly =aN; =1.13 fermi. (2.3)

For the deconfinement phase created in a heavy ion collision the infinite vdionibeloes not
apply. Instead we have to take the finite volume continuum limit

and periodic BCs are incorrect, because the outside is in the confined phtow temperature.
E.g., atthe BNL RHIC one expects to createeasemble of differently shaped and sized deconfined
volumes.The largest volumes are those encountered in central collisions. A esighate of their
size is
1< (0.6 x Au radiug? x ¢ x (expansion timg
= (55 ferm?) x (a few fermi (1.5)

wherec is the speed of light. Here we report on our wdk [1], which estimates Boith volume
corrections for pure SU(3) and focuses on the continuum limit for

Ls=aNs= (5—10) fermi . (1.6)

2. Equilibrium with Unconventional Boundary Conditions

Statistical properties of a quantum system with Hamiltortiuin a continuum volume/,
which is in equilibrium with a heatbath at physical temperaiflirare determined by the partition
function

Z(TV)=Tre "'T =5 (gle "/T|g), (2.1)
®
where the sum extends over all states and the Boltzmann constant is set tmposing periodic
boundary conditions in Euclidean timteand bounds of integration from 0 tg'I, one can rewrite
the partition function in the path integral representation:

Z(T,V) :/quexp{—/(;l/TdTLE((p, qo)} (2.2)
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Nothing in this formulation requires to carry out the infinite volume limit.

In the following we consider difficulties and effects encountered whenemuilibrates a hot
volume with cold boundaries by means of Monte Carlo (MC) simulations for wiiehupdating
process provides the equilibrium. We use the single plaguette Wilson actiodBrhgpercubic
lattice. Numerical evidence suggests that SU(3) lattice gauge theory exhibéaldy first-order
deconfining phase transition at some couplBfiN;) = 6/g?(N;). The scaling behavior of the
deconfining temperature is

T¢= cr/\L (23)

where the lambda lattice scale
_ 2
aln, = f)\ (Bg) —A (92) (bng) by /(2bg) e_l/(2b092)7 (24)

has been determined in the literature. The coefficibp@ndb, are perturbatively determined by
the renormalization group equation:

11 3 34
o dby=—

3 \2
b=3 162 " 3 <16n2> ‘ (2:5)
Relying on work by the Bielefeld groug][2] we parametrized[ih [3] highettymbative and non-
perturbative corrections by

/\(92) = 1+ ale—az/92_|_a3g2+a4g4 with (26)

a; = 71553750 a, = 19.48099 ag = —0.03772473 a4, = 0.5089052, which turns out to be in
good agreement witH][4] in the coupling constant range for which the lattdaiised to be valid.

Imagine an almost infinite space volume= L3, which may have periodic BCs, and a smaller
(very large, but small compared ) sub-volumeVp = L3,. The complement t& in V will be
calledV;. The number of temporal lattice linKs; is the same for both volumes. We denote the
coupling byﬁg for plaquettes in/g and byBlQJ for plaquettes iV1. For that purpose any plaguette
touching a site iy is considered to be ix;. This defines a BC, which we callsorder wall

We would like to find couplings so that scaling holds, whgds at temperaturé, = 174 MeV
andV, at room temperatur®;. Let us takg3; = 5.7 at the beginning of the SU(3) scaling region.
We have

oo 0 hiB 2.7)
i a B

whereg; is the lattice spacing i, i =0, 1. Using the lambda scale yielﬁ§ ~ 25 andT; estimates
of the literature give; > 10 a. In practice we can only ha\ﬁg in the scaling region. We keep
up the relation

(§/a0) a1 __ .40
o) a0~

whereé is a correlation length. Thereforé,/a; is very small and the strong coupling expansion
implies B ~ 1019, i.e., B9 = 0.

(2.8)
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Figure 1: Fits of pseudo-transition coupling constant values (l&gtimate of finite volume corrections to
Te (right).

3. Monte Carlo Calculationswith Disorder Wall BCs

In the disorder wall approximation of the cold exterior we can simply omit coutiobs from
plaquettes, which involve links through the boundary. Due to the use otritregscoupling limit
for the BCs, scaling of the results is not obvious.

We use the maxima of the Polyakov loop susceptibility

mmzéﬁm%—wwmmP=;% (3.0)

to define pseudo-transition couplinggt(Ns; N;). For periodic BCs they have a finite size behavior
of the form

N\ 3
Bgt(Ns; Nr) = B(N;) +ab <N;> + ... (3.2)
Our BCs introduce an ordeNS2 disturbance, so that
9 (N g aNe g (N2 g (NG °
Bpt(Ns; Nr) = B (NT)+a1Ws+a2 N +a3 N + . (3.3)

The left Fig.[1 shows thus obtained fits of pseudo-transition coupling@onegalues versus; /Ns
(theNs — oo value is extrapolated from simulations with periodic BCs). Using the scalintiorla
(B.4) we eliminate the coupling in favor & andLs and obtain the right Fig] 1. There an®
free parameters this step, because the scaling relation was determined previously in irddagen
work. TheN; = 4 andN; = 6 data collapse to one curve, i.e., despite the small values of the
temporal lattice sizes the results are perfectly consistent with scaling.

