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The brick wall model is a semi-classical approach to understand the microscopic origin of black

hole entropy. In this approach, the entropy of the black holearises due to the canonical entropy of

matter fields outside the black hole event horizon, evaluated at the Hawking temperature. Usually,

in the brick wall model, the density of states and the resulting canonical entropy of the matter

fields are calculated at the leading order (in terms ofh̄) in the WKB approximation. We extend

this approach and compute the brick wall entropy of a quantumscalar field around static and

spherically symmetric black holes at the higher orders in the WKB approximation. We find that

the brick wall model generally predicts corrections to the Bekenstein-Hawking entropy in all

spacetime dimensions. We compare our results with the sub-leading contributions to the black

hole entropy that has been obtained from various other approaches.
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1. Introduction

Black hole entropy assumes considerable importance due to the fact that it may provide us
with an insight to the microscopic structure of the gravitational theory throughthe microcanonical,
Boltzmann relationS= (kB lnΩ), whereΩ is the total number of quantum states that are accessible
to a black hole described by a small set of classical parameters. The different approaches that have
been adopted in the literature to understand the microscopic origin of black hole entropy can be
broadly classified into two categories. (i) Count the “microstates” by assuming a fundamental struc-
ture like D-branes, spin networks or conformal symmetry [1, 2, 3, 4]. (ii)Associate the black hole
entropy to the quantum fields propagating in a fixed black hole spacetime, andcount the microstates
of these quantum fields [5, 6, 7, 8, 9, 10]. Interestingly, while all these approaches arrive at the lead-
ing Bekenstein-Hawking term, they, generally, seem to lead to different sub-leading contributions.
For instance, (i) the prefactor to the logarithmic corrections obtained using the spin-networks and
conformal symmetry [11, 12, 13, 14, 15] are different from the one obtained using the statistical
fluctuations around thermal equilibrium [16], and (ii) the power-law corrections obtained using the
Noether charge approach [8] are different from those via entanglement of the modes between in-
side and outside the horizon [17]. In other words, even though different degrees of freedom lead to
the universal Bekenstein-Hawking entropy —quite naturally— they lead to different sub-leading
terms. This indicates that the key to the understanding of the statistical mechanical interpretation of
Bekenstein-Hawking entropy may lie in the origin of the sub-leading contributions. Physically, it
is natural to expect corrections to Bekenstein-Hawking entropy. The Bekenstein-Hawking entropy
is a semi-classical result, and there are strong indications that it is valid for large black holes (i.e.
when horizon radius is much larger than the Planck length]). However, it isnot clear whether this
relation will continue to hold for, say, Planck size black holes. Besides, there is no reason to expect
that the Bekenstein-Hawking entropy to be the complete answer in a correcttheory of quantum
gravity.

The brick wall approach is a semi-classical approach, wherein the background geometry is
assumed to be a fixed classical background in which quantum fields propagate. The entropy of
the black hole is identified with the statistical mechanical entropy arising from a thermal bath of
quantum fields propagating outside the horizon. The entropy computed in thisway turns out to
be proportional to the area of the horizon. This approach has been very popular in obtaining the
leading order to the black hole entropy in different dimensions (for an incomplete list of references,
see Refs. [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,34, 35]).

The original brick wall model involved only the leading order WKB approximation [5, 18, 19].
A natural question that arises is whether working at the higher orders in the approximation will lead
to any corrections to the Bekenstein-Hawking entropy. In this work, we extend the zeroth-order
(h̄0) WKB analysis to the higher orders and show that (i) The contribution to the entropy from the
higher-order WKB modes is of the same order as the leading order WKB modes. In other words,
our analysis shows that it may be incomplete to calculate the contribution only from the leading
order WKB modes. (ii) The brick-wall entropy(SBW) leads to generic corrections to area of the
form:

SBW = SBH +G (AH)+F (AH) log

(

AH

ℓ2
Pl

)

, (1.1)
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whereG (AH), andF (AH) are polynomial functions ofAH . In the case of four-dimensions, the
brick-wall entropy (upto sixth-order) [36] has the form given abovewith G (AH) = 0. In the case
of six-dimensions,G (AH) 6= 0. (iii) We show that, only in the case of Schwarzschild,F (AH) is a
constant.

The remainder of this article is organized as follows. In the next section, weshall outline some
essential properties of static, spherically symmetric black holes in arbitrary spacetime dimensions.
Then, in Section 3, we shall discuss the assumptions and approximations involved in evaluating the
brick wall entropy, and describe the procedure for extending the calculation to the higher orders
(in terms ofh̄) in the WKB approximation. In Section 4, in addition to the zeroth order, we shall
evaluate the contributions to the brick wall entropy of four dimensional blackholes at the second
order (in terms of̄h) in the WKB approximation. In Section 5, we explicitly write down the results
for a few specific black hole solutions in four dimensions. Finally, in Section 6, after a rapid
summary of the results we have obtained, we shall discuss as to how the sub-leading contributions
we have evaluated compare with the results obtained from the other approaches.

