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We report on a recent calculation of the time evolution ofyBkbv loop fluctuations from a
simple classical relativistic Lagrangian after a quendh the deconfined phase of SU(3) gauge
theory. The structure factors indicate spinodal phasearsion followed by relaxation, similarly
to results obtained via Markov Chain Monte Carlo technignesU(3) lattice gauge theory. The
time for which the structure factor reaches its maximum mdjge in the long-wavelength limit
due to formation of non-perturbatively large competing)&8lyakov loop domains, which delay
thermalization of long wavelength modes. For realisticgeratures, and away from the extreme
weak-coupling limit, also modes withon the order off experience delayed thermalization. As
relaxation times of very long wavelength modes are foundet@m the order of the size of the
system, the dynamics of competing domains should accontparyydrodynamic description of
the deconfined vacuum.
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1. Introduction

Relativistic Heavy-lon Collision experiments carried out at Brookhavatiddal Laboratory
provide support for the existence of a quark-gluon plasma phase Bf [{iJC A collision of two
heavy nuclei at high energy releases a large number of gluons fromvate functions of the
colliding nuclei [2]. Those gluons interact and eventually form a therm@lRED plasma with
a temperature in excess of the critical temperature for deconfinement. Gertgole consistent)
theoretical understanding of the thermalization process is presently la&angr, Mueller, Schiff
and Son developed the so-called “bottom-up” approfch [3], which a&aework for understanding
the processes leading to thermalization and for calculating the thermalization tithe fCD
medium as well as its initial temperature (see, however, the critique in[Rf. [4]

The “bottom-up” approach is based on solving the Boltzmann equation &si-garticles in
a trivial vacuum and neglects the structure of the deconfined phase nbtiAbelian gauge the-
ory arising from the Z(3) center symmetry discovered by t' Hooft and FalydB] and further
studied in [p]. Below we report results of Ref] [7], which show thatlatiéstic model allows for
non-perturbatively large variations of Polyakov loops in space, anthdowalls form separating
regions of different Z(3) orientation. The competition between such davadfacts the thermal-
ization of long-wavelength modes of the Polyakov loop and some model estifoathe relevant
wave lengths and time scales are provided.

We adopt a simplified picture where a relativistic heavy-ion collision is viewgeed quench
that instantly heats the system to a temperature above the deconfining temgperaeiresponse
of Polyakov loop Structure Factors (SFs) to such a heating quenclebasstudied in SU(3) LGT
by Markov Chain Monte Carlo (MCMC) simulations for Glauber (dissipatiyamics [B]. As
unambiguous signals for the transition one finds a dynamical growth of thee&€hing max-
ima which scale approximately with the volume, a behavior characterizing sdipbdse conver-
sion [9]. Relaxation to the vacuum ensemble at high temperature becorniefe@mly after each
SF has overcome its maximum value. For SU(3) gauge theory this relaxationitienges with
increasing system size due to competing order-order domains with difi&@rcenter group trial-
ity. Hence, one should not a-priori exclude the possibility that, unddirtigdhe long wavelength
modes in the system do not equilibrate but instead get stuck in the neigblarhthe SF maxima.

Glauber (model A) dynamics is expected to describe the dissipative featiitiee transition
from one equilibrium ensemble to another well. Such SU(3) MCMC simulationgecga to 3D
equilibrium ensembles, which are the same as in Minkowski space, betteutmirth extension
of the Euclidean lattice serves only to define the temperature. The major adtawb&lauber
dynamics is not the 4D Euclidean formulation but that it is non-relativistic arafe importantly,
that one does not know how to connect the MCMC updating step to a phtigieascale. In this
talk we report resultd 7] from heating quenches into the deconfinesephiihin Pisarski's[[10]
relativistic effective model of Polyakov loops (compare also models of [R#).

