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1. Equilibrium simulations of the deconfinement transitionand lab plasma

Statistical properties of a quantum system with Hamiltortfin a continuum volumey/,
which is in equilibrium with a heatbath at physical temperafl, are determined by thgartition
function

Z(TV)=Tre /T =5 (gle”"/T|g), (1.1)
@
where the sum extends over all states and the Boltzmannastristset to one. Imposing periodic
boundary conditions (PBC) in Euclidean timend bounds of integration from 0 tg'L, one can
rewrite the partition function in thpath integral representation:

YT _
Z(T,V):/Dcpexp{—/0 dTLE((p,(p)}. 1.2)

Nothing in this formulation requires to carry out the infenttolume limit.

Past LGT simulations of the deconfining transition focusegharily on boundary conditions
(BC), which are favorable for reaching the infinite volumeangtum continuum limit (thermody-
namic limit of the textbooks) quickly with temperature aralume of the system given by

1 1
aN;, L’

Ns/Nr — 00’ N‘[ — 00’ L'[ flnlte, (13)

wherea is the lattice spacing. These @8Cin the spatial volum& = (aNs)3. For the decon-
finement phase created in a heavy ion collision the infinitarge limit does not apply. Instead we
have to take thénite volume continuum limit

and PBC are incorrecbecause the outside is in the confined phase at low temper&ig., at the
BNL RHIC one expects to create ansemble of differently shaped and sized deconfined valumes
The largest volumes are those encountered in centralioollisA rough estimate of their size is

1% (0.6 x Au radius? x ¢ x (expansion timg (1.5)
= (55 ferm?) x (a few fermi

wherec is the speed of light. Here we want to estimate finite voluneeabions for pure SU(3)
and focus on the continuum limit for

Ls=aNs= (5—10) fermi. (1.6)
In the following we set the physical scale by
T¢=174 MeV, 2.7)

which is in the range of QCD estimates with two light flavor dksa implying for the temporal
extension
L; =aN; = 1.13 fermi. (1.8)
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2. Simulations with cold boundary conditions

We consider difficulties and effects encountered when onéiletes a hot volume with cold
boundaries by means of Monte Carlo (MC) simulations for Whtee updating process provides
the equilibrium. We use the single plaqueftéison actionon a 4D hypercubic lattice. Numerical
evidence shows that SU(3) lattice gauge theory exhibitsakiydirst-order deconfining phase tran-
sition at some couplin@®(N;) = 6/g2(N;). The scaling behavioof the deconfining temperature
is

T = cT\L (2.1)

where the lambda lattice scale
—by /(2b2
aNL = f,\ (Bg) =A (gz) (bo gz) 1/(205) e 1/(2b0g2)’ (2.2)

has beeretermined in the literatuteThe coefficientdy andb; are perturbatively obtained from
the renormalization group equation,

11 3 34/ 3 \?

Higher perturbative and non-perturbative correctiongparametrized in [1] by
A@?) = 1+ae @9 4 agg?+asg* with (2.4)

a; = 71553750 a, = 19.48099 ag = —0.03772473 a4, = 0.5089052 In the region accessible by
MC simulations this parametrization is perfectly consistgith an independent earlier one in [2],
but has the advantage to reducedér— O to the perturbative limit.

Imagine an almost infinite space volurie= L3 and a smaller sub-volumé; = L3;. The
complement td/; in V will be calledV; (outside world). The number of temporal lattice linkg
is the same for both volumes. We like to find parameters sositaing holds in both volumes,
while V; is at temperaturd; = T, andV;p at room temperatur@. We denote the coupling b&og
for plaquettes iy and by[Blg for plaquettes 4. For that purpose any plaquette touching a site
in Vi is considered to be iW;. We would like to have[31g in the scaling region, sa@lg =6. The

relation

10 T3 _ DB _ 1r(Bs) (2.5)

TTooa HBIAL fBD)
drivesﬁg out of the scaling region and (after moving over to strongptiog relations) practically
to Bg =0, which we calldisorder wallBC. In the disorder wall approximation of the cold exterior
we can simply omit contributions from plaquettes that imeolinks through the boundary. MC
simulations, which we quickly summarize here, were perfmirin Ref.[3]. Due to the use of the
strong coupling limit for the outside volumsgaling of the results is not obvious.
We use the maxima of the Polyakov loop susceptibility