Let us now briefly list the conventions and notations we shall adopt. We shall, in general,
consider a(D+2)-dimensional, spherically symmetric, black hole spacetime. We shall work with
the metric signature(−,+,+, · · ·), and use the geometric units whereinkB = c = G = 1. We shall
denote the derivative of any function with respect to the radial coordinate r of the black hole by an
overprime. The quantum fieldΦ we shall consider will be a minimally coupled scalar field.

2. Key properties of static, spherically symmetric black holes:

Consider the following(D+2)-dimensional static and spherically symmetric line element

ds2 = − f (r)dt2 +
dr2

g(r)
+ r2dΩ2

D
, (2.1)

= f (r)
[

−dt2 +dx2]+ r2dΩ2
D
, (2.2)

where f (r) andg(r) are arbitrary (but, continuous and differentiable) functions of the radial coor-
dinater, dΩ2

D
is the metric on aD-dimensional unit sphere, and

x =
∫

dr
√

f (r)g(r)
(2.3)

denotes the tortoise coordinate. Throughout this work, we shall assume that the line-element (2.1)
contains a singularity (say, atr = 0) andone, non-degenerate, event horizon (located at, say,r = rH)
But, we shall not assume any specific form off (r) or g(r). In the rest of this section, we shall
discuss some generic properties of the spacetime (2.1) near the horizon atr = rH .

In almost all approaches that evaluate the entropy of spherically symmetric black holes, their
line-element close to the event horizon is approximated to be that of a Rindler spacetime (see,
for instance, Ref. [32]). For the line-element (2.1), the Rindler behavior near the horizon can be
arrived at by first carrying out the following transformation of the radial coordinate:

γ =

(

1
κ

)

√

f , (2.4)
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whereκ is a constant that denotes the surface gravity of the black hole and is defined as (see, for
example, Ref. [40])

κ =

[
√

g(r)
f (r)

(

f ′(r)
2

)

]

r=rH

. (2.5)

In terms of the coordinateγ, the line-element (2.1) can be expressed as

ds2 = −κ2 γ2dt2 +4

(

f
g

)(

κ
f ′

)2

dγ2 + r2dΩ2
D . (2.6)

Close to the horizon (i.e. nearr = rH), this line-element reduces to

ds2 →−κ2 γ2dt2 +dγ2 + r2
H

dΩ2
D (2.7)

which describes the Rindler spacetime with a horizon that is located atγ = 0. It should be stressed
here that such a behavior is exhibited by all non-degenerate black hole horizons in all dimensions.

The above derivation of the Rindler line-element near the horizon is essentially equivalent to
expanding the metric componentsf (r) andg(r) in (2.1) aboutrH up to the linear order in the Taylor
series. However, we find that, when evaluating the contributions to the brickwall entropy at the
higher orders in the WKB approximation, we need to expand the quantitiesf (r) andg(r) to higher
orders as follows:

f (r) = f ′(rH)(r − rH)+

(

f ′′(rH)

2

)

(r − rH)2 + . . . , (2.8)

g(r) = g′(rH)(r − rH)+

(

g′′(rH)

2

)

(r − rH)2 + . . . . (2.9)

As we shall see, in four dimensions, in addition to the surface gravity of the black hole, the cor-
rections to the Bekenstein-Hawking entropySBH also depend on the second derivative of the metric
evaluated at the horizon.

Another quantity which we shall require in our calculations is the proper or the coordinate
invariant distance of the brick wall from the horizon. The proper radialdistance to the brick wall,
say,hc, that is located atr = h is given by

hc =

rH+h
∫

rH

dr
√

g(r)
. (2.10)

On using the expansion (2) forg(r) up to the second order in this integral, we obtain the following
relation betweenh andhc:

h1/2 =

√

2g′(rH)

g′′(rH)
sinh

[
√

g′′(rH)

2

(

hc

2

)

]

. (2.11)

For smallhc, this relation simplifies to

hc =

√

4h
g′(rH)

, (2.12)

and, for convenience, we shall use this expression for the proper distance to the brick wall.
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3. Extending the brick wall model to higher WKB orders

In this section, after a rapid sketch of the assumptions and approximations that are involved in
evaluating the black hole entropy using the brick wall model, we go on to outline the procedure for
computing the brick wall entropy at the leading orders in the WKB approximation.

3.1 Basic assumptions

There are two crucial assumptions in the brick wall approach to black hole entropy. The first
assumption concerns the modeling of the microscopic origin of the black hole entropy, and the
second is regarding the handling of the divergences that arise close to the event horizon.

As we have mentioned before, the brick wall model is a semi-classical approach wherein
the black hole is assumed to be described by a fixed classical geometry. It isfurther assumed
that the black hole is in equilibrium with a thermal bath of quantum matter fields at theHawking
temperature. Moreover, it is the canonical entropy (actually, a specific component) of the quantum
matter fields that are propagating outside the black hole horizon that is identified to be the entropy
of the black hole.

