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extent of the lattice and find that both prescriptions arevadgnt, resulting in renormalization
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Casimir scaling for higher representations of the Polydkoyps.
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Figure 1: Renormalized fundamental Polyakov loop (left) and rendization constants (right) in SU(3)
pure gauge theory for two values of the temporal latticerextg. The lines in the left figure show the
perturbative result[[]l] 2] .The arrow represents the asgtigphigh temperature limit,"*" = 1. The line in
the right figure shows a perturbative inspired fit.

1. Introduction

Studies of the transition from a confined to a deconfined medium as well &sniti@mental
question for a proof of confinement are strongly related to the Polyalop: Models based on the
Polyakov loop are proposed to describe the transition to a quark gluamalalsase and its prop-
erties at zero as well as non-zero baryon density in a phenomenolowioaler [B[}[]15] €] 7] 4] 9,
[0,[11,[1R[13]. Furthermore the connection of SU(3) theory to the M¢dinit (in a mean-field
approximation) is widely discussed [4, 5].

For a test of the reliability and comparison of these models to pure gauge tuedQCD with
dynamical quarks, a detailed knowledge of the behavior of the renormdtialyakov loop in the
fundamental and higher representations in those theories is of funddimgrdeance.

We will present two different renormalization procedures for the Palya&op for different rep-
resentations, show their equivalence and discuss our main results dtithisrspure SU(3) gauge
theory.

2. Fundamental and adjoint Polyakov loops

The renormalization of Polyakov loops (in the fundamental representaiginy the short
distance behavior of static quark-antiquark free energies was outlifgd]inFor arbitrary repre-
sentations of the static sources this can be written as,

= 2dpN;
e /T = (Zp(g?)) ™ (Tr(Lo(R)LL (), (2.1)

which is equivalent to the renormalization of the Polyakov loop itself,
LS" = (Zo(9))

The renormalization constants are obtained by matching the free energieszeréthtemperature
potential at short distances. In f[g. 1 we show the results for the refiaeddolyakov loop (left)

Nd
° (LR, (2.2)
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Figure 2: Renormalization procedure using differéyit (left). Bare Polyakov loops from 32« N; lattices
and the resulting =". The lines are spline interpolations (right).
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Figure 3: Comparison of the renormalized Polyakov loop (left) andréreormalization constants (right)
obtained with the two different renormalization procedure

and the renormalization constants (right) for two differdiatobtained in quenched QCD. The
good agreement df3(g?) andL3(T) for theN; = 4 and 8 indeed shows that the renormalization
constants depend only on the bare coupling constants. In perturbatey tBasimir scaling for
heavy quark potentials is realized (at least) up to two-loop ofdf[15, 16]

3. Direct renormalization in higher representations

Using the observation that the renormalization constants depend only oargheduplings
opens the possibility for a direct renormalization procedure based ole fiage Polyakov loops at
differentN; rather than using Polyakov loop correlation functions (a similar method vegmped
in 7).

The fist step in this procedure is to fix the arbitrary overall scale factdixing the value of the
renormalized Polyakov loop at the highest temperature in our analysisimax= 12T;, where we
use the same scheme as in the previous method. From this we obtain the reradionadianstants
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Figure 4: Renormalization constants obtained with the direct remdization procedure (left). Also shown
are the results obtained from the previous method for fureatdiah and adjoint loops, label&king. Casimir
scaled bare Polyakov loops (right) for different repreatohsD.

at the corresponding coupling (at two differéf) by assuming

dpoNrji /271 bare/~2 __(ren
Z (g7)L “ Nii = L5 (Ti) and 3.1
o (97)Lp (g, T")‘W:T‘ o (Ti) (3.1)
doNy | _
2y (GLE™(GE N, = LET(T). (3:2)
al ] T,j

This procedure can now be iterated (see[fig. 2 (left)) to obtain the refizatian constants and
the renormalized Polyakov loop down Ta. In fig. R(right) we show the result of this procedure
for the fundamental loop in SU(3) pure gauge theory obtained by appiiyisgrocedure for three
values of\;.

The comparison of the two renormalization procedures|(fig. 3) indeadsstat the renormalized
Polyakov loops (left) and the renormalization constants (right) are in ggogkment and both
procedures are equivalent.

The prescription can easily be extended to Polyakov loops in any repaéisa D [[L§, [19], thus
giving the renormalized Polyakov loop§ and the renormalization constaiis(g?). Using these,
one can then check Casimir scaling in the form

Zp(9%) = Zs(9P), (3.3)
for the renormalization constants and
LE"(T) = (LE"(T))® (3.4)

for the Polyakov loops, wherdy, = C,(D)/Cy(3) is the ratio of quadratic Casimirs. The test of
Casimir scaling is then the independenc&dfom D. Note that [[3]3) together with (2.2) implies
that, if Casimir scaling is realized for the renormalized Polyakov loop, it had#ie bare loops
as well.