2. Effective Model of Polyakov L oops

In Pisarski’s model[[J0] the deconfined phase of a pure gauge tieedegcribed as a conden-
sate of Polyakov loops. The Z(3)-symmetric effective potential for Ralydoops/ (complex for
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SU(3)) with cubic and quartic interactions takes the form
b b ; 1
$(O) = (-1 )+ 1R T ey

The energy scale is set y*. The mass coefficiert, = by(T) is temperature dependent, whidg
andb, are constants. These couplings are chosen to reproduce lattice didia 8W(3) pressure
and energy density abovg. At temperature3; > T; the effective potential takes the shape shown
in Fig. 1. We show equal height contours in {dg, 4) plane of this figure.

Figure 1: Effective potential for the Polyakov loap

To complete the effective theory in Minkowski space-time, a kinetic term isddd
& =T?(Z |0l — Zs| 6 4|?) — 7 (£) . (2.2)

We assume a Lorentz-invariant ford, = Zs, and take the coefficiers from that for spatial
variations of SU(3) Wilson lined [10Fs = N¢/g? with g2 = 3. Thus the dynamics of Polyakov
loops is in an intermediate regime between very w&aks 1) and very strong4s < 1) coupling.
We employ a simulation procedure similar to the one[of [12] but focus on hegtiegches.
Polyakov loop fields are defined on the sites of a spatial cubic lattice ofN§izgith periodic
boundary conditions. They are initialized in the confined phase attin@ Then the temperature
entering the effective Lagrangian (.2) is set to a vdlue T; above the deconfinement transition
Tc. The procedure for initializing the field, introducing counterterms in the opusof motion, and
coarse graining are described [ [7]. The leapfrog algorithm is usetegrate the Euler-Lagrange
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equations, and the system rearranges itself to a new equilibrium ensembdenwitizero Polyakov
loop signaling symmetry breaking in the infinite volume limit.
At timet, the structure function is defined by the Fourier transformation of the Rohlaop:

2
a3

Fkt) = —

=3 (2.3)

;e—iW(z,t)

For a fixed value oK, F(R,t) is called SF (structure factors). SFs are our primary observables. In
what follows, we label SFB;(t) as in [§]:k=f2m/Ls, n=1: A= (1,0,0), A2=1,n=2: A=
(1,1,0), i?=2,n=3: fi=(1,1,1), i? = 3, whereLs = aNs denotes the size of the lattice in
physical units. Note the relatiof| = 2m,/n/Ls for n = 1, 2, 3. Measurements far= 1 include

the permutation$0, 1,0), (0,0,1) and forn = 2 the permutation§l,0,1), (0,1,1).

3. Numerical Results

In the following we show results from quenchesTig/T. = 1.50 onNs = 64 lattices with
periodic boundary conditions. Additional results from quenches to fdarggél; values can be
found in Ref. [F]. Our length scale is set by coarse-graining coomdipg to the SU(3) phase
transition temperature df = 260 MeV and a lattice spacirag= 0.184 fm, which gives a physical
volumeL? = (aNq)3.

In Fig. @ we present several SF modes from our Glauber dynamics fiudy a 4x 64°
lattice (quench tals = 1.57T., average over 170 replica) for comparison with SF modes from
the Minkowski dynamics on a 64attice (quench tdl; = 1.50T,, average over 200 replica) in
Fig.[3. The scale on the vertical axis of Fig. 2 differs from that of Fige8duse the former has
been determined from the bare Polyakov loop while the effective Lagrar{g@.2) deals with the
renormalized loop. Renormalization amounts to a multiplicative constant.