In the process of calculating the canonical entropy of a matter field outside the black hole
horizon, we need to evaluate the density of states of the field. However, one finds that, due to
the infinite blue shifting of the modes in the vicinity of the event horizon, the density of states
actually diverges. This divergence is regulated in the model by introducing a cut-off by hand above
the horizon. The cut-off—popularly referred to as the brick-wall—is basically a static, spherical
mirror at which the matter fields are assumed to satisfy, say, the Dirichlet boundary conditions.
One finds that the leading component of the brick wall entropy diverges as h−2

c , wherehc is the
proper distance to the brick wall defined in Eq. (2.10). (The other component is essentially a
volume dependent term that arises even in flat space.) It is this contributionthat is identified to
be the entropy of the black hole. Moreover, a specific choice for the cut-off hc has to be made
(this depends on the number of fields, the dimension of the spacetime, etc., butis generally of the
order of the Planck lengthℓPl), in order to reproduce the Bekenstein-Hawking area law. As we
mentioned, the area law has been recovered in this approach for a varietyof black hole spacetimes
and matter fields [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37].

3.2 Essential approximations

Two approximations turn out to be essential to make the computation of the brick wall entropy
tractable. The first approximation is required in evaluating the density of states of matter fields
around black holes, and the second involves expanding the metric near theevent horizon.

As we pointed out above, in order to evaluate the brick wall entropy, one needs to evaluate the
density of states of matter fields around black holes. However, apart from some lower dimensional
cases, the density of states cannot be evaluated exactly. As a result, in thebrick wall model, the
density of states is usually evaluated at the leading order inh̄ in the WKB approximation.

Moreover, barring a few special cases, one finds that, even after theWKB approximation,
the brick wall entropy cannot be evaluated exactly. Recall that the dominant contribution to the
entropy arises due to the modes close to the horizon. Motivated by this feature, one Taylor expands

5
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the metric functionsf (r) andg(r) near the horizon in order to obtain a closed form expression for
the brick wall entropy.

3.3 The methodology

Having discussed the assumptions and approximations involved in the brick wall approach,
in the remainder of this sub-section, we shall outline the procedure for evaluating the brick wall
entropy at the leading order in the WKB approximation.

The key assumption of the brick wall model, as we have pointed out above, isthat the black
hole is in equilibrium with a bath of thermal radiation at the Hawking temperature of the hole. The
free energyF of a scalar field at the inverse temperatureβ is given by (see, for example, Ref. [5])

F =

(

1
β

) ∞
∫

0

dE

(

dΓ(E)

dE

)

ln [1−exp−(βE)] ,

= −

∞
∫

0

dE

(

Γ(E)

exp(βE)−1

)

, (3.1)

whereΓ(E) denotes the total number of modes of the field with energy less thanE. We have
integrated the first of the above equation by parts to arrive at the secondand have assumed that the
boundary term vanishes. The canonical entropy associated with the free energyF is given by

SC(β ) = β 2
(

∂F
∂β

)

, (3.2)

and, it is this entropy, evaluated at the Hawking temperature, that will be identified to be the entropy
of the black hole.

Consider a massive and minimally coupled scalar fieldΦ that is propagating in the line-
element (2.1). Such a field satisfies the differential equation

(

�−m2)Φ = 0, (3.3)

wheremdenotes the mass of the field. The rotational symmetry of the line-element (2.1) allows us
to decompose the normal modesuEℓmi

of the fieldΦ as follows (see, for instance, Ref. [41]):

uEℓmi
(xµ) =

(

R(r)

rD/2G1/2(r)

)

Yℓmi (θ ,φi) e−(iEt/h̄) , (3.4)

whereE, ℓ andmi (with i ∈ [1,(D− 1)]) are the energy, angular momentum and the azimuthal
angular momenta associated with the modes, respectively, the quantityG(r) is given by

G(r) =
√

f (r) g(r) , (3.5)

andYlmi (θ ,φi) denote the hyper-spherical harmonics. On substituting the mode (3.4) in the equation
of motion (3.3) and using the properties of the hyper-spherical harmonics, we find that the function
R(r) satisfies the differential equation

R′′(r)+

[

V2(r)

h̄2 −∆(r)

]

R(r) = 0, (3.6)

6



P
o
S
(
B
H
s
,
 
G
R
 
a
n
d
 
S
t
r
i
n
g
s
)
0
3
5

Sub-leading contributions to the black hole entropy Sudipta Sarkar

where the quantitiesV2(r) and∆(r) are given by

V2(r) =

(

1
G2(r)

) (

E2− f (r)

[

m2 +

(

ℓ(ℓ+D−1) h̄2

r2

)])

, (3.7)

∆(r) =

(

G′′(r)
2G(r)

)

−

(

G′2(r)
4G2(r)

)

+

(

D
2r

) (

G′(r)
G(r)

)

+

(

D(D−2)

4r2

)

. (3.8)

The total number of modesΓ(E) of the fieldΦ with energy less thanE can be evaluated exactly
if the solution to the differential equation (3.6) can be written down explicitly. However, apart from
some simple(1+1)-dimensional example [28], it proves to be difficult to obtain an exact analytical
solution for the functionR(r). As a result, the WKB approximation is almost always resorted to
in the literature [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], and it is the leading
order WKB solution forR(r) that is utilized to evaluate the number of statesΓ(E), and the resulting
free energyF and the entropy of the quantum field. Our goal here is to extend the analysisto the
higher orders in the WKB approximation.

