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We compare two renormalization procedures, one based on theshort distance behavior of heavy

quark-antiquark free energies and the other by using bare Polyakov loops at different temporal

extent of the lattice and find that both prescriptions are equivalent, resulting in renormalization

constants that depend on the bare coupling. Furthermore these renormalization constants show

Casimir scaling for higher representations of the Polyakovloops.

The analysis of Polyakov loops in different representations of the color SU(3) group indicates that

a simple perturbative inspired relation in terms of the quadratic Casimir operator is realized to a

good approximation at temperaturesT>∼Tc for renormalized as well as bare loops.

In contrast to a vanishing Polyakov loop in representationswith non-zero triality in the confined

phase, the adjoint loops are small but non-zero even for temperatures below the critical one. The

adjoint quark-antiquark pairs exhibit screening. This behavior can be related to the binding energy

of gluelump states.
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Figure 1: Renormalized fundamental Polyakov loop (left) and renormalization constants (right) in SU(3)
pure gauge theory for two values of the temporal lattice extent Nτ . The lines in the left figure show the
perturbative result [1, 2] .The arrow represents the asymptotic high temperature limit,Lren = 1. The line in
the right figure shows a perturbative inspired fit.

1. Introduction

Studies of the transition from a confined to a deconfined medium as well as thefundamental
question for a proof of confinement are strongly related to the Polyakov loop. Models based on the
Polyakov loop are proposed to describe the transition to a quark gluon plasma phase and its prop-
erties at zero as well as non-zero baryon density in a phenomenologicalmanner [3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13]. Furthermore the connection of SU(3) theory to the largeNc-limit (in a mean-field
approximation) is widely discussed [4, 5].
For a test of the reliability and comparison of these models to pure gauge theory and QCD with
dynamical quarks, a detailed knowledge of the behavior of the renormalized Polyakov loop in the
fundamental and higher representations in those theories is of fundamental importance.
We will present two different renormalization procedures for the Polyakov loop for different rep-
resentations, show their equivalence and discuss our main results of this study in pure SU(3) gauge
theory.

2. Fundamental and adjoint Polyakov loops

The renormalization of Polyakov loops (in the fundamental representation)using the short
distance behavior of static quark-antiquark free energies was outlined in[14]. For arbitrary repre-
sentations of the static sources this can be written as,

e−F1
D(r,T)/T =

(

ZD(g2)
)2dDNτ

〈Tr(LD(~x)L†
D(~y)), (2.1)

which is equivalent to the renormalization of the Polyakov loop itself,

Lren
D =

(

ZD(g2)
)Nτ dD

〈Lbare
D 〉. (2.2)

The renormalization constants are obtained by matching the free energies to the zero temperature
potential at short distances. In fig. 1 we show the results for the renormalized Polyakov loop (left)
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Figure 2: Renormalization procedure using differentNτ (left). Bare Polyakov loops from 323×Nτ lattices
and the resultingLren

3 . The lines are spline interpolations (right).
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Figure 3: Comparison of the renormalized Polyakov loop (left) and therenormalization constants (right)
obtained with the two different renormalization procedures.

and the renormalization constants (right) for two differentNτ obtained in quenched QCD. The
good agreement ofZ3(g2) andL3(T) for theNτ = 4 and 8 indeed shows that the renormalization
constants depend only on the bare coupling constants. In perturbation theory Casimir scaling for
heavy quark potentials is realized (at least) up to two-loop order [15, 16].

3. Direct renormalization in higher representations

Using the observation that the renormalization constants depend only on the bare couplings
opens the possibility for a direct renormalization procedure based on single bare Polyakov loops at
differentNτ rather than using Polyakov loop correlation functions (a similar method was proposed
in [17]).
The fist step in this procedure is to fix the arbitrary overall scale factor byfixing the value of the
renormalized Polyakov loop at the highest temperature in our analysis,Ti = Tmax= 12Tc, where we
use the same scheme as in the previous method. From this we obtain the renormalization constants
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Figure 4: Renormalization constants obtained with the direct renormalization procedure (left). Also shown
are the results obtained from the previous method for fundamental and adjoint loops, labeledDsing. Casimir
scaled bare Polyakov loops (right) for different representationsD.

at the corresponding coupling (at two differentNτ ) by assuming

Z
dDNτ ,i
D (g2

i )L
bare
D (g2

i ,Nτ,i)| 1
a(g2

i )Nτ ,i
=Ti

≡ Lren
D (Ti) and (3.1)

Z
dDNτ, j
D (g2

j )L
bare
D (g2

j ,Nτ, j)| 1
a(g2

j )Nτ, j
=Ti

≡ Lren
D (Ti). (3.2)

This procedure can now be iterated (see fig. 2 (left)) to obtain the renormalization constants and
the renormalized Polyakov loop down toTc. In fig. 2(right) we show the result of this procedure
for the fundamental loop in SU(3) pure gauge theory obtained by applyingthis procedure for three
values ofNτ .
The comparison of the two renormalization procedures (fig. 3) indeed shows that the renormalized
Polyakov loops (left) and the renormalization constants (right) are in good agreement and both
procedures are equivalent.
The prescription can easily be extended to Polyakov loops in any representationD [18, 19], thus
giving the renormalized Polyakov loopsLR

D and the renormalization constantsZD(g2). Using these,
one can then check Casimir scaling in the form