Qualitatively, the SFs display the same behavior: An initial exponential grenfibllowed
by equilibration after the lowest SF mode reaches its maximum. We interpret tluiszetion of
competing order-order domains between regions of different Z(3) tri@jtyor the Minkowskian
dynamics the maxima of the lowest SF mdéeare compiled in[J7]. They scale with volume in
the same way as for Glauber dynamics. Provided the volumes are largghetfitgito the form
F1.max = bo + by L2 are consistent. Interestingly, both Fifls. 2 §hd 3 show that the above-nemhtio
effects due to non-perturbatively large variations of the Z(3) phaspdnesare visible even for
modes withk ~ T /2. This may be related to Z(3) domain walls forming just after the quench being
quite broad (disordered phase) and domains not much larger fffan 1

Since the kinetic term in the Lagrangidn {2.2) is assumed to be Lorentz invarizits for
time are the same as for length (apart from the speed of light fectévhen integrating hyperbolic
equations, one uses time steps smaller than the spatial lattice spatieg-hose\t /a= 0.01 and,
therefore, in physical units

At =0.00184 fryc. (3.2)

We ran trajectories from 15000 to 25000 time steps corresponding to a fiorg 27.6 fm/c to
46 fm/c. For the case shown in Fig. 3 the structure factor for the first mods &hout 8 fm/c
to reach its maximum, and another20 fm/c until that mode equilibrates. On the other hand, the
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Figure 2. Structure factors for Glauber dynamicﬂ; [8]is Monte Carlo time in sweeps (4643 lattice,
Tt /Te = 1.57, lattice sizd.s = 12.1 fm). F, corresponds t¢k| = 2m,/n/Ls = /nx102.1 MeV.
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Figure 3: Structure factors for Minkowski dynamicﬂ [%is real time (64 lattice, Ts /T, = 1.5, lattice size
Ls = 11.8 fm). R, corresponds tek| = 27m,/n/Ls = \/Nx105.3 MeV.
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second and third modes grow for a shorter period of time and subseqequilifprate more rapidly.
Note that there is an initial lag, and the precise time for the onset of growth ensgrisitive to the
spectrum and magnitude of initial fluctuations.

The timestmax needed to reach the maximalfef for different volumes and quench tempera-
tures are tabulated in Ref] [7]. For the lowest modes of the system theyecamite large, on the
order of the size of the system. Alggax increases witfT; /T, because the barriers between order-
order domains grow higher and are more difficult to overcome (this is diftéor full QCD where
the Z(3) symmetry is broken explicitly). For Glauber dynamics it is known thastifficiently
large systems and corresponding wavelengthsscales atmax = ap+ a1 Lg. For Minkowski dy-
namics fits to this form are satisfactory too. In the long wavelength limit the ecptildor time
for a mode with wave vectdt would then be proportional to/k?>. However, within our present
statistical error bars we cannot exclude a linear dependgnges ap+ a1 Ls, either.

4. Conclusions and Outlook

The particle spectrum of a quantum field theory at finite temperature buitdsthe phase of
its vacuum ensemble, and the structure of the vacuum is fundamental fdyriaenics of relax-
ation processes to equilibrium. Heating abdvealrives the SU(3) gauge theory system from the
disordered into the ordered phase. The initial process of spinodairgessition is signaled by an
exponential growth of the SFs. Non-perturbatively large variationse¥(8) phase form domain
walls during the conversion from a confined to a deconfined vacuuemdss. Ordering of the
system proceeds through competition of Z(3) domains until one of thenmualnoccupies the
whole system. For realistic temperatures, as relevant for high-eneagy-@n collisions, we find
that the rather slow dynamics of Polyakov loop domains delays thermalizatiorodés withk
nearly up toT. In future, it would be interesting to quantify the contribution of these mode<to th
bulk viscosity.

Our model for Minkowskian dynamics allows one to estimate a physical time swated
vacuum conversion process. The relaxation times found in this way f8)Jure gauge theory
increase as a power of 1/k for sufficiently lowk and are estimated to be on the order of the size
Ls of the system fok = 211/Ls andLs ~ 10 fm. Our numbers should be viewed only as rough first
estimates. Nevertheless, it appears that away from the extreme weaalkagdimit (Zs > 1) the
dynamics of competing domains will influence thermalization of long wavelengtremqerhaps
even fork not very far belowT, and hence cannot be neglected. The hydrodynamic equations
describing the evolution of long-wavelength perturbations in a deconfireeiium should therefore
be extended to account for the dynamics of competing domains of the Poli@io. In the
scenario where the system gets stuck before SFs equilibrate, one wautd kkow as much as
possible about phase transitions and equations of state at the relenaequitibrium values of the
Polyakov loop [18]. E.g., the pressure may then depend on all eigesvafube matrix-valued
Polyakov loop and not just on their trace.