1
Xmax = N_g’ [(‘P’2> - <’P‘>2] max> P = ;PX’ (2.6)
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Figure 1: Estimates of finite volume correctionsTa
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Figure 2: Estimates of finite volume corrections to the width of they&bv loop susceptibility.

to define pseudo-transition couplinggt(Ns; N;). Our BC introduce an orde¥? disturbance, so
that
N N\ 2 N 3
Bot(Ns;Np) = BO(Ny) +af T+ <—> +2 <—> + . 2.7)
S NS NS

holds. Fits of pseudo-transition coupling constant valaad to estimates of finite volume correc-
tions toT; as given in Fig. 1. It is seen from the figure that they are @bast with scaling as the
curves forN; = 4 andN; = 6 fall on top of one another. There ame free parameters involveat
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Figure 3: Double layered torus in two dimensions.

this point, because the non-perturbative parametrizatiohe SU(3) lambda scale was determined
in independent literature. Estimates of finite volume attioms to the full width of Polyakov loop
susceptibilities at 2/3 maximum are shown in Fig. 2. Agdie, ¢urves are found to be consistent
with scaling.

Results so far show that for volumes of BNL RHIC size the miaglds of T, and width
corrections are comparable to those obtained by includisgks into pure SU(3) calculation$(
in the opposite, width in the same direction). Similar cotiens are expected for the equation of
state. Previous QCD calculations at finite temperaturedandities should therefore be extended
to cold BC.

However, there remain problematic questions about disor@dl BC. Although the results
show scaling, it is unsatisfactory that the disorder walld@hot reflect a physical outside volume.
Two properties are desirable:

1. Inside and outside volumes are kept in the scaling region.

2. The spatial lattice spacirag is the same on both sides of the boundary.

In such simulations one may again kégRige at Tc and study its dependence @fysige AS outlined
in the next section, this can be done in the newly introduasareetry [4] of a double layered torus
(DLT), but has then to be done for a rather smiglksigeinterval

Toutsidee [TC_ AT,TC] 5 AT > 0 (28)

3. Simulations on a double layered torus

For the DLT the boundaries are glued together as indicatethéarrows in Fig. 3. Note
that interchanging labels 3 and 4 on one of the lattices l&adssituation in which some sites are
connected by two links and the different geometry of a sphere
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Figure 4: Polyakov loop susceptibilities on &8DLT.

With DLT BC in the spacelike directions and PBC in the fourtfedtion one can simulate at
two temperatures and each volume becomes the outside widHd other. The two temperatures
are adjusted by tuning the coupling constants in the twomeki MPI Fortran code for SU(3)
simulations on a DLT is given in Ref.[4, 5]. Preliminary numcal results with both temperatures
in the SU(3) scaling region are compiled in the following.

Figure 4 shows the reweighting By of Polyakov loop susceptibilities on &8lattice, each
simulation point corresponding to a different pair of canglconstant value§3?, 3?), adjusted so
thatﬁf is close to the pseudocritical point.

Using scaling relations the inverse physical pseudoafitemperatures, /" from all our
lattice sizes, withT;"® corresponding to the maxima of the Polyakov loop suscéitieis, are plot-
ted in Fig. 5 versus the outside temperatlgg. Even for the small range of outside temperatures
in the SU(3) scaling region, one sees already sizable dmnsoofT,"®*. The same data are plotted
in Fig. 6, extending th&,,; down to zero, so that the estimates from Ref.[3] can be imdu@n
the &4 lattice not transition was found with disorder wall BC adigated here by AT/"® = 0).

In summary, our preliminary DLT results in the scaling regare consistent with the disorder
wall finite volume T, estimates. These simulations keep inside and outside tatapes in the
SU(3) scaling region. To achieve also a continuous spacéittice spacing across the boundary,
one has to use asymmetric couplings in space and time dinsctConsiderable work remain to be
done to obtain an overall convincing description.
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Figure 5: Inverse pseudo transition temperatures versus outsidestatures.
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Figure 6: Results of the previous figure together with disorder wdlhestes.
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