ZD(g2) = Z3(g
2), (3.3)

for the renormalization constants and

Lren
D (T) = (Lren

3 (T))dD (3.4)

for the Polyakov loops, wheredD = C2(D)/C2(3) is the ratio of quadratic Casimirs. The test of
Casimir scaling is then the independence ofZ from D. Note that (3.3) together with (2.2) implies
that, if Casimir scaling is realized for the renormalized Polyakov loop, it holds for the bare loops
as well.
In fig. 4 we show the results for the renormalization constants (left) and the Casimir scaled bare
Polyakov loops (right) for representations up toD = 15. For comparison we also include the results
obtained from the previous method. We observe a good agreement ofZD for all representations in
the whole coupling range and for the scaled Polyakov loops for temperatures down to the critical
one.
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Figure 5: Renormalized adjoint Polyakov loop compared to the fundamental loops (left). Heavy quark-
antiquark free energies for adjoint sources in the color singlet and color averaged channel compared to
Casimir scaled color singlet free energy of fundamental sources atT = 0.959Tc. The lines show the asymp-
totic value and estimates for the string breaking distance.

4. Adjoint Polyakov loops and string breaking

In contrast to Polyakov loops with non-zero triality, which have vanishing expectation values
in the confined phase (in the infinite volume limit), for all triality-zero representations (r=8,10,27,...)
one expects to see string breaking belowTc also in pure gauge theory, and hence a non-vanishing
Polyakov loop in the infinite volume limit (see also discussions in [20, 21, 22]).
We have computed the infinite volume, renormalized adjoint Polyakov loop belowTc. Fig. 5 (left)
shows the results compared to the fundamental loop aroundTc. While the fundamental renormal-
ized Polyakov loop is zero belowTc, the adjoint loop is small but clearly non-vanishing.
For the other triality-zero representations (r = 10,27) we expect the same behavior, but we cannot
give the infinite volume limit belowTc, since the corresponding data is still too noisy for the statis-
tics achieved in this work.
For the heavy quark-antiquark free energies of adjoint sources we observe string breaking below
Tc (fig. 5 (right)). The asymptotic value of the static quark-antiquark free energy of adjoint sources
(fig. 6) can be related to the binding energy of gluelump states [23], i.e. bound states of a dy-
namical gluon with a static adjoint source. In the upper part of fig. 6 we show the results for the
asymptotic values of the adjoint heavy quark free energies and in the lowerpart an estimate for the
string-breaking radius defined through

V8(rstring) = F8(r = ∞,T), (4.1)

whereV8 is the zero temperature potential andF∞ is the asymptotic value of the quark-antiquark
free energy, both for adjoint sources.
An extension of this study will be the analysis of color octet states of heavy quark-antiquark free
energies with fundamental sources combined with a static adjoint source, forming a color singlet
state in total.
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Figure 6: Asymptotic value of the adjoint heavy quark free energies (upper panel). Estimate of the string
breaking radius (lower panel).

5. Conclusions and Outlook

We have extended the renormalization procedure outlined in [14] to quark sources in the ad-
joint representation. We observed that the resulting renormalization constants only depend on the
bare couplingg2. This led to the proposal of a new (direct) renormalization procedure forthe
Polyakov loop itself measured at different temporal lattice extent in contrast to the (indirect) renor-
malization using two-point correlation functions of Wilson lines or Polyakov loops.
We have shown that both procedures are indeed equivalent leading to asolid description of the
renormalized Polyakov loop. Furthermore we applied the new prescription toPolyakov loops in
the fundamental and higher representations up toD = 27.
The direct renormalization procedure is solely based on gauge invariantquantities, while theqq̄-
renormalization is based on color singlet correlation functions of Wilson lineswhich are (in prin-
ciple) gauge dependent quantities. The equivalence of both procedures, i.e. the agreement of the
renormalization constants and the renormalized Polyakov loops, shows that(at least) the short
(temperature independent) as well as the (asymptotic) large distance part of the heavy quark free
energies obtained in Coulomb gauge become gauge independent as proposed in [24, 25].
The analysis of Polyakov loops in higher representations up toD = 27 led to the the observation
that Casimir scaling for the Polyakov loops and the corresponding renormalization constants in
different representations is a surprisingly good approximation even down close toTc. This may
indicate that non-Casimir scaling terms in a perturbative series may only play a sub-dominant role.
Due to the Z(3)-symmetry of the pure gauge theory, all Polyakov loops with non-zero triality van-
ish in the confined phase even in the absence of dynamical quarks, i.e. pure gauge theory. For the
adjoint representation we have observed small, but non-zero values below Tc. The static adjoint
sources can couple to the dynamical adjoint constituents (gluons) of the theory and the quark-
antiquark pair gets screened even in the confined phase. This screening phenomenon (string break-
ing) is visible in the heavy quark free energies which have a finite asymptotic value while for
zero-zero triality they rise linearly with distance. The finite asymptotic value foradjoint sources
may be related to the binding energy of gluelump states.
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A more detailed study and discussion of the renormalization of Polyakov loopsin higher represen-
tations as well as the application to QCD with dynamical quarks is in preparation [19]. A future
extension of this study will be the analysis of correlation functions of different representations,
e.g. a baryonic system made up of a color octet state of a quark-antiquarkpair in the fundamental
representation combined with a static adjoint source forming a color singlet state in total.
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