
P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
8
)
0
6
3

Green’s Functions and Topological Configurations

Axel Maas ∗†

Department of Theoretical Physics, Institute of Physics,
Karl-Franzens University Graz, Universitätsplatz 5, A-8010 Graz,
Austria
and
Department of Complex Physical Systems, Institute of Physics,
Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 11 Bratislava,
Slovakia
E-mail: Axel.Maas@Uni-Graz.at

There are, among others, currently two important views on the non-perturbativestructure of Yang-
Mills theory. One is through topological configurations andone is through Green’s functions,
in particular their (asymptotic) infrared behavior. Basedon both views, various scenarios for
confinement, chiral symmetry breaking and other non-perturbative effects have been developed.
However, if both views are correct then they can only be different aspects of the same underlying
physics, and it must be possible to relate them.

After discussing the current status of the understanding ofthis connection, smeared and cooled

configurations in lattice gauge theory are used to determinethe properties of Green’s functions in

the low-momentum regime. It is found that the qualitative properties are essentially unchanged

compared to results on unsmeared configurations. This is also the case when the configurations

are smeared sufficiently strongly to reach the almost (anti-)self-dual domain.
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1. Connecting confinement scenarios

There are two views on the long-distance dynamics of Yang-Mills theory (and QCD), which
are currently employed prominently [1]. One view is based ontopological configurations of various
types [2]. Most investigated among them are vortices and monopoles, but there are also other
possibilities like merons, calorons, instantons, and others. These configurations provide direct
access to the generation of (quark) confinement, chiral symmetry breaking, the finite temperature
phase transition and other non-perturbative features of Yang-Mills theory and QCD. The other
view is by means of Green’s functions [3]. These provide access to (gluon) confinement, chiral
symmetry breaking, bound states and also other non-perturbative phenomena. They also permit
directly the connection to perturbation theory.

Both sets of scenarios are not yet complete, and the discussion on various aspects of them
continues [2, 4, 5]. Nonetheless, the most developed scenarios of both cases, the combined vortex
and monopole scenario [1, 2] and the scenarios of Gribov and Zwanziger and of Kugo and Ojima
(GZKO) [1, 3, 4], provide already a quite encompassing view of the long-distance shape of QCD.

Given the considerable successes of both views, it seems rather unlikely that either is funda-
mentally flawed. If therefore both are correct views of the same underlying physics, they must be
connected. Understanding this connection may also provideinsight into the yet missing pieces of
both views, and may also help to settle persisting problems of the individual views.

This relation is to a large extent unexplored. However, there are a number of observations,
mostly on the connection of the infrared properties of Landau and Coulomb gauge propagators to
vortices, monopoles, and instantons. In this context it is important that most topological configura-
tions are gauge-dependent quantities, and that their identification in various gauges is differing in
difficulty [6]. On the other hand, the GZKO scenario can be applied to the class of linear-λ gauges,
including the Landau and Coulomb gauge. This requirement ofgauge-fixing is due to the concept
of quarks and gluons as the basic building blocks of matter, as these are gauge-dependent.

However, at least vortices, instantons [7], and monopoles [8] can be transferred to Landau
gauge, although they are not in one-to-one correspondence to their counterparts in other gauges
[9]. Hence, in the following only Landau (and to some extent Coulomb) gauge will be discussed,
despite its complexities [4, 10, 11].

In this gauge it was possible to show that vortices appear inside and on the boundary of the so-
called first Gribov region [7], monopoles [8] and instantons[7] on the boundary of the first Gribov
region, and instantons also on the common boundary of the first Gribov region and the so-called
fundamental modular region [7]. According to the Gribov-Zwanziger scenario [12], these bound-
aries are responsible for the infrared properties of Green’s functions. Hence, these topological
configurations should be relevant field configurations for the Green’s functions.

An indirect indication for this is that the spectrum and eigenstates of the Faddeev-Popov opera-
tor, which determines the ghost propagator, are affected bytopological configurations [7, 8, 13]. In
particular, they give rise to additional zero-modes, whichin principle enhances the ghost propaga-
tor. This has also been demonstrated explicitly by determining the ghost [14] and gluon propagators
[15] in lattice gauge theory after removal of vortices. In this case, the low-momentum properties are
qualitatively altered. However, one of the most surprisingresults in this context is that instantons
also play a role [7, 16].
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Figure 1: The gluon (top) and ghost (bottom) propagators as a functionof the smearing step (left panel)
after mild smearing and measured after each smearing step. Some individual steps are shown in the right
panel. Results are from a 124 lattice atβ = 2.2 (a = 0.21 fm,V = (2.5 fm )4).

2. Propagators in topological backgrounds

To investigate this fact more closely, smeared and/or cooled lattice gauge theory configurations
can be used. In particular, when smearing sufficiently long,the configurations will be reduced to
essentially (anti-)self-dual ones, with an action being almost a multiple of the instanton action.

To investigate this in detail, SU(2) lattice configurationsin four dimensions [17] were smeared
using a standard APE-smearing [18]. This procedure is essentially as effective as other methods of
smearing for the identification of long-range (topological) structures [18]. During the smearing, the
smeared configurations were fixed to minimal Landau gauge, and the gluon and ghost propagators
were determined using standard methods [17]. By this it was possible to monitor the propaga-
tors during the smearing process, which has been done deep into the region of purely topological
configurations. Results for rather small lattices, and thusonly useful for investigations of the low-
momentum properties, are shown in figure 1 for mild smearing.In figure 2, results deep in the
self-dual regime are shown. A more extended study, for significantly larger volumes and different
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Figure 2: Same as in figure 1, but smearing is now extended to 440 APE steps, and measurements are
performed every 11 steps. This is deep in the self-dual regime..

discretizations, will be shown elsewhere [19].

The propagators lose their ultraviolet properties under smearing, as expected. The gluon prop-
agator is damped out completely, while the ghost propagatorbecomes essentially tree-level-like.
Their low-momentum properties are, however, not qualitatively affected. Nonetheless, the quan-
titative effects are considerable, and there might be even stronger effects observable once larger
volumes, and thus smaller momenta, can be reached. In fact, the further smearing proceeds, the
lower the momentum becomes from which on non-trivial properties of the propagators are ob-
served. The residual configurations, i. e., the configurations which the smeared configurations have
to be combined with on the group level to obtain the original ones, yield essentially trivial Green’s
functions, as expected [19].

It is also possible to determine the propagators in sectors with fixed topological charge. Al-
though this requires large amounts of statistics, preliminary findings indicate that there is no pro-
nounced dependence of the propagators on the topological charge. This will be discussed in detail
elsewhere [19]. In principle, such an analysis could also beperformed for the instanton number.
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3. Concluding remarks

The fact that the low-momentum properties of the propagators keep their qualitative properties
under smearing provides two insights. On the one hand, this implies that the long-range structure is
shaping the low-momentum properties of propagators. This has already been anticipated based on
the findings in center-trivial groups [20, 21]. On the other hand, reproducing the low-momentum
properties of the Green’s functions in functional or other continuum calculations indicates that at
least part of the dynamics due to topological configurationshas been captured.

Note that these findings are preliminary, and also do not reach far enough into the infrared to
make (yet) a statement on the asymptotic properties of the propagators in smeared (topological)
field configurations. Nonetheless, the fact that smearing does not qualitatively modify the low-
momentum properties of Green’s functions is in agreement with the expectations [7].
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