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1. Introduction

We shall be concerned with theg–factor of the muon which relates its spin~s to its magnetic
moment~µ :

~µ = gµ
eh̄

2mµc
~s, gµ = 2

︸ ︷︷ ︸

Dirac

(1+aµ) ; (1.1)

more precisely, with the correctionaµ to the Dirac valuegµ =2, i.e. the correction which generates
the so called anomalous magnetic moment. The present experimental world average determination,
which is dominated by the latest BNL experiment (the E821 collaboration [1]), is

aexp
µ =116 592 080(63)×10−11(0.54 ppm) , (1.2)

where the origin of the error is 0.46 ppm statistical and 0.28 ppm systematic. This determination
assumes CPT–invariance i.e.,aµ− = aµ+ .

The question we shall discuss is:how well can the Standard Model digest this precise number?
As we shall see, the precision ofaexp

µ is such that it is sensitive to the three couplings of the Gauge
Theory which defines the Standard Model, as well as to its fullparticle content1.

2. The QED Contributions (Leptons)

This is by far the dominant contribution, which is generatedby two types of Feynman dia-
grams:

2.1 The Massless Class

This class consists of Feynman diagrams with virtual photons only as well as diagrams with
virtual photons and fermion loops of the same flavour as the external particle (the muon in our
case). Since the anomalous magnetic moment is a dimensionless quantity, this class of diagrams
gives rise to a contribution which is the same for the muon, the electron and the tau anomalies.
It corresponds to the entriesa(2n) in Table 1, withn = 1,2,3,4 indicating the number of loops
involved. They are known analytically at one loop [4]; two loops [5, 6]; and three loops [7]. This
is the reason why there is no error in the corresponding numbers in the second column of Table 1.

At the four–loop level, there are 891 Feynman diagrams of this type. Some of them are already
known analytically, but in general one has to resort to numerical methods for a complete evalua-
tion. This impressive calculation, which is systematically pursued by Kinoshita and collaborators,
requires many technical skills and is under constant updating; in particular thanks to the advances
in computing technology. The entrya(8) in Table 1 is the one corresponding to the most recent
published value [8], with the error due to the present numerical uncertainties.

Notice the alternating sign of the results from the contributions of one loop to four loops,
a simple feature which is not yeta priori understood. Also, the fact that the sizes of the

(α
π
)n

coefficients forn= 1,2,3,4 remain rather small is interesting, allowing one to expectthat the order
of magnitude of the five–loop contribution, from a total of 12672 Feynman diagrams, is likely to

1For recent review articles see e.g. refs. [2] and [3].

2



P
o
S
(
E
F
T
0
9
)
0
5
0

P
o
S
(
E
F
T
0
9
)
0
5
0

Muon g−2 Eduardo de Rafael

Table 1: QED Contributions (Leptons) {α−1 = 137.035 999 084(51) [0.37 ppb]}

CONTRIBUTION RESULT IN POWERS OFα
π NUMERICAL VALUE IN 10−11 UNITS

a(2)
µ 0.5

(α
π
)

116 140 973.29 (0.04)

a(4)
µ −0.328 478 965(00)

(α
π
)2

a(4)
µ (mµ/me) 1.094 258 311(08)

(α
π
)2

a(4)
µ (mµ/mτ ) 0.000 078 064(26)

(α
π
)2

a(4)
µ (total) 0.765 857 410(27)

(α
π
)2 413 217.62 (0.01)

a(6)
µ 1.181 241 46(00)

(α
π
)3

a(6)
µ (mµ/me)vp 1.920 455 13(03)

(α
π
)3

a(6)
µ (mµ/mτ )vp −0.001 782 33(48)

(α
π
)3

a(6)
µ (mµ/me,mµ/mτ )vp 0.000 527 66(17)

(α
π
)3

a(6)
µ (mµ/me)lxl 20.947 924 89(16)

(α
π
)3

a(6)
µ (mµ/mτ )lxl 0.002 142 83(69)

