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We present preliminary results for a physical point simulation in 2+1 flavor lattice QCD with the
nonperturbatively O(a)-improved Wilson quark action and the Iwasaki gauge action at β = 1.9 on
a 323×64 lattice. The physical quark masses together with the lattice spacing are determined with
mπ , mK and mΩ as physical inputs. There are two key algorithmic ingredients to make possible
the direct simulation at the physical point: One is the mass-preconditioned domain-decomposed
HMC algorithm to reduce the computational cost. The other is the rewighting technique to adjust
the hopping parameters exactly on the physical point. The physics results include the hadron
spectrum, the pseudoscalar meson decay constants and the physical quark masses.
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1. Introduction

The physical point simulation is a long-standing problem in lattice QCD because of the rapid
growth of the computational cost with the up-down (ud) quark mass reduced toward its physical
value. At present simulation points are typically restricted to mπ∼>250 MeV. The most popular
strategy to obtain estimates at the physical point is chiral extrapolation with the use of Chiral Per-
turbation Theory (ChPT) as a guiding principle. This strategy, however, has several problems: (i)
It is numerically difficult to precisely trace the logarithmic quark mass dependence of the physical
quantities predicted by ChPT. (ii) It may not be always possible to resort to ChPT as a good guiding
principle for chiral extrapolation. (iii) The kinematics is changed as the quark mass increases. A
typical example is the ρ → ππ decay which is not allowed for the increased ud quark mass away
from the physical value. (iv) Our final destination is to incorporate the different up and down quark
masses, whose isospin breaking effects are so tiny that the reliable evaluation would be difficult by
the chiral extrapolation method.

In this report we present the preliminary results of the physical point simulation which has
been pursued as the PACS-CS project based on the PACS-CS (Parallel Array Computer System
for Computational Sciences) computer with a peak speed of 14.3 Tflops developed at University of
Tsukuba[1, 2, 3]. The simulation is carried out with the nonperturbatively O(a)-improved Wilson
quark action[4] and the Iwasaki gauge action[5] on a (3 fm)3 box at the lattice spacing of a =
0.09009(43) fm. There are two types of problems in the physical point simulation. Firstly, we
need to reduce the computational cost which rapidly increases as the ud quark mass decreases. This
difficulty is overcome thanks to the domain-decomposed HMC (DDHMC) algorithm[6] with the
mass-preconditioning[7, 8]. In Refs. [9, 10] this algorithm was successfully applied to investigate
the chiral behaviors of the hadron masses including both the mesons and the baryons, where the
pion mass covers from 156 MeV to 702 MeV. The second problem is the fine-tuning of the quark
masses on the physical point after we reach around the physical point. This task is accomplished
with the reweighting technique. We explain the details of the method and present the physics results
on the physical point without any interpolation or extrapolation.

2. Simulation parameters and algorithm

We employ the same parameters as in the previous work[9]: 323 ×64 lattice at β = 1.90 with
cSW = 1.715 [4]. We choose (κud,κs) = (0.13778500,0.1366000) which was supposed to be the
physical point based on the analysis of the previous results[9]. The physical ud and s quark masses
and the lattice spacing are determined by mπ , mK and mΩ. We calculate hadronic observables at
every 100 trajectories.

The base algorithm for the ud quark is the DDHMC algorithm[6] which makes a geometric
separation of the ud quark determinant into the UV and the IR parts with the domain-decomposition
of the full lattice into small blocks. Our choice for the block size is 84. In this work we imple-
ment twofold-mass-preconditioned DDHMC (MP2DDHMC) algorithm which is an extension of
the mass-preconditioned DDHMC (MPDDHMC) algorithm employed in Ref. [9] to simulate the
lightest ud quark mass at (κud,κs) = (0.13781000,0.1364000)[9]. In MP2DDHMC algorithm the
IR force FIR is split into F̃IR, F ′

IR and F ′′
IR. This decomposition is controlled by two additional
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hopping parameters κ ′
ud = ρ1κ and κ ′′

ud = ρ1ρ2κ . F̃IR is derived from the action preconditioned
with κ ′

ud. The ratio of two preconditioners with κ ′
ud and κ ′′

ud gives F ′
IR. F ′′

IR is for the heaviest
preconditioners with κ ′′

ud. We find the following relative magnitudes for the force terms:

∥Fg∥ : ∥FUV∥ : ∥F ′′
IR∥ : ∥F ′

IR∥ : ∥F̃IR∥ ≈ 16 : 4 : 1 : 1/7 : 1/60. (2.1)

with ρ1 = 0.9995 and ρ2 = 0.9900. We choose (N0,N1,N2,N3,N4) = (4,4,2,4,4) for the associated
step sizes in the multiple time scale integration scheme[11]: δτg = τ/(N0N1N2N3N4), δτUV =
τ/(N1N2N3N4), δτ ′′

IR = τ/(N2N3N4), δτ ′
IR = τ/(N3N4), δ τ̃IR = τ/N4 with τ = 0.25. The replay

trick[6, 12] is not incorporated. For the inversion of the Wilson-Dirac operator during the molecular
dynamics (MD) steps we implement the same algorithmic techniques as in the run at (κud,κs) =
(0.13781000,0.1364000) in the previous work[9].

