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We report on a recent calculation of the time evolution of Polyakov loop fluctuations from a

simple classical relativistic Lagrangian after a quench into the deconfined phase of SU(3) gauge

theory. The structure factors indicate spinodal phase conversion followed by relaxation, similarly

to results obtained via Markov Chain Monte Carlo techniquesin SU(3) lattice gauge theory. The

time for which the structure factor reaches its maximum diverges in the long-wavelength limit

due to formation of non-perturbatively large competing Z(3) Polyakov loop domains, which delay

thermalization of long wavelength modes. For realistic temperatures, and away from the extreme

weak-coupling limit, also modes withk on the order ofT experience delayed thermalization. As

relaxation times of very long wavelength modes are found to be on the order of the size of the

system, the dynamics of competing domains should accompanythe hydrodynamic description of

the deconfined vacuum.
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1. Introduction

Relativistic Heavy-Ion Collision experiments carried out at Brookhaven National Laboratory
provide support for the existence of a quark-gluon plasma phase of QCD [1]. A collision of two
heavy nuclei at high energy releases a large number of gluons from thewave functions of the
colliding nuclei [2]. Those gluons interact and eventually form a thermalized QCD plasma with
a temperature in excess of the critical temperature for deconfinement. Complete (and consistent)
theoretical understanding of the thermalization process is presently lacking. Baier, Mueller, Schiff
and Son developed the so-called “bottom-up” approach [3], which is a framework for understanding
the processes leading to thermalization and for calculating the thermalization time ofthe QCD
medium as well as its initial temperature (see, however, the critique in Ref. [4]).

The “bottom-up” approach is based on solving the Boltzmann equation for quasi-particles in
a trivial vacuum and neglects the structure of the deconfined phase of the non-Abelian gauge the-
ory arising from the Z(3) center symmetry discovered by t’ Hooft and Polyakov [5] and further
studied in [6]. Below we report results of Ref. [7], which show that a relativistic model allows for
non-perturbatively large variations of Polyakov loops in space, and domain walls form separating
regions of different Z(3) orientation. The competition between such domains affects the thermal-
ization of long-wavelength modes of the Polyakov loop and some model estimatesfor the relevant
wave lengths and time scales are provided.

We adopt a simplified picture where a relativistic heavy-ion collision is viewed as a quench
that instantly heats the system to a temperature above the deconfining temperature. The response
of Polyakov loop Structure Factors (SFs) to such a heating quench has been studied in SU(3) LGT
by Markov Chain Monte Carlo (MCMC) simulations for Glauber (dissipative)dynamics [8]. As
unambiguous signals for the transition one finds a dynamical growth of the SF, reaching max-
ima which scale approximately with the volume, a behavior characterizing spinodal phase conver-
sion [9]. Relaxation to the vacuum ensemble at high temperature becomes feasible only after each
SF has overcome its maximum value. For SU(3) gauge theory this relaxation time diverges with
increasing system size due to competing order-order domains with different Z(3) center group trial-
ity. Hence, one should not a-priori exclude the possibility that, under heating, the long wavelength
modes in the system do not equilibrate but instead get stuck in the neighborhood of the SF maxima.

Glauber (model A) dynamics is expected to describe the dissipative features of the transition
from one equilibrium ensemble to another well. Such SU(3) MCMC simulations converge to 3D
equilibrium ensembles, which are the same as in Minkowski space, becausethe fourth extension
of the Euclidean lattice serves only to define the temperature. The major drawback of Glauber
dynamics is not the 4D Euclidean formulation but that it is non-relativistic and,more importantly,
that one does not know how to connect the MCMC updating step to a physical time scale. In this
talk we report results [7] from heating quenches into the deconfined phase within Pisarski’s [10]
relativistic effective model of Polyakov loops (compare also models of Ref. [11]).

2. Effective Model of Polyakov Loops

In Pisarski’s model [10] the deconfined phase of a pure gauge theoryis described as a conden-
sate of Polyakov loops. The Z(3)-symmetric effective potential for Polyakov loopsℓ (complex for
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SU(3)) with cubic and quartic interactions takes the form

V (ℓ) =

(

−b2

2
|ℓ|2− b3

6
(ℓ3 +(ℓ∗)3)+

1
4
(|ℓ|2)2

)

b4 T 4 . (2.1)

The energy scale is set byT 4. The mass coefficientb2 = b2(T ) is temperature dependent, whileb3

andb4 are constants. These couplings are chosen to reproduce lattice data forthe SU(3) pressure
and energy density aboveTc. At temperaturesTf > Tc the effective potential takes the shape shown
in Fig. 1. We show equal height contours in the(ℓr, ℓi) plane of this figure.
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Figure 1: Effective potential for the Polyakov loopℓ.