In fig. B we show the results for the renormalization constants (left) and aiser@ scaled bare
Polyakov loops (right) for representations upgte= 15. For comparison we also include the results
obtained from the previous method. We observe a good agreemggtfof all representations in
the whole coupling range and for the scaled Polyakov loops for tempesadiomvn to the critical
one.
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Figure 5: Renormalized adjoint Polyakov loop compared to the funddaidoops (left). Heavy quark-
antiquark free energies for adjoint sources in the cologlsinand color averaged channel compared to
Casimir scaled color singlet free energy of fundamentataEsiafl = 0.959T.. The lines show the asymp-
totic value and estimates for the string breaking distance.

4. Adjoint Polyakov loops and string breaking

In contrast to Polyakov loops with non-zero triality, which have vanishipgetation values
in the confined phase (in the infinite volume limit), for all triality-zero repredema (r=8,10,27,...)
one expects to see string breaking bevalso in pure gauge theory, and hence a non-vanishing
Polyakov loop in the infinite volume limit (see also discussion$ ih [2P[ 31, 22]).
We have computed the infinite volume, renormalized adjoint Polyakov loop brlokig. [} (left)
shows the results compared to the fundamental loop ardunéd/hile the fundamental renormal-
ized Polyakov loop is zero beloly, the adjoint loop is small but clearly non-vanishing.
For the other triality-zero representatioms={10,27) we expect the same behavior, but we cannot
give the infinite volume limit below, since the corresponding data is still too noisy for the statis-
tics achieved in this work.
For the heavy quark-antiquark free energies of adjoint sourcesbaeree string breaking below
Tc (fig. B (right)). The asymptotic value of the static quark-antiquark fregnof adjoint sources
(fig. @) can be related to the binding energy of gluelump stdigds [23], i.enchstates of a dy-
namical gluon with a static adjoint source. In the upper part of fig. 6 wevshe results for the
asymptotic values of the adjoint heavy quark free energies and in the pasteain estimate for the
string-breaking radius defined through

Vg(Istring) = Fa(r =, T), (4.1)

whereVy is the zero temperature potential afglis the asymptotic value of the quark-antiquark
free energy, both for adjoint sources.

An extension of this study will be the analysis of color octet states of heaaykepntiquark free
energies with fundamental sources combined with a static adjoint souro@ngpa color singlet
state in total.
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Figure 6: Asymptotic value of the adjoint heavy quark free energiggpéu panel). Estimate of the string
breaking radius (lower panel).

5. Conclusions and Outlook

We have extended the renormalization procedure outlined Jn [14] to qoarkes in the ad-
joint representation. We observed that the resulting renormalization ctsstaly depend on the
bare couplingg?. This led to the proposal of a new (direct) renormalization proceduréhor
Polyakov loop itself measured at different temporal lattice extent in cantréise (indirect) renor-
malization using two-point correlation functions of Wilson lines or Polyakoyp$o
We have shown that both procedures are indeed equivalent leadingaladalescription of the
renormalized Polyakov loop. Furthermore we applied the new prescriptiBolt@kov loops in
the fundamental and higher representations Up t027.

The direct renormalization procedure is solely based on gauge invadantities, while theg-
renormalization is based on color singlet correlation functions of Wilson Wiesh are (in prin-
ciple) gauge dependent quantities. The equivalence of both presdw. the agreement of the
renormalization constants and the renormalized Polyakov loops, showgtHagst) the short
(temperature independent) as well as the (asymptotic) large distancd tregtteavy quark free
energies obtained in Coulomb gauge become gauge independent aseprop@#[25].

The analysis of Polyakov loops in higher representations up $027 led to the the observation
that Casimir scaling for the Polyakov loops and the corresponding retipati@n constants in
different representations is a surprisingly good approximation evem atwge toT.. This may
indicate that non-Casimir scaling terms in a perturbative series may only pldy@osninant role.
Due to the Z(3)-symmetry of the pure gauge theory, all Polyakov loops withzero triality van-
ish in the confined phase even in the absence of dynamical quarks,reegquge theory. For the
adjoint representation we have observed small, but non-zero vali®g e The static adjoint
sources can couple to the dynamical adjoint constituents (gluons) of tbheythed the quark-
antiquark pair gets screened even in the confined phase. This sgreeeimomenorstring break-
ing) is visible in the heavy quark free energies which have a finite asymptotie watile for
zero-zero triality they rise linearly with distance. The finite asymptotic valuadjoint sources
may be related to the binding energy of gluelump states.
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A more detailed study and discussion of the renormalization of Polyakov lndpgher represen-
tations as well as the application to QCD with dynamical quarks is in prepar8iéjn A future
extension of this study will be the analysis of correlation functions of differepresentations,
e.g. a baryonic system made up of a color octet state of a quark-antisgiaiik the fundamental
representation combined with a static adjoint source forming a color singletiistatal.
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