(α
π
)3

a(6)
µ (total) 24.050 509 64(43)

(α
π
)3 30 141.90 (0.00)

a(8)
µ −1.914 4(35)

(α
π
)4

a(8)
µ (mµ/me)vp 10.839 2(41)

(α
π
)4

a(8)
µ (mµ/me,mµ/mτ )vp −0.046 2(00)

(α
π
)4

a(8)
µ (mµ/me)lxl 121.843 1(59)

(α
π
)4

a(8)
µ (mµ/me ,mµ/mτ)lxl 0.083 8(01)

(α
π
)4

a(8)
µ (total) 130.805 5(80)

(α
π
)4 381.33 (0.02)

a(10)
µ (total estimate) 663(20)

(α
π
)5 4.48 (0.14)

a(2+4+6+8+10)
µ (QED) 116 584 718.09 (0.14)(0.04)

be ofO (α/π)5 ' 7×10−14. This is well beyond the accuracy required to compare with the present
experimental result foraµ , but it will be eventually needed for an improved determination of the
fine–structure constantα from the precision measurements of the electron anomaly. The value of
α used in Table 1 is the one quoted in ref. [9].

2.2 The Massive Class

This second class is generated by Feynman diagrams with lepton loops of a different flavour to
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the one of the external muon line. Their contribution toaµ is then a function of the ratios of lepton
masses involved. The relevant diagrams are those generatedby vacuum polarization subgraphs (vp)
and/or by light–by–light scattering subgraphs (lxl) involving electron and tau loops. The results of
their evaluation are given in Table 1. Both the two–loop and three–loop contributions of this class
are known analytically2. The full three–loop evaluation involving electron–loop subgraphs, by
Laporta and Remiddi [10, 11], is a remarquable achievement.The numerical errors quoted in
Table?? tab:QED for these contributions are due to the present experimental errors in the lepton
masses [12].

At the four–loop level, only a few contributions are known analytically. Kinoshita and his col-
laborators have, however, accomplished a full numerical evaluation of this class (see ref. [13] and
references therein.). The corresponding error in Table 1 isthe combined error in the lepton masses
and the present error due to the very many integrals which have been performed numerically.

The number quoted for the full five–loop QED contribution in Table 1 is the present estimate
quoted in ref. [14]. It is likely to be improved in the near future.

2.3 The Mellin–Barnes Technique

There has been a recent technical development in the evaluation of Feynman diagrams invol-
ving mass ratios, which has already been useful in the evaluation of some higher order contributions
to aµ (see refs. [15, 16]) and which seems promising for further calculations. In these papers it is
shown how the Mellin–Barnes representation of Feynman parametric integrals allows for an easy
evaluation of as many terms as wanted in the asymptotic expansion of Feynman diagrams in terms
of one and two mass ratios.

The basic idea is to express the contribution toaµ from a Feynman diagram, or a class of
diagrams, as an inverse Mellin transform with respect to themass ratios involved in the diagrams.
The remarkable property of this representation is the factorization in terms of massless moment
integrals. It is in fact this factorization which is at the origin of the well known renormalization
group properties discussed in ref. [17], and used since thenby many other authors (see e.g. ref. [18]
and references therein). The algebraic factorization in the Mellin–Barnes representation, however,
is more general. The standard renormalization group constraints only apply to the evaluation of
asymptotic behaviours in terms ofpowers of logarithmsandconstantterms. In the Mellin–Barnes
framework, these contributions are governed by the residues of the leading Mellin singularities.
What is new here is the extension of the renormalization group predictive power tosubleading
contributionsas well. They are in fact governed by the residues of the successive Mellin singulari-
ties (in the negative real axis, in the case of internal electron loops); or by two–dimensional residue
forms [16, 19], in the case of the Mellin singularities associated to two mass ratios (i.e. in the the
case of both electron and tau internal loops).