Let us begin by expressing the functionR(r) in the following WKB form:

R(r) =

(

c0
√

P(r)

)

exp

[

i
h̄

r
∫

dr̃P(r̃)

]

, (3.9)

wherec0 is a constant. On substituting this expression in Eq. (3.6), we find that the function P(r)
satisfies the differential equation

(

1

h̄2

)

[

P2(r)−V2(r)
]

=

(

3
4

)(

P′(r)
P(r)

)2

−

(

1
2

) (

P′′(r)
P(r)

)

−∆(r) . (3.10)

Let us now expand the functionP(r) in a power series in̄h2 as follows (see, for instance, Ref. [42]):

P(r) =
∞

∑
n=0

h̄2n P2n(r) . (3.11)

On substituting this series in the differential equation (3.9) and collecting the terms of a given order
in h̄2, we obtain following expressions forP2n(r) upton = 3:

P0(r) = ±V(r) = ±

(

1
G(r)

) [

E2− f (r)

(

m2 +

[

ℓ(ℓ+D−1) h̄2

r2

])]1/2

, (3.12)

P2(r) =

(

3
8P0(r)

) (

P′
0(r)

P0(r)

)2

−

(

4P′′
0 (r)

P0
2(r)

)

−

(

∆(r)
2P0(r)

)

, (3.13)

P4(r) = −

(

5P2
2(r)

2V(r)

)

−

(

4P2(r)∆(r)+P′′
2 (r)

4V2(r)

)

+

(

3P2
′(r)V ′(r)−P2(r)V ′′(r)

4V3(r)

)

, (3.14)

P6(r) = −

(

5P2(r)P4(r)
V(r)

)

−

(

8P2
3(r)+4P4(r)∆(r)+P′′

4 (r)
4V2(r)

)

−

(

∆(r)P2
2(r)

2V3(r)

)

−

(

2P′′
2 (r)P2(r)+2P4(r)V ′′(r)−3P′

2
2(r)−6P′

4(r)V ′(r)
8V3(r)

)

. (3.15)
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Note that the functionP0(r) is relatedalgebraicallyto the quantitiesV(r) and∆(r). It is evident
that the higher order functionsP2n(r) (with n > 0) can be expressed in terms of the functions at the
lower orders and their derivatives and, eventually, in terms of the function P0(r).

On using the series expansion (3.11) in the standard semiclassical quantization procedure [5],
we can express the total number of statesΓ(E) of the field with energy less thanE as follows:

Γ(E) =
∞

∑
n=0

Γ2n(E), (3.16)

where we have definedΓ2n(E) as

Γ2n(E)=

(

h̄2n−1

π

) L
∫

rH +hc

dr

ℓmax
∫

0

dℓ (2ℓ+D−1)

× W (ℓ) P2n(r) , (3.17)

with the quantityW (ℓ) being given by

W (ℓ) =

(

(ℓ+D−2)!
(D−1)! ℓ!

)

. (3.18)

It should be mentioned that, in the above expression forΓ2n(E), we have approximated the sum
over the angular quantum numbersℓ as an integral with a degeneracy factorW (ℓ). Such an ap-
proximation is often made in the literature, and the approximation is considered to be valid since
the separation between the states are expected to be small [26]. Moreover, the upper limitℓmax on
the integral overℓ is a function of energyE of the mode and the radial coordinater, and it has to be
chosen such thatP0(r) is real1. Furthermore, the lower limit on the integral over radial coordinate,
viz. hc, is the invariant thickness of the ‘brick-wall’ defined in (2.10), and the upper limit L is the
infra-red cutoff which we shall assume to be much larger than the horizon radius.

A few clarifying remarks are in order at this stage of our discussion. In thesemi-classical
quantization of, say, a one-dimensional non-relativistic quantum particle,the integral over the co-
ordinate will be carried out over the range whereinP0 is real [42]. In the case of bounded systems,
these limits will prove to be the turning points of the potential, whereas in the case of potential
barriers the limits will be between one of the turning points and infinity. In the context of black
holes, the effective potential turns out to be a barrier and the integral over the radial coordinate is to
carried out between the event horizon of the black hole and the first turning point that is located on
the barrier. But, one finds that, most of the contribution to the density of statesof the quantum field
arises due to the modes close to the event horizon of the black hole, while the upper limit located
on the barrier leads to a volume dependent contribution to the entropy. As a result, the contribution
to the number of states and the free energy and the entropy of the quantum field due to the upper
(infra-red) limit is usually ignored in the literature.