The strange quark is simulated with the UV-filtered PHMC (UVPHMC) algorithm[13, 14, 15,
16] where the action is UV-filtered[17] after the even-odd site preconditioning without domain-
decomposition. The polynomial order is Npoly = 220 in our choice. We set the step size as δτs =
δτ ′′

IR according to our observation ||Fs|| ≈ ||F ′′
IR||. This algorithm is made exact by correcting the

polynomial approximation with the global Metropolis test[18] at the end of each trajectory.

3. REWEIGHTING METHOD

3.1 Formalism

Let us consider evaluating 〈O[U ](κ ′
ud,κ

′
s)〉(κ ′

ud,κ ′
s), which is the expectation value of a physical

observable O at the target hopping parameters (κ ′
ud,κ

′
s), using configuration samples generated at

the original hopping parameters (κud,κs). We assume that ρud ≡ κud/κ ′
ud ≅ 1 and ρs ≡ κs/κ ′

s ≅ 1.
The expectation value is rewritten as follows:

〈O[U ](κ ′
ud,κ

′
s)〉(κ ′

ud,κ ′
s)

=

∫
DUO[U ](κ ′

ud,κ
′
s)|det[Dκ ′

ud
[U ]]|2 det[Dκ ′

s
[U ]]e−Sg[U ]∫

DU |det[Dκ ′
ud
[U ]]|2 det[Dκ ′

s
[U ]]e−Sg[U ]

=

∫
DUO[U ](κ ′

ud,κ
′
s)

∣∣∣∣det
[

Dκ ′ud
[U ]

Dκud [U ]

]∣∣∣∣2

det
[

Dκ ′s
[U ]

Dκs[U ]

]
|det[Dκud [U ]]|2 det[Dκs [U ]]e−Sg[U ]

∫
DU |det[Dκ ′

ud
[U ]]|2 det[Dκ ′

s
[U ]]e−Sg[U ]

=
〈O[U ](κ ′

ud,κ
′
s)Rud[U ]Rs[U ]〉(κud,κs)

〈Rud[U ]Rs[U ]〉(κud,κs)
. (3.1)

The reweighting factors are defined as

Rud[U ] = |det [W [U ](ρud)]|2 , Rs[U ] = det [W [U ](ρs)] (3.2)

with

W [U ](ρq) ≡
Dκ ′

q
[U ]

Dκq [U ]
, Dκq [U ] = 1+κq(T +M) (q = ud,s) (3.3)

where T the local clover term including the nonperturbative cSW and M the hopping matrix. The
above expression (3.1) demands us to evaluate the reweighting factors Rud[U ] and Rs[U ] on each
configuration.
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3.2 Evaluation of reweighting factors

The reweighting factor Rud[U ] can be evaluated with a stochastic method. Introducing a com-
plex bosonic field η , whose spin and color indices are suppressed here, the determinant of W is
expressed as

Rud[U ] =
∫

Dη†Dηe−|W−1[U ](ρud)η |2∫
Dη†Dηe−|η |2

=
∫

Dη†Dηe−|W−1[U ](ρud)η |2+|η |2−|η |2∫
Dη†Dηe−|η |2

= 〈e−|W−1[U ](ρud)η |2+|η |2〉η , (3.4)

where 〈· · ·〉η means the expectation value with respect to η . Given a set of η(i) (i = 1, . . . ,Nη)
which are random noises generated according to the Gaussian distribution, the reweighting factor
is evaluated as

Rud[U ] = lim
Nη→∞

1
Nη

Nη

∑
i=1

e−|W−1[U ](ρud)η |2+|η |2 . (3.5)

The ratio W−1 is further simplified as follows:

W−1[U ](ρud) = ρud +(1−ρud)D−1
κ ′

ud
[U ] (3.6)

with Dκud [U ] = ρudDκ ′
ud
[U ]+ (1−ρud). We just need D−1

κ ′
ud

to calculate W−1.
For the strange quark we assume that detW [U ](ρs) is positive. The corresponding reweighting

factor is evaluated as

Rs[U ] =
∫

Dη†Dηe−|W−1/2[U ](ρs)η |2∫
Dη†Dηe−|η |2 = 〈e−|W−1/2[U ](ρs)η |2+|η |2〉η . (3.7)

With the assumption of ρs ≅ 1 we expect that W [U ](ρs) is so close to the identity matrix that the
eigenvalues are enclosed by a unit circle centered at (1,0) in the complex plane. In this case we
can evaluate W−1/2[U ](ρs)η by the Taylor expansion around identity.