As an example, we quote a few terms of the result obtained for the tenth–order contribution
from the string of vacuum polarization subgraphs shown in Fig. 1:

2For an account of the successive improvements in the evaluation of these contributions see e.g. refs. [2, 3].
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ee
µ

X

e τ

+ ...

Fig.1 Diagrams with three e–loops and aτ–loop.

a(eeeτ)
µ =

(α
π

)5
{(

m2
µ

m2
τ

)[

4
1215

log3 m2
µ

m2
e
− 2

405
log2 m2

µ
m2

e
−
(

122
3645

− 8π2

1215

)

log
m2

µ
m2

e
+

2269
32805

− 4π2

215
− 16

405
ζ (3)

]

+

(
m2

e

m2
τ

)[

4
45

log2 m2
µ

m2
e
− 20

27
log

m2
µ

m2
e

+
634
405

+
8π2

135

]

+ · · ·
}

=
(α

π

)5
0.013 057 4(4) . (2.1)

In fact, the analytic calculation in ref. [16] which leads tothis precise number, also includes terms

up toO

[(
m2

µ
m2

τ

)4
log3 m2

µ
m2

τ

]

, which are already smaller than the error generated by the lepton masses

in the leading order terms given in the first line in Eq. (2.1).
So far, the contributions to the muon anomaly evaluated analytically with this technique are:

those from the two sixth order Feynman diagrams which give the contributiona(6)
µ (mµ/me,mµ/mτ)vp

in Table 1 [15]; those from the eighth and tenth order Feynmandiagrams involving lowest order
vacuum polarization insertions of leptonsl = e,µ ,τ in the Schwinger lowest order graph [16];
and recently, those from the eighth order contributions involving fourth order vacuum polarization
insertions of leptons also in the lowest order Schwinger graph [19, 20].

3. QED Hadronic Contributions

The electromagnetic interactions of hadrons produce contributions toaµ induced by the hadronic
vacuum polarization and by the hadronic light–by–light scattering.

3.1 Hadronic Vacuum Polarization

All calculations of the lowest–order hadronic vacuum polarization contribution to the muon
anomaly (see Fig. 2) are based on the spectral representation [21]

ahvp
µ =

α
π

∫ ∞

0

dt
t

1
π

ImΠ(t)
∫ 1

0
dx

x2(1−x)

x2 + t
m2

µ
(1−x)

(3.1)

with the hadronic spectral function1π ImΠ(t) related to theone-photon e+e− annihilation cross-
section into hadrons (me → 0) as follows:

σ(t){e+e−→(γ)→hadrons} =
4π2α

t
1
π

ImΠ(t) . (3.2)
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X

µ

Hadrons

Fig.2 Hadronic Vacuum Polarization

This contribution is dominated by theπ+π− channel; the region of theρ–resonance in particu-
lar [22, 23]. The history of evaluations ofahvp

µ is a long one which can be traced back, e.g. in ref. [2].
The most recent compilation ofe+e− annihilation data used in the evaluation of the dispersive
integral in Eq. (3.1) made by Michel Davier and collaborators, which also includes the new precise
measurements from the experiments SND and CMD-2 at Nobosibirsk, gives the result3:

ahvp
µ = (6 873±42exp±19rad±7QCD)×10−11 [e+e−−data] , (3.3)

where the error±19rad refers to uncertainties in the treatment of radiative corrections in some of
thee+e− experiments.

The evaluation made using theτ–spectral functions gives, however, a much larger contribu-
tion 4:

ahvp
µ = (7 015±48exp+IB ±8rad±7QCD)×10−11 [τ −data] . (3.4)

In spite of the corrections for isospin–breaking effects (IB), the discrepancy with the evaluation
made usinge+e− data, unfortunately, still persists. Here, one has to wait for the forthcoming results
from the high precision measurements on theππ mode at BaBar using the radiative return method.
Hopefully, we shall then be able to resolve the inconsistency between the results in Eqs. (3.3) and
(3.4) and, therefore, improve the accuracy of theahvp

µ contribution.
There is a similar spectral representation to the one in Eq. (3.1) for the next–to–leading order

hadronic vacuum polarization [25], with the kernel [26, 27]in Eq. (3.1), replaced by a two–loop
kernel, which is also known analytically [28]. A recent numerical evaluation, using the same data
as for the lowest–ordere+e− evaluation, gives [29]

ahvp(nlo)
µ = (−97.9±0.9exp±0.3rad )×10−11. (3.5)

A simple explanation of why this contribution turns out to benegative is given in ref. [2].