To complete the effective theory in Minkowski space-time, a kinetic term is added:

L = T 2(

Zt |∂tℓ|2−Zs |∂iℓ|2
)

−V (ℓ) . (2.2)

We assume a Lorentz-invariant form,Zt = Zs, and take the coefficientZs from that for spatial
variations of SU(3) Wilson lines [10],Zs = Nc/g2 with g2 = 3. Thus the dynamics of Polyakov
loops is in an intermediate regime between very weak (Zs ≫ 1) and very strong (Zs ≪ 1) coupling.

We employ a simulation procedure similar to the one of [12] but focus on heatingquenches.
Polyakov loop fields are defined on the sites of a spatial cubic lattice of sizeN3

s with periodic
boundary conditions. They are initialized in the confined phase at timet = 0. Then the temperature
entering the effective Lagrangian (2.2) is set to a valueTf > Tc above the deconfinement transition
Tc. The procedure for initializing the field, introducing counterterms in the equations of motion, and
coarse graining are described in [7]. The leapfrog algorithm is used to integrate the Euler-Lagrange
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equations, and the system rearranges itself to a new equilibrium ensemble witha non-zero Polyakov
loop signaling symmetry breaking in the infinite volume limit.

At time t, the structure function is defined by the Fourier transformation of the Polyakov loop:

F(~k, t) =
a3

N3
s

∣

∣

∣

∣

∣

∑
~x

e−i~k~x ℓ(~x, t )

∣

∣

∣

∣

∣

2

. (2.3)

For a fixed value of~k, F(~k, t) is called SF (structure factors). SFs are our primary observables. In
what follows, we label SFsFn(t) as in [8]:~k =~n2π/Ls, n = 1 : ~n = (1,0,0), ~n2 = 1, n = 2 : ~n =

(1,1,0), ~n2 = 2, n = 3 : ~n = (1,1,1), ~n2 = 3, whereLs ≡ aNs denotes the size of the lattice in
physical units. Note the relation|~k| = 2π

√
n/Ls for n = 1, 2, 3. Measurements forn = 1 include

the permutations(0,1,0), (0,0,1) and forn = 2 the permutations(1,0,1), (0,1,1).

3. Numerical Results

In the following we show results from quenches toTf /Tc = 1.50 on Ns = 64 lattices with
periodic boundary conditions. Additional results from quenches to larger Tf /Tc values can be
found in Ref. [7]. Our length scale is set by coarse-graining corresponding to the SU(3) phase
transition temperature ofTc = 260 MeV and a lattice spacinga = 0.184 fm, which gives a physical
volumeL3

s = (aNs)
3.

In Fig. 2 we present several SF modes from our Glauber dynamics study[8] on a 4× 643

lattice (quench toTf = 1.57Tc, average over 170 replica) for comparison with SF modes from
the Minkowski dynamics on a 643 lattice (quench toTf = 1.50Tc, average over 200 replica) in
Fig. 3. The scale on the vertical axis of Fig. 2 differs from that of Fig. 3 because the former has
been determined from the bare Polyakov loop while the effective Lagrangian (2.2) deals with the
renormalized loop. Renormalization amounts to a multiplicative constant.

Qualitatively, the SFs display the same behavior: An initial exponential growthis followed
by equilibration after the lowest SF mode reaches its maximum. We interpret this asformation of
competing order-order domains between regions of different Z(3) triality[6]. For the Minkowskian
dynamics the maxima of the lowest SF modeF1 are compiled in [7]. They scale with volume in
the same way as for Glauber dynamics. Provided the volumes are large enough, fits to the form
F1,max = b0 +b1L3

s are consistent. Interestingly, both Figs. 2 and 3 show that the above-mentioned
effects due to non-perturbatively large variations of the Z(3) phase in space are visible even for
modes withk ∼ T/2. This may be related to Z(3) domain walls forming just after the quench being
quite broad (disordered phase) and domains not much larger than 1/T .