We should emphasize the point that, apart from replacing the sum overℓ by an integral, we
have not made any approximations until now. Hereafter, we shall make two approximations that

1Actually, the limits have to be chosen such thatP2n(r) are real for alln. However, since, forn > 0, the functions
P2n(r) can be expressed in terms ofP0(r) and the real functionsV(r) and∆(r), whenP0(r) is real,P2n(r) are real as
well. Therefore, the limits onℓ proves to be the same for alln.

8
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we had discussed is some detail in the last subsection. Firstly, we shall approximate the line-
element (2.1) near the event horizon of a spherically symmetric black hole to be that of Rindler
spacetime, viz. Eq. (2.7). It should be pointed out that such an approximation is always made in
the literature to arrive at closed form expressions for the free energyand the entropy of the quantum
field. Secondly, we shall truncate the series (3.11) at a particular order, and evaluate the density of
states and the associated free energy and the entropy of the quantum fieldaround the black hole.
It is important to note that, in the literature, it is only the leading term in the series (3.16) that has
alwaysbeen taken into account ignoring the higher orders when evaluating the brick-wall entropy.

3.4 The standard, leading order, result

Let us now reproduce the standard leading order result arriving at the Bekenstein-Hawking
area law. In the case of massless scalar field, the leading order WKB modesare given by

P0 = ±
1

g(r)

[

E2−g(r)
L2

r2

]1/2

. (3.19)

Substituting the above expression in Eq. (3.17), we get

Γ0(E) =
2E3

3h̄3

L
∫

rH+h

r2dr
g2(r)

. (3.20)

Substituting the above expression in (3.1) and integrating overE, the free energyF now reads

F0 = −
2π3

45h̄3

1
β 4

L
∫

rH+h

r2

g2(r)
dr , (3.21)

and the entropy is

S0 =
8π3

45h̄3

1
β 3

L
∫

rH+h

r2

g2(r)
dr . (3.22)

On expanding the metric near the horizon up to the first-order, we recoverthe following standard
result [5],

S(Std)
0 =

r2
H

90h2
c
. (3.23)

However, if we expand the metric to higher orders (2), we get

S0 =
r2

H

90h2
c
+

[

κrH

90
−

g′′(rH)r2
H

360

]

log

(

r2
H

h2
c

)

. (3.24)

Before we proceed with the calculations, there is yet another point concerning the higher order
WKB terms that we need to discuss. As we mentioned above, the limits on the integral over ℓ has
been chosen such thatP0(r) is real. This condition essentially identifies the turning points of the
potential. Notice that, in Eq. (3.3), all the higher order WKB terms—i.e.P2n(r) for n > 0—
containP0(r) in the denominator. Obviously, these functions will diverge at the turning points,
or equivalently, at the upper limitsℓ. Such a divergence is a well-known feature of the WKB
approximation at the higher orders [42], and we shall devise a systematic procedure to isolate these
divergences. We shall outline this procedure in the next section.
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4. Higher order contributions to the brick wall entropy

In this section, we shall evaluate the brick wall entropy for spherically symmetric, four di-
mensional black holes by considering the contributions up to then = 1 term in the series expan-
sion (3.16) for the number of states of the quantum field. For simplicity, we shall consider here the
case off (r) = g(r) in the line-element (2.1) and restrict ourselves to a massless scalar field (i.e.
m= 0). For other general cases, we refer the readers to Ref. [36].

Let us now evaluate the contribution due to then= 1 term in the series (3.16). Forf (r) = g(r),
we find that the expression (3.13) for second order ‘momentum’P2(r) can be written as

P2(r) =

(

P(0)
2 (r)

G (E , r)

)

+λ (r)

(

P(1)
2 (r)

G 3(E , r)

)

+ λ 2(r)

(

P(2)
2 (r)

G 5(E , r)

)

, (4.1)

where the functionsP(0)
2 (r), P(1)

2 (r) andP(2)
2 (r) are given by

P(0)
2 (r)= −

(

g′

2r

)

,

P(1)
2 (r)=

(

g′2(r)
8g(r)

)

−

(

3g′(r)
4r

)

+

(

g′′(r)
8

)

+

(

3 g(r)
4r2

)

,

P(2)
2 (r)=

(

5
32

)(

g′(r)
g(r)

)2

−

(

5g′(r)
8r

)

+

(

5 g(r)
8r2

)

, (4.2)

and, for convenience, we have defined

G (E , r) = [E −λ (r)]1/2 (4.3)

with E = E2 andλ (r) being given by

λ (r) =
[

ℓ(ℓ+1) h̄2]
(

g(r)
r2

)

. (4.4)