3.2 Hadronic Light–by–Light Scattering

Unlike the hadronic vacuum polarization contribution, there is no direct experimental input for
the hadronic light–by–light scattering contribution toaµ shown in Fig. 3; therefore one has to rely
on theoretical approaches.

So far, the only rigorous theoretical result is the observation that, in the QCD large–Nc limit
and to leading order in the chiral expansion, the dominant contribution comes from the Goldstone–
like neutral pion exchange which produces a characteristicuniversal double logarithmic behavior
with a coefficient which can be calculated exactly [30]:

3See ref. [24] and references therein for details.
4See also ref. [24] and references therein for details.
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X

µ

H

Fig.3 Hadronic Light–by–Light Scattering

ahll
µ (π0)=

(α
π

)3 m2
µ N2

c

48π2F2
π

[

ln2 mρ
mπ

+O

(

ln
mρ
mπ

)

+O(1)
]

(3.6)

whereFπ denotes the pion coupling constant in the chiral limit (Fπ ∼ 90 MeV). Testing this limit
was particularly useful in fixing the sign of the phenomenological calculations of the neutral pion
exchange [31].

Although the coefficient of the ln2(mρ/mπ) term in Eq. (3.6) is unambiguous, the coefficient
of the ln(mρ/mπ) term depends on low–energy constants which are difficult to extract from ex-
periment [30, 32] (they require a detailed knowledge of theπ0 → e+e− decay rate with inclusion
of radiative corrections). Moreover, the constant term in Eq. (3.6) is not fixed by chiral symmetry
requirements, which makes the predictive power of an effective chiral perturbation theory approach
rather limited for our purposes. Therefore, one has to adopta dynamical framework which takes
into account explicitly the heavier meson degrees of freedom as well. This, at the present stage of
our knowledge of QCD, necessarily brings in some model dependency.

The most recent calculations ofahll
µ in the literature [31, 33, 34, 35] are all compatible with the

QCD chiral constraints and large–Nc limit discussed above. They all incorporate theπ0–exchange
contribution modulated byπ0γ∗γ∗ form factors, correctly normalized to theπ0 → γγ decay width.
They differ, however, in the shape of the form factors, originating in different assumptions: vector
meson dominance in a specific form of Hidden Gauge Symmetry inRef. [33]; in the form of the
extended Nambu–Jona-Lasinio (ENJL) model in ref. [34]; large–Nc models in Refs. [31, 35]; and
on whether or not they satisfy the particular operator product expansion constraint discussed in
ref. [35].

The question of using on–shell form factorsFπ0γ∗γ∗(m
2
π ,q2

1,q
2
2) versus off–shell form factors

Fπ0γ∗γ∗(q
2
3,q

2
1,q

2
2) has been recently raised again in ref. [36] (see also ref. [3]). In fact, one can

show5 that these two choices are correlated with the treatment of the remaining contributions to
the full ahll . In a Lagrangian formulation of the problem, like e.g. within the ENJL–model, there
are no such ambiguities.

