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1. Introduction

Past LGT simulations of the deconfining transition focused primarily on boundary conditions
(BCs), which are favorable for reaching the infinite volume quantum continuum limit (thermo-
dynamic limit of the textbooks) quickly. OnNτ N3

s lattices these are periodic BCs in the spatial
volumeV = (aNs)

3, wherea is the lattice spacing. The temperature of the system is given by

T =
1

aNτ
=

1
Lτ

, (Nτ < Ns) . (1.1)

In the following we set the physical scale by

Tc = 174 MeV, (1.2)

which is approximately the average from QCD estimates with two light flavor quarks. This implies
for the temporal extension

Lτ = aNτ = 1.13 fermi . (1.3)

For the deconfinement phase created in a heavy ion collision the infinite volumelimit does not
apply. Instead we have to take the finite volume continuum limit

Ns/Nτ = finite, Nτ → ∞ , Lτ finite, (1.4)

and periodic BCs are incorrect, because the outside is in the confined phase at low temperature.
E.g., at the BNL RHIC one expects to create anensemble of differently shaped and sized deconfined
volumes.The largest volumes are those encountered in central collisions. A roughestimate of their
size is

π × (0.6×Au radius)2×c× (expansion time)

= (55 fermi2)× (a few fermi) (1.5)

wherec is the speed of light. Here we report on our work [1], which estimates suchfinite volume
corrections for pure SU(3) and focuses on the continuum limit for

Ls = aNs = (5−10) fermi . (1.6)

2. Equilibrium with Unconventional Boundary Conditions

Statistical properties of a quantum system with HamiltonianH in a continuum volumeV,
which is in equilibrium with a heatbath at physical temperatureT, are determined by the partition
function

Z(T,V) = Tre−H/T = ∑
φ
〈φ |e−H/T |φ〉, (2.1)

where the sum extends over all states and the Boltzmann constant is set to one. Imposing periodic
boundary conditions in Euclidean timeτ and bounds of integration from 0 to 1/T, one can rewrite
the partition function in the path integral representation:

Z(T,V) =
∫

Dφ exp

{

−
∫ 1/T

0
dτLE(φ , φ̇)

}

. (2.2)
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Nothing in this formulation requires to carry out the infinite volume limit.

In the following we consider difficulties and effects encountered when one equilibrates a hot
volume with cold boundaries by means of Monte Carlo (MC) simulations for whichthe updating
process provides the equilibrium. We use the single plaquette Wilson action on a4D hypercubic
lattice. Numerical evidence suggests that SU(3) lattice gauge theory exhibits aweakly first-order
deconfining phase transition at some couplingβ g

t (Nτ) = 6/g2
t (Nτ). The scaling behavior of the

deconfining temperature is

Tc = cT ΛL (2.3)

where the lambda lattice scale

aΛL = fλ (β g) = λ (g2)
(

b0g2)−b1/(2b2
0) e−1/(2b0 g2) , (2.4)

has been determined in the literature. The coefficientsb0 andb1 are perturbatively determined by
the renormalization group equation:

b0 =
11
3

3
16π2 and b1 =

34
3

(

3
16π2

)2

. (2.5)

Relying on work by the Bielefeld group [2] we parametrized in [3] higher perturbative and non-
perturbative corrections by

λ (g2) = 1+a1e−a2/g2
+a3g2 +a4g4 with (2.6)

a1 = 71553750, a2 = 19.48099, a3 = −0.03772473, a4 = 0.5089052, which turns out to be in
good agreement with [4] in the coupling constant range for which the latter isclaimed to be valid.

Imagine an almost infinite space volumeV = L3
s, which may have periodic BCs, and a smaller

(very large, but small compared toV) sub-volumeV0 = L3
s,0. The complement toV0 in V will be

calledV1. The number of temporal lattice linksNτ is the same for both volumes. We denote the
coupling byβ g

0 for plaquettes inV0 and byβ g
1 for plaquettes inV1. For that purpose any plaquette

touching a site inV1 is considered to be inV1. This defines a BC, which we calldisorder wall.

We would like to find couplings so that scaling holds, whileV0 is at temperatureT0 = 174MeV
andV1 at room temperatureT1. Let us takeβ g

1 = 5.7 at the beginning of the SU(3) scaling region.
We have

1010 ≈
T0

T1
=

a1

a0
=

fλ (β g
1 )

fλ (β g
0 )

(2.7)

whereai is the lattice spacing inVi , i = 0,1. Using the lambda scale yieldsβ g
0 ≈ 25 andTc estimates

of the literature giveLτ > 1011a. In practice we can only haveβ g
0 in the scaling region. We keep

up the relation
(ξ/a0)

(ξ/a1)
=

a1

a0
≈ 1010 (2.8)

whereξ is a correlation length. Therefore,ξ/a1 is very small and the strong coupling expansion
impliesβ g

1 ≈ 10−1010
, i.e.,β g

1 = 0.
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Figure 1: Fits of pseudo-transition coupling constant values (left). Estimate of finite volume corrections to
Tc (right).