We now need to substitute the above expression forP2(r) in Eq. (3.17) and evaluate the number
of modesΓ2 with the upper limitℓmax on the integral overℓ being determined by the condition that
the termG (E , r) vanishes. Clearly, the integral overℓ will diverge in such a case. In order to
isolate the finite contribution due to these higher order WKB modes, it is necessary that we follow
a systematic procedure. The procedure we shall adopt is as follows. Weshall first rewrite all the
terms containing inverse powers ofG (E , r) in terms of derivatives ofE as follows:

(

1
G (E , r)

)

= 2

(

∂G (E , r)
∂E

)

, (4.5)

(

1
G 3(E , r)

)

= −4

(

∂ 2G (E , r)
∂E 2

)

, (4.6)

(

1
G 5(E , r)

)

=

(

8
3

) (

∂ 3G (E , r)
∂E 3

)

. (4.7)
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Then, before evaluating theℓ integral, we shall make use of the Leibnitz’s rule, viz.

∂
∂x

b(x)
∫

a(x)

dt f [x, t] = f [x,a(x)]

(

da(x)
dx

)

− f [x,b(x)]

(

db(x)
dx

)

b(x)
∫

a(x)

dt

[

∂ f (x, t)
∂x

]

. (4.8)

and interchange the order of differentiation and integration over the energy E and ℓ. When we
do so, we find that the divergences occur at the turning point. But, we note that the origin of the
divergent terms can be associated to the break-down of WKB approximation at the turning point.
As a result, this is not a physical divergences and this is occurring due tothe fact that the WKB
approximation is not valid close to the turning points. Hence, it is perfectly consistence to separate
out only the non divergent part and neglect the divergent contribution. Also, it can be shown that
by introducing a cutoff close to the turning point that the results are independent of the cutoff. (For
details, see Sec. (10.7) in Ref. [42].) We have checked the procedureup to the 6th-order WKB
modes and, indeed, it systematically separates the finite parts from the divergent ones (for details,
see Ref. [36].

Having obtained the non-divergent part of the mode-functions as a function ofE, our next step
is to evaluate the contribution of these modes to the density of statesΓ2(E). Using the general
expression (3.17), we have

Γ2(E) =
h̄
π

L
∫

rH+h

dr

ℓmax
∫

0

dℓ(2ℓ+1)P2(r) . (4.9)

Substituting forP2(r) from Eq. (4.1) and using the relations (4), we get

h̄Γ2(E) =
1
π

L
∫

rH +h

dr
r2P(2)

0 (r)

2

E
∫

0

dλ
∂G (E , r)

∂E
(4.10)

−
1
π

L
∫

rH +h

dr r2P(2)
1 (r)

E
∫

0

dλ λ
∂ 2G (E , r)

∂E 2

+
1
π

L
∫

rH +h

dr
3r2P(2)

2 (r)

2

E
∫

0

dλ λ 2 ∂ 3G (E , r)
∂E 3 .

Using the Leibniz rule (4.8) and following the steps discussed in [36], we get

Γ2(E) =
E
h̄π

L
∫

rH +h

dr

[

1
3
−

4rg′(r)
3g(r)

+ r2
{

g′(r)2

3g(r)2 −
g′′(r)
2g(r)

}]

. (4.11)

Following points are worth noting regarding the above expression: (i) In the case of leading order
WKB modes, the density of states goes asE3 [see Eq. (3.20)]. However, for the second-order
WKB modes the density of states scales asE. (ii) As in the leading-order, most of the contributions
to the entropy come close to the horizon.
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Substituting the above expression in Eq. (3.1), and integrating overE, the free-energy is

F2 = −
π

6h̄β 2

L
∫

rH +h

dr

[

1
3
−

4rg′(r)
3g(r)

+ r2
(

g′(r)2

3g(r)2 −
g′′(r)
2g(r)

)]

. (4.12)

Using the relation (3.2), the entropy is given by

S2 =
π

3h̄β

L
∫

rH+h

dr

[

1
3
−

4rg′(r)
3g(r)

+ r2
(

g′(r)2

3g(r)2 −
g′′(r)
2g(r)

)]

. (4.13)

As mentioned above, maximum contribution to the entropy is from the modes close to the horizon.
Hence, using the expansion (2) close to the horizon and the definition of surface gravity (2.5), we
get,

S2 =
1
9

r2
H

h2
c
−

[

g′′(rH)r2
H

72
+

κ
9

rH

]

log

(

r2
H

h2
c

)

(4.14)

wherehc is given by Eq. (2.12). We would like to stress the following points regarding the above
result:

1. The dependence of the entropy on area (from the second-order WKB modes) is similar to
that from the zeroth order WKB modes (3.24). Also the contribution to the entropy from the
second order WKB modes contribute more as compared to the leading order WKB modes.
This result has two immediate consequences:

(a) To associate the brick-wall entropy toSBH it is necessaryto calculate all the higher order
WKB mode contribution to the brick-wall entropy.