Since the kinetic term in the Lagrangian (2.2) is assumed to be Lorentz invariant, units for
time are the same as for length (apart from the speed of light factorc). When integrating hyperbolic
equations, one uses time steps smaller than the spatial lattice spacinga. We chose∆t/a = 0.01 and,
therefore, in physical units

∆t = 0.00184 fm/c . (3.1)

We ran trajectories from 15000 to 25000 time steps corresponding to a range from 27.6 fm/c to
46 fm/c. For the case shown in Fig. 3 the structure factor for the first mode takes about 8 fm/c
to reach its maximum, and another≈ 20 fm/c until that mode equilibrates. On the other hand, the
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Figure 2: Structure factors for Glauber dynamics [8],t is Monte Carlo time in sweeps (4× 643 lattice,
Tf /Tc = 1.57, lattice sizeLs = 12.1 fm). Fn corresponds to|~k| = 2π
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Figure 3: Structure factors for Minkowski dynamics [7],t is real time (643 lattice,Tf /Tc = 1.5, lattice size
Ls = 11.8 fm). Fn corresponds to|~k| = 2π
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second and third modes grow for a shorter period of time and subsequentlyequilibrate more rapidly.
Note that there is an initial lag, and the precise time for the onset of growth may be sensitive to the
spectrum and magnitude of initial fluctuations.

The timestmax needed to reach the maxima ofF1 for different volumes and quench tempera-
tures are tabulated in Ref. [7]. For the lowest modes of the system they canbe quite large, on the
order of the size of the system. Also,tmax increases withTf /Tc because the barriers between order-
order domains grow higher and are more difficult to overcome (this is different for full QCD where
the Z(3) symmetry is broken explicitly). For Glauber dynamics it is known that for sufficiently
large systems and corresponding wavelengthstmax scales astmax = a0 +a1 L2

s . For Minkowski dy-
namics fits to this form are satisfactory too. In the long wavelength limit the equilibration time
for a mode with wave vectork would then be proportional to 1/k2. However, within our present
statistical error bars we cannot exclude a linear dependence,tmax = a0 +a1 Ls, either.

4. Conclusions and Outlook

The particle spectrum of a quantum field theory at finite temperature builds upon the phase of
its vacuum ensemble, and the structure of the vacuum is fundamental for thedynamics of relax-
ation processes to equilibrium. Heating aboveTc drives the SU(3) gauge theory system from the
disordered into the ordered phase. The initial process of spinodal decomposition is signaled by an
exponential growth of the SFs. Non-perturbatively large variations of the Z(3) phase form domain
walls during the conversion from a confined to a deconfined vacuum ensemble. Ordering of the
system proceeds through competition of Z(3) domains until one of them eventually occupies the
whole system. For realistic temperatures, as relevant for high-energy heavy-ion collisions, we find
that the rather slow dynamics of Polyakov loop domains delays thermalization ofmodes withk
nearly up toT . In future, it would be interesting to quantify the contribution of these modes to the
bulk viscosity.

Our model for Minkowskian dynamics allows one to estimate a physical time scale for the
vacuum conversion process. The relaxation times found in this way for SU(3) pure gauge theory
increase as a power of∼ 1/k for sufficiently lowk and are estimated to be on the order of the size
Ls of the system fork = 2π/Ls andLs ≈ 10 fm. Our numbers should be viewed only as rough first
estimates. Nevertheless, it appears that away from the extreme weak-coupling limit (Zs ≫ 1) the
dynamics of competing domains will influence thermalization of long wavelength modes, perhaps
even fork not very far belowT , and hence cannot be neglected. The hydrodynamic equations
describing the evolution of long-wavelength perturbations in a deconfinedmedium should therefore
be extended to account for the dynamics of competing domains of the Polyakov loop. In the
scenario where the system gets stuck before SFs equilibrate, one would like to know as much as
possible about phase transitions and equations of state at the relevant non-equilibrium values of the
Polyakov loop [13]. E.g., the pressure may then depend on all eigenvalues of the matrix-valued
Polyakov loop and not just on their trace.

Acknowledgments: We thank Rob Pisarski for fruitful discussions, and Brookhaven National
Laboratory for its hospitality. This work was in part supported by DOE grants DE-FG02-97ER-
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