3. Monte Carlo Calculations with Disorder Wall BCs

In the disorder wall approximation of the cold exterior we can simply omit contributions from
plaquettes, which involve links through the boundary. Due to the use of the strong coupling limit
for the BCs, scaling of the results is not obvious.

We use the maxima of the Polyakov loop susceptibility

χmax =
1

N3
s

[

〈|P|2〉−〈|P|〉2]

max, P = ∑
~x

P~x (3.1)

to define pseudo-transition couplingsβ g
pt(Ns;Nτ). For periodic BCs they have a finite size behavior

of the form

β g
pt(Ns;Nτ) = β g

t (Nτ)+ap
3

(

Nτ

Ns

)3

+ . . . . (3.2)

Our BCs introduce an orderN2
s disturbance, so that

β g
pt(Ns;Nτ) = β g

t (Nτ)+ad
1

Nτ

Ns
+ad

2

(

Nτ

Ns

)2

+ad
3

(

Nτ

Ns

)3

+ . . . . (3.3)

The left Fig. 1 shows thus obtained fits of pseudo-transition coupling constant values versusNτ/Ns

(theNs → ∞ value is extrapolated from simulations with periodic BCs). Using the scaling relation
(2.4) we eliminate the coupling in favor ofTc andLs and obtain the right Fig. 1. There areno
free parametersin this step, because the scaling relation was determined previously in independent
work. TheNτ = 4 andNτ = 6 data collapse to one curve, i.e., despite the small values of the
temporal lattice sizes the results are perfectly consistent with scaling.

The left Fig. 2 shows the Polyakov loop susceptiblity on a 4×164 lattice with disorder BCs
and its full width at 2/3 maximum, which we used instead of the more conventional full width at
half maximum, because the former is easier to extract from MC data (smaller reweighting range).
Our width data are fitted to the form

∆β g
2/3 = cp

1

(

Nτ

Ns

)3

+cp
2

(

Nτ

Ns

)6

(3.4)
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Figure 2: Polyakov loop susceptibility with disorder wall BCs on a 4×163 lattice (left). Fits of theNτ = 4
widths (right).
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Figure 3: Fits of theNτ = 6 widths (left). Estimate of finite volume corrections to thewidth (right).

for periodic BCs and to

∆β g
2/3 = cd

1

(

Nτ

Ns

)3

+cd
2

(

Nτ

Ns

)4

(3.5)

for disorder wall BCs. The first term reflects in both cases the delta function singularity of a first
order phase transition, i.e., the width times the Polyakov loop maximum is supposedto approach a
constant forNs → ∞. The leading order correction to that is 1/Volume for periodic BCs and 1/Ns

for disorder wall BCs. Plots of the corresponding fits are shown in Figs.2 (right) and 3 (left).
As before, we use the scaling relation (2.4) to eliminate the coupling constant and show in Fig. 3
(right) the thus obtained volume dependence of the width of the transition. Again, we see collapse
to a nice scaling curve.

4. Shortcomings of the Disorder Wall BCs

The spatial lattice spacingas should be the same on both sides of the boundary, but for the dis-
order wall this is not true. It reflects the temperature jump at the price of introducing a similar jump
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in the spatial lattice spacing. Its main advantage that it allows for technically simplesimulations,
and one can hope that the temperature jump is the only relevant quantity for thequestions asked.

A construction, calledconfinement wallin [1], for which the physical length of one spacelike
lattice spacing stays constant across the boundary can be achieved by using an anisotropic lattice
for the volumeV1:

S({U}) =
β g

s

3 ∑
�s

ReTr(U�s)+
β g

τ
3 ∑

�τ

ReTr(U�τ ) . (4.1)

The lambda scale of this action has been investigated by Karsch [5] and in thecontinuum limit one
finds

β g
τ /β g

s = (as/aτ)
2 . (4.2)

When we aim ata0 = as ≈ 10−10aτ the sublatticeV1 is driven toβ g
τ = 0 and the simulation of

the confined world becomes effectively 3D. However, in a first step onemay be content with a
temperature slightly belowTc on the outside, so that the confinement wall allows to have allβ -
values in their scaling regions. Another approach may want to rely on symmetric lattices to model
low temperatures.

5. Summary and Conclusions

1. As noted before [2] finite size corrections to deconfinement properties of SU(3) are very
small for periodic BCs.

2. For volumes of BNL RHIC size the magnitudes of SU(3) corrections due tocold boundaries
appear to be comparable to those of including quarks into pure SU(3) LGT.Our data show
the correct SU(3) scaling behavior.

3. Extension of measurements should be done, to calculate the equation of state.

4. Previous calculations [6, 7] of full QCD at finite temperatures and RHIC(low) densities
should be extended to other than periodic BCs.

5. There appears to be a variety of options to include cold boundaries andapproaching the finite
volume continuum limit. Therefore, more experience with pure SU(3) LGT is desirable be-
fore including quarks. Next, we intend to focus on the confinement wall withboth couplings
in the scaling region (i.e., an outside temperature just belowTc).
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