(b) The sub-leading corrections (at the zeroth and second order WKB) depend only on
the surface gravity and second derivative of the metric functions. Theyare of the form
F (AH) log(AH/h2

c).

2. If the surface gravity is inversely proportional to horizon radius andg′′(rH) is inversely pro-
portional to the square of the horizon radius, then second term in the RHS of (4.14) is a
constant. In this case, the corrections toSBH are purely logarithmic and does not contain any
power-law dependence. This uniquely corresponds to Schwarzschildspacetime.

In the case of Schwarzschild, we have

f (r) = g(r) = 1−
2M
r

(4.15)

whereM is the mass of the black hole. The horizon is atrH = 2M, κ = 1/(4M) andg′′(rH) =

−1/(2M2). Substituting the above expressions in Eq. (4.14), we get

S2 =
4
9

M2

h2
c
−

1
36

log

(

r2
H

h2
c

)

. (4.16)

This result shows that, at least, in the zeroth and second order, there are no power-law cor-
rections toSBH for the four-dimensional Schwarzschild black hole, while, for all other black
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holes — sinceκ andg′′(r) has a more non-trivial structure – there are power-law corrections
to the Bekenstein-Hawking entropy. This leads to the following conclusion:The power-law
corrections to the entropy occur for any non-vacuum solutions.In Sec. (5) we obtain the
entropy for some known black hole solutions.

5. Results for specific black holes

In this section, we shall explicitly write down the brick wall entropy (evaluatedupto the second
order in the WKB approximation) for a few well-known black hole solutions in four dimensions.

We find that, on combining the zeroth order (3.24) and the second order (4.14) terms, the total
brick wall entropy can be expressed as

S(4D)
BW

= SBH +F
(4D)(AH) log

(

AH

ℓ2
Pl

)

, (5.1)

where, in order for the leading term to match the Bekenstein-Hawking entropy, we have set the
brick wall invariant cutoffhc to be

h2
c =

(

11ℓ2
Pl

90π

)

. (5.2)

and the quantityF (4D)(AH) is given by

F
(4D)(AH) = −

(

1
60

)

g′′(rH) r2
H
−

(

1
10

)

κ rH . (5.3)

5.0.1 Schwarzschild black hole

For the Schwarzschild black hole, the metric coefficients are given by Eq.(4.15) and the event-
horizon of the black hole is located atrH = (2M). The surface gravityκ and the second derivative
of the metric at the horizon are given by

κ =

(

1
4M

)

, g′′ (rH) = −

(

1
2M2

)

. (5.4)

On substituting these expressions in Eq. (5.1), we obtain that

S(4D)
Sch = SBH −

(

1
60

)

log

(

AH

ℓ2
Pl

)

. (5.5)

5.0.2 Schwarzschild (anti-)de sitter spacetime

For the Schwarzschild (anti-)de sitter spacetime, the metric functiong(r) is given by

g(r) =

(

1−
2M
r̃

±
r̃2

l2

)

=

(

1−
2
r
±

r2

y

)

(5.6)

wherey = (l/M)2, r = (r̃/M), M is the mass of the black hole,l is related to the positive (neg-
ative) cosmological constant and−(+) corresponds to (anti-)de Sitter spacetime. Note that the
coordinatesy andr are dimensionless. While the Schwarzschild anti-de Sitter spacetime has only
one horizon associated with the singularity at the origin, the Schwarzschild de Sitter has two—one

13
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event and one cosmological— horizons. Here, we shall focus on the entropy associated with the
event-horizon.

Recall that the event horizon is identified by the conditiong(r) = 0. On substituting the re-
sultingrH corresponding to the aboveg(r) in Eq. (5.1), we find that the brick wall entropy upto the
second order can be expressed as

S(4D)
Sch−(a)dS = SBH −

(

π1/2

15A
1/2

H

+
AH

π y

)

log

(

M2AH

ℓ2
Pl

)

, (5.7)

whereAH defined in-terms of the coordinater is also dimensionless. In contrast to the purely
Schwarzschild case wherein the prefactor to the logarithmic correction wasa constant, here the
factor is a function of the horizon area.

5.0.3 Reissner-Nordström black hole

For the Reissner-Nordström black hole, we have

g(r) =

(

1−
2M
r̃

+
Q2

r̃2

)

=

(

(r − r−)(r − r+)

r2

)

, (5.8)

whereM andQ denotes the mass and the electric charge of the black hole. Also,r = r̃/M andr±
is the outer/inner horizon given by

r± =

(

1±

√

1−
Q2

M2

)

, (5.9)

where, again,r is a dimensionless variable. It is the outer horizonr+ that is the event horizon of
the black hole.

On substituting the above relations in Eq. (5.1), we obtain the brick wall entropy upto the
second order to be

S(4D)
RN = SBH −

(

π1/2

15A
1/2

H

)

log

(

M2AH

ℓ2
Pl

)

, (5.10)

where, again,AH defined in-terms ofr is dimensionless. As in the previous example, the prefactor
again turns out to be a function of the horizon areaAH .