Acknowledgments. We thank Rob Pisarski for fruitful discussions, and Brookhaven Natio
Laboratory for its hospitality. This work was in part supported by DOEtg®E-FG02-97ER-
41022, DE-FC02-06ER-41439 and NSF grant 0555397.



Minkowskian Dynamics of a Polyakov Loop Model under a Heating Quench Bernd A. Berg

References

[1] I. Arseneet al. [BRAHMS Collaboration], Nucl. Phys. A57 (2005) 1; B. B. Baclet al., [PHOBOS
Collaboration], Nucl. Phys. A57 (2005) 28; J. Adamst al. [STAR Collaboration], Nucl. Phys. A
757 (2005) 102; K. Adcoxet al. [PHENIX Collaboration], Nucl. Phys. A57 (2005) 184.

[2] See, for example, M. Gyulassy and L. McLerran, Nucl. P#y§50 (2005) 30.
[3] R. Baier, A.H. Mueller, D. Schiff and D.T. Son, Phys. LeBt502 (2001) 51.
[4] P. Arnold, J. Lenaghan and G.D. Moore, JHE®8 (2003) 002.

[5] G.'t Hooft, Nucl. Phys. B138 (1978) 1; Nucl. Phys. B53 (1979) 141; A.M. Polyakov, Phys. Lett. B
72(1978) 477.

[6] T.Bhattacharya, A. Gocksch, C. Korthals Altes and R.BaPski, Nucl. Phys. B883 (1992) 497; C.P.
Korthals Altes, Nucl. Phys. B20 (1994) 637; C. Korthals-Altes, A. Kovner and M.A. Stephanov
Phys. Lett. B469 (1999) 205; P. Giovannangeli and C.P. Korthals Altes, NBhls. B608 (2001)
203; Nucl. Phys. B21 (2005) 1; Nucl. Phys. B21 (2005) 25; P. de Forcrand, M.D. Elia and M.
Pepe, Phys. Rev. Le®6 (2001) 1438; P. de Forcrand and L. von Smekal, Phys. R&6 (2002)
011504(R); P. de Forcrand and D. Noth, Phys. Re¥2[{)2005) 114501, P. de Forcrand, C.P.
Korthals-Altes and O. Philipsen, Nucl. Phys782 (2006) 124.

[7] A. Bazavov, B.A. Berg, and A. Dumitru, Phys. Rev.7B (2008) 034024.
[8] A.Bazavov, B.A. Berg, and A. Velytsky, Phys. Rev.7@ (2006) 014501.

[9] T.R. Miller and M.C. Ogilvie, Phys. Lett. B88 (2000) 313; Nucl. Phys. B (Proc. Sup#4 (2001)
419.

[10] R.D. Pisarski, Phys. Rev. B2 (2000) 111501(R); A. Dumitru and R.D. Pisarski, Phys. LBth04,
282 (2001); Phys. Rev. B6 (2002) 096003.

[11] A.J. Mizher, E.S. Fraga, G. Krein, Braz. J. Ph§8(2007) 605; E.S. Fraga, G. Krein and A.J. Mizher,
Phys. Rev. Dr6 (2007) 034501; N.C. Cassol-Seewald, R.L.S. Farias, E&y&1G. Krein, and R.O.
Ramos, arXiv:0711.1866v1.

[12] O. Scavenius, A. Dumitru, and A.D. Jackson, Phys. Rett.B7 (2001) 182302.
[13] E. Shuryak, arXiv:0807.3033, section 3.4.



