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Deconfined regions in relativistic heavy ion collisions arelimited to small volumes surrounded

by a confined exterior. Here the geometry of a double layered torus is discussed, which allows

for different temperatures in its two layers. This geometryenables one to approach the QCD

continuum limit for small deconfined volumes with confined exteriors in a more realistic fashion

than by using periodic boundary conditions. Preliminary data from a study for pure SU(3) lattice

gauge theory support a substantial increase in a pseudo transition temperature.
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1. Equilibrium simulations of the deconfinement transitionand lab plasma

Statistical properties of a quantum system with Hamiltonian H in a continuum volumeV,
which is in equilibrium with a heatbath at physical temperatureT, are determined by thepartition
function

Z(T,V) = Tre−H/T = ∑
φ
〈φ |e−H/T |φ〉, (1.1)

where the sum extends over all states and the Boltzmann constant is set to one. Imposing periodic
boundary conditions (PBC) in Euclidean timeτ and bounds of integration from 0 to 1/T, one can
rewrite the partition function in thepath integral representation:

Z(T,V) =
∫

Dφ exp

{

−
∫ 1/T

0
dτLE(φ , φ̇ )

}

. (1.2)

Nothing in this formulation requires to carry out the infinite volume limit.
Past LGT simulations of the deconfining transition focused primarily on boundary conditions

(BC), which are favorable for reaching the infinite volume quantum continuum limit (thermody-
namic limit of the textbooks) quickly with temperature and volume of the system given by

T =
1

aNτ
=

1
Lτ

, Ns/Nτ → ∞ , Nτ → ∞ , Lτ finite, (1.3)

wherea is the lattice spacing. These arePBC in the spatial volumeV = (aNs)
3. For the decon-

finement phase created in a heavy ion collision the infinite volume limit does not apply. Instead we
have to take thefinite volume continuum limit

Ns/Nτ = finite, Nτ → ∞ , Lτ finite, (1.4)

and PBC are incorrectbecause the outside is in the confined phase at low temperature. E.g., at the
BNL RHIC one expects to create anensemble of differently shaped and sized deconfined volumes.
The largest volumes are those encountered in central collisions. A rough estimate of their size is

π × (0.6×Au radius)2×c× (expansion time) (1.5)

= (55 fermi2)× (a few fermi)

wherec is the speed of light. Here we want to estimate finite volume corrections for pure SU(3)
and focus on the continuum limit for