It turns out that forn = 2, there is no contribution to brick wall entropy. We find that, at the
sixth order, i.e. forn = 3, all the conclusions we have reached for then = 1 case remain valid
except the total entropy is dependent on the third derivative of the metric function evaluated on
the horizon. We have also repeated these calculations in six dimensions (forfurther details, see
Ref. [36]).

6. Discussion

6.1 Summary

As we have pointed out repeatedly, the brick wall model has been a very popular approach that
has been utilized to recover the Bekenstein-Hawking entropySBH in a multitude of situations [20,
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21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. In all these efforts, it is only the leading
term in the WKB expansion (3.16) that has been taken into account in evaluating the density of
states and the associated free energy and entropy of quantum fields around black holes. Also, the
metric has almost always been assumed to be of the Rindler form near the event horizon.

In this work, we have extended the brick wall approach to the higher orders in the WKB ap-
proximation. Moreover, by expanding the metric functionsf (r) andg(r) beyond the leading order
near the event horizon, we have been able to evaluate the corrections to the Bekenstein-Hawking
entropy for spherically symmetric black holes in four and six dimensions. To begin with, we have
illustrated that, even the often considered zeroth order term in the WKB approximation leads to
corrections to the Bekenstein-Hawking entropy, provided the metric functions are expanded be-
yond the linear order near the horizon. Secondly, we have shown that all the higher order terms
in the WKB approximation have the same form as the zeroth order term. Lastly, we find that, the
higher order WKB terms actually contributemoreto the entropy than the lower order terms.

Specifically, we have shown [36] that, upto the second order in the WKB approximation, the
brick wall entropy of four dimensional black holes can be expressed as

S(4D)
BW

= SBH +F
(4D)(AH) log

(

AH

ℓ2
Pl

)

,

whereF (4D)(AH) ∝ A n
H

with n < 1. Whereas, in six dimensions, we find that the brick wall
entropy up to the second order has the form

S(6D)
BW

= SBH +G (AH)+F
(6D)(AH) log

(

AH

ℓ2
Pl

)

,

whereG (AH) ∝ A n
H

andF (6D)(AH) ∝ A m
H

with (n,m) < 1. Note that, while the brick wall entropy
in four dimensions depends only on the first and the second derivativesof the metric at the horizon,
in six dimensions, it depends on the third derivative as well. It is tempting to propose that, at least in
even dimensions, the brick wall entropy will depend on as many as derivatives of the metric as half
the number of spacetime dimensions! However, the black hole entropy is a coordinate invariant
concept. If the brick wall entropy depends on arbitrary derivatives of the metric functions at the
horizon, then it is not a priori evident that the resulting entropy will be coordinate invariant. We
believe that this is an issue that needs to be addressed satisfactorily.

6.2 Comparison with results from other approaches

Power law and logarithmic corrections to the Bekenstein-Hawking entropySBH that we have
obtained in the brick wall approach has been encountered earlier in a fewother approaches to black
hole entropy. For instance, the Noether charge approach predicts a generic power law correction to
the Bekenstein-Hawking entropy [8]. However, unlike our approach wherein the brick wall entropy
can be completely expressed in terms of the metric and its first few derivatives at the event horizon,
the Noether charge entropy can not be mapped to the horizon properties.It is also interesting to
note that, in the case of the four dimensional Reissner-Nordström black hole, for large horizon area,
i. e. whenM ≫ ℓPl, the brick wall entropyS(4D)

RN [cf. Eq. (5.10)] reduces to

S(4D)
RN ≃ SBH −

(

2π1/2

15

) (

1

A
1/2

H

−
ℓ2

Pl
A 3/2

H

M2

)

. (6.1)
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Similar power law corrections arise on evaluating the entanglement entropy ofsuch black holes [17].
This behavior seem to suggest a possible relationship between the brick wall model and the ap-
proach due to entanglement entropy. Another interesting feature is the absence of power law cor-
rections in case of four dimensional Schwarzschild black hole. It seems toindicate that power
law corrections to the Bekenstein-Hawking entropy are related with the presence of matter. The
logarithmic corrections that we have obtained as in Eq. (5.5) for the case ofthe four dimensional
Schwarzschild black hole has also been arrived at in other methods suchas the approach through
conformal field theory [12], statistical fluctuations around thermal equilibrium [16] and spin foam
models [11]. However, it should be pointed out that the prefactor to the logarithmic term that we
obtain turns out to be different from the one that arises in the other approaches.

Our analysis unambiguously indicates that corrections to the Bekenstein-Hawking entropy can
arise even in a semi-classical approach. Clearly, it will be worthwhile to extend our analysis to the
case of rotating black holes. We intend to carry out such an exercise in thenear future.

SSa is supported by the Council of Scientific & Industrial Research, India. SSh is supported
by the Marie Curie Incoming International Grant IIF-2006-039205.
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