In order to compare different results it is convenient to separate the hadronic light–by–light
contributions which are leading in the 1/Nc–expansion from the non-leading ones [37]. Among
the leading contributions, the pseudoscalar meson exchanges which incorporate theπ0, and to a
lesser degree theη andη ′ exchanges, are the dominant ones. As discussed above, thereare good
QCD theoretical reasons for that. In spite of the different definitions of the pseudoscalar meson
exchanges and the associated choices of the form factors used in the various model calculations,
there is a reasonable agreement among the final results. The result quoted in a recent update

5Marc Knechtunpublished notes.
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discussed in ref. [38] gives:

ahll(π ,η ,η ′) = (114±13)×10−11 . (3.7)

Other contributions, which are also leading in the 1/Nc–expansion, due to axial–vector exchanges
and scalar exchanges, give smaller contributions with updated errors, as discussed in ref. [38]:

ahll(1+) = (15±10)×10−11 , (3.8)

and

ahll(0+) = −(7±7)×10−11. (3.9)

The subleading contributions in the 1/Nc–expansion are dominated by the charged pion loop.
However, because of the model dependence of the results one obtains when the pion loop is dressed
with hadronic interactions it is suggested in ref. [38] to use the central value of the ENJL–model
evaluation in [34], but with a larger error which also coversunaccounted loops of other mesons, :

ahll(π+π−) = −(19±19)×10−11. (3.10)

From these considerations, adding the errors in quadrature, as well as the small charm contri-
bution: ahll(c) = 2.3±×10−11 , one gets

ahll = (105±26)×10−11 , (3.11)

as a final estimate.

4. Electroweak Contributions

The leading contribution toaµ from the Electroweak Lagrangian of the Standard Model, ori-
ginates at the one–loop level. The relevant Feynman diagrams (in the unitary gauge) are shown in
Fig. 4.

The analytic evaluation of the overall contribution gives the result (see e.g. ref. [39]):

aEW(1)
µ =

GF√
2

m2
µ

8π2







10
3
︸︷︷︸

W

+
1
3
(1−4sin2 θW)2− 5

3
︸ ︷︷ ︸

Z

+O

(

m2
µ

M2
Z

log
M2

Z

m2
µ

)

+
m2

µ

M2
H

∫ 1

0
dx

2x2(2−x)

1−x+
m2

µ
M2

H
x2







= 194.8×10−11 , (4.1)

where the weak mixing angle is defined by sin2θW =1−M2
W/M2

Z ' 0.223, andGF ' 1.166×10−5

is the Fermi constant. Notice that the contribution from theHiggs boson, shown in parametric

form, is ofO
(

GF√
2

m2
µ

4π2

m2
µ

M2
H

ln M2
H

m2
µ

)

, rather small for the present lower bound onMH .

Thea priori possibility that the two–loop electroweak corrections maybring in enhancement
factors due to large logarithms, like ln(M2

Z/m2
µ)' 13.5, has motivated a thorough theoretical effort

for their evaluation, which has been quite a remarkable achievement.
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X XX

W

Z H
µ µ µ

ν

Fig.4 Weak interactions at the one-loop level

It is convenient to separate the two–loop electroweak contributions into two sets: those con-
taining closed fermion loops and the bosonic corrections, which we denote byaEW(2)

µ (bos). The
latter have been evaluated using asymptotic techniques in asystematic expansion in powers of

sin2θW, where logM2
W

m2
µ

terms, logM2
H

M2
W

terms, M2
W

M2
H

log M2
H

M2
W

terms, M2
W

M2
H

terms, and constant terms are

kept. Using sin2θW = 0.223 and 50 GeV≤ MH ≤ 700 GeV results in [40, 41, 42]:

aEW(2)
µ (bos) =

GF√
2

m2
µ

8π2 × α
π

(−82.2±5.9)

= (−22.2±1.6)×10−11 . (4.2)

The discussion of the fermionic corrections is more delicate. Because of theU(1) anomaly
cancellation between lepton loops and quark loops in the electroweak theory, one cannot separate
hadronic from leptonic effects any longer in diagrams like the ones shown in Fig. 5, where a VVA–
triangle with two vector currents and an axial–vector current appears. It is therefore appropriate to
separate the fermionic corrections into two subclasses. One is the class in Fig. 5, which we denote
by aEW(2)

µ (l ,q) . The other class is defined by the rest of the diagrams, where quark loops and lepton

loops can be treated separately, which we callaEW(2)
µ (ferm-rest). This latter contribution has been

estimated to a very good approximation in ref. [40] with the result,

aEW(2)
µ (ferm-rest) =

GF√
2

m2
µ

8π2
α
π
× (−21± 4) , (4.3)

where the error here is the one induced by diagrams with Higgspropagators with an allowed Higgs
mass in the range 114 GeV<MH <250 GeV.