The left Fig.[R shows the Polyakov loop susceptiblity onxa16* lattice with disorder BCs
and its full width at 2/3 maximum, which we used instead of the more conventiatabifith at
half maximum, because the former is easier to extract from MC data (smalleigteting range).
Our width data are fitted to the form

N 2 N\ ©
ABS5 = <NZ> +cb (N:> (3.4)
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Figure 2: Polyakov loop susceptibility with disorder wall BCs on & 46° lattice (left). Fits of theN; = 4
widths (right).
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Figure 3: Fits of theN; = 6 widths (left). Estimate of finite volume corrections to thigth (right).

for periodic BCs and to
N 2 N, 4
9 _d(T d( ™
OBy 3 =101 <N5> +6 <Ns> (3.5)

for disorder wall BCs. The first term reflects in both cases the deltaitmsingularity of a first
order phase transition, i.e., the width times the Polyakov loop maximum is suptmoapdroach a
constant folNs — . The leading order correction to that is 1/Volume for periodic BCs afid; 1
for disorder wall BCs. Plots of the corresponding fits are shown in Egsight) and[B (left).
As before, we use the scaling relatidn [2.4) to eliminate the coupling constdrgtew in Fig[|3

(right) the thus obtained volume dependence of the width of the transitiorin Aga see collapse
to a nice scaling curve.

4. Shortcomings of the Disorder Wall BCs

The spatial lattice spacireg should be the same on both sides of the boundary, but for the dis-
order wall this is not true. It reflects the temperature jump at the price ofdatiog a similar jump
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in the spatial lattice spacing. Its main advantage that it allows for technically ssinpléations,
and one can hope that the temperature jump is the only relevant quantity fpuekgons asked.

A construction, calle@onfinement waii [fI]], for which the physical length of one spacelike
lattice spacing stays constant across the boundary can be achieveihgpyan anisotropic lattice
for the volumeV:

g g
S{U}) = %S g ReTr(Uo,) + %T g ReTr(Uo,) . (4.1)

The lambda scale of this action has been investigated by Kglsch [5] anddarttieuum limit one
finds

BY/BY = (as/ar)?. (4.2)

When we aim abg = as ~ 10 1%a; the sublatticev; is driven to3Z = 0 and the simulation of
the confined world becomes effectively 3D. However, in a first steproag be content with a
temperature slightly below, on the outside, so that the confinement wall allows to havg-all
values in their scaling regions. Another approach may want to rely on symerfagtices to model
low temperatures.

5. Summary and Conclusions

1. As noted before[]2] finite size corrections to deconfinement progenfieSsU(3) are very
small for periodic BCs.

2. For volumes of BNL RHIC size the magnitudes of SU(3) corrections dasltbboundaries
appear to be comparable to those of including quarks into pure SU(3) OGiTdata show
the correct SU(3) scaling behavior.

3. Extension of measurements should be done, to calculate the equatior of sta

4. Previous calculationg][4] 7] of full QCD at finite temperatures and RH®@) densities
should be extended to other than periodic BCs.

5. There appears to be a variety of options to include cold boundariespgmdaching the finite
volume continuum limit. Therefore, more experience with pure SU(3) LGT $&rdele be-
fore including quarks. Next, we intend to focus on the confinement walllvath couplings
in the scaling region (i.e., an outside temperature just b&lgw

Acknowledgments

We thank Urs Heller for discussions on the question of using symmetric latticeedel cold
boundaries. This work was supported by the US Department of Enedgricontract DE-FG02-
97ER41022.



SU(3) Deconfining Phase Transition in a Box with Cold Bouretar Bernd Berg

References

[1] A.Bazavov and B.A. Berg, Phys. Rev. T8 (2007) 014502.

[2] G.Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, fifgemeier, and B. Petersson, Nucl.
Phys. B469 (1996) 419.

[3] A. Bazavov, B.A. Berg, and A. Velytsky, Phys. Rev.7@ (2006) 014501.
[4] S. Necco and R. Sommer, Nucl. Phys6g (2002) 328.

[5] F. Karsch, Nucl. Phys. B05 (1982) 285.

[6] Z. Fodor, these proceedings.

[7] F. Karsch, these proceedings.