We first parametrize W−1[U ](ρs) as

W−1[U ](ρs) = ρs +(1−ρs)(Dκ ′
s
[U ])−1 = 1− (1−ρs)

(
1− (Dκ ′

s
[U ])−1) = 1−X [U ](ρs), (3.8)

where |1−ρs|≪ 1 and ∥X [U ](ρs)∥< 1. We employ a recursive expression for the Taylor expansion
of W−1/2[U ](ρs)η[15]:

W−1/2η =
N

∑
j=0

c jX jη

= c0

[
η +

c1

c0
X

[
η +

c2

c1
X

[
η +

c3

c2
X

[
· · ·

[
η +

cN−1

cN−2
X

[
η +

cN

cN−1
Xη

]]]]]]
, (3.9)

where the arguments [U ](ρs) for the matrices are suppressed. The coefficients are given by c j/c j−1 =
1−3/(2 j) with c0 = 1. The advantage of the recursive procedure is to reduce the round-off errors
in the summation from the lower-order to the higher-order contributions in the Taylor expansion.
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The fluctuations in the stochastic evaluation of Rud[U ] and Rs[U ] can be reduced by the deter-
minant breakup technique[19]. After dividing the interval between κq and κ ′

q into the NB subinter-
vals with ∆q = (κ ′

q −κq)/NB, we obtain

det
[
W−1[U ](ρq)

]
= det

[
W−1[U ]

(
κq +∆q

κq

)]
· · · ·det

[
W−1[U ]

( κ ′
q

κq +(NB −1)∆q

)]
,(3.10)

where each determinant in the right hand side is evaluated with the different sets of η .

3.3 Parameters and results for reweighting factors

Our choice of the target hopping parameter is (κ ′
ud,κ

′
s)= (0.13779625,0.1366225). The subin-

tervals for the determinant breakup are ∆ud = (0.13779625−0.13778500)/3 for the ud quark and
∆s = (0.1366225−0.1366000) for the s quark. Each piece of the divided determinant is evaluated
stochastically employing 10 sets of η .
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Figure 1: Reweighting factors as a function of pla-
quette value.
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Figure 2: Reweighted plaquette values with Rud and
Rs.

In Fig. 1 we plot the reweighting factors as a function of the plaquette value on each configura-
tion, where we normalize the reweighting factors as 〈Rud,s〉 = 1 and 〈RudRs〉 = 1. The fluctuations
of Rud and Rs are within a factor of ten. Their product shows slightly amplified fluctuations. An im-
portant observation is a clear correlation between the reweighting factors and the plaquette value:
The former increases as the latter becomes larger. Thanks to this correlation the distribution of the
plaquette value at (κ ′

ud,κ
′
s) = (0.13779625,0.1366225) is moved in the positive direction. This is

the expected behavior, because the target hopping parameters are larger than the original ones. The
situation is quantitatively illustrated in Fig. 2, where the reweighted plaquette values are plotted
as a function of the number of noise. The results look converged once the number of noise goes
beyond four. The horizontal lines indicate the expected plaquette values obtained by extrapolating
the data at κud ≥ 0.13754000 in Ref. [9] and (κud,κs) = (0.13778500,0.1366000) in this work.
The reweighted results are consistent with the expectation values within error bars.

4. Physics results

In Fig. 3 we plot the kaon effective masses with the reweighting factors. The partially quenched
result (PQ) shows lighter effective masses than the original case, which are further reduced by the
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reweighting effects (PQ+RW). Similar observation is obtained in other hadron channels. Figure 4
compares the measured hadron masses normalized by mΩ with the experimental values. We em-
ploy mπ , mK , mΩ as physical inputs to determine mud, ms, a−1. The values of mπ , mK , mΩ, which
are sizably away from the experimental ones at the original simulation point (black symbols), are
properly tuned on the physical point within error bars after the reweighting procedure. For other
hadron masses the deviation from the experimental value is at most 5%. An increasingly larger de-
viation observed for lighter baryons may be due to finite-size effects. The ρ meson data is omitted
in Fig. 4, since we do not observe a plateau for the ρ meson effective mass. This may be due to the
resonance effects, which we leave for future analyses.

The quark masses and the lattice cutoff are determined as mMS
ud (2 GeV)=3.10(27) and mMS

s (2
GeV)=96.31(37) with a−1 = 2.190(10) GeV, where we employ a nonperturbative renormalization
factor obtained by the Schrödinger functional method[20]. The quark mass results are comparable
to the recent estimate in the literature. For the pseudoscalar meson decay constants we obtain
fπ = 124.0(7.2) MeV and fK = 165.5(3.2) MeV. employing the nonperturbative renormalization
factor[20]. These values should be compared with the experimental ones: fπ = 130.4±0.04±0.2
MeV and fK = 155.5± 0.2± 0.8± 0.2 MeV[21]. The deficit found in fπ may be caused by the
finite size effects, whose magnitude is expected to be about 4% on a (3 fm)3 box at the physical
point based on the NLO ChPT analyses[22, 9].

0 10 20 30

t

0.22

0.23

0.24

0.25

original
RW
PQ
PQ+RW

effective mass for K

Figure 3: Kaon effective masses with reweighting
(RW) and partially quenching (PQ) effects.
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Figure 4: Hadron masses in comparison with ex-
perimental values.
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