Concerning the contributions toaEW(2)
µ (l ,q), it is convenient to treat the three generations

separately. The contribution from the third generation canbe calculated in a straightforward way
using effective field theory techniques [43], because all the fermion masses in the triangle loop are
large with respect to the muon mass, with the result [43, 40]:

aEW(2)
µ (τ,t,b) =

GF√
2

m2
µ

8π2
α
π
× (−30.6) . (4.4)

However, as first emphasized in ref. [43], an appropriate QCDcalculation when the quark in the
loop of Fig. 5 is alight quarkshould take into account the dominant effects of spontaneous chiral-
symmetry breaking. Since this involves theu,d andsquarks, it is convenient to lump together the
contributions from the first and second generations. An evaluation of these contributions, which
incorporates the QCD long–distance chiral realization [43, 44] as well as perturbative [45] and
non–perturbative [44, 45] short–distance constraints, gives the result

9
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X

e

µ

X

µ

u,d

ZZ γγ

Fig.5 Two-loop electroweak diagrams generated by theγγZ-Triangle. There are similar diagrams corre-

sponding to theµ ,c,s andτ, t,b generations.

aEW(2)
µ (e,µ,u,d,s,c) =

GF√
2

m2
µ

8π2
α
π
× (−24.6±1.8) . (4.5)

From the theoretical point of view, this calculation has revealed surprising properties concerning the
non-anomalouscomponent of the VVA–triangle [46], resulting in a new set ofnon-renormalization
theoremsin perturbation theory [46, 47].

Putting together the partial two–loop results discussed above, one finally obtains for the overall
electroweak contribution the value

aEW
µ = aEW(1)

µ +
GF√

2

m2
µ

8π2

(α
π

)

[−158.4(7.1)(1.8)]

= 152(2)(1)×10−11 , (4.6)

where the first error is essentially due to the Higgs mass uncertainty, while the second comes from
hadronic uncertainties in the VVA–loop evaluation. The overall result shows indeed that the two–
loop correction represents a sizeable reduction of the one–loop result by an amount of 22%. An

evaluation of the electroweak three–loop leading terms ofO

[
GF√

2

m2
µ

8π2

(α
π
)2

ln MZ
mµ

]

, using renormal-

ization group arguments [48, 45], shows that higher order effects are negligible [O(10−12)] for the
accuracy needed at present.

5. Summary

Table 2: Standard Model Contributions
CONTRIBUTION RESULT IN 10−11 UNITS

QED (leptons) 116 584 718.09±0.14±0.04α
HVP(lo)[e+e−] 6 873±42exp±19rad±7QCD

HVP(ho) −97.9±0.9exp±0.3rad

HLxL 105±26
EW 152±2±1
Total SM 116 591 750±53

Table 2 collects the various Standard Model contributions to aµ which we have discussed. Notice
that the largest error at present is the one from the lowest order hadronic vacuum polarization

10
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contribution. Adding experimental and theoretical errorsin quadrature gives a total

aSM
µ = (116 591 750±53)×10−11 , (5.1)

with an overall error slightly smaller than the one in the experimental determination in Eq. (1.2).
The comparison between these two numbers shows an intriguing 3.6 σ discrepancy. However, if
instead of the HVP(lo)[e+e−] value one uses theτ–data determination in Eq. (3.4), the discrepancy
is then reduced to a 2.2 σ deviation. We are eagerly awaiting for the new BaBar data to clarify this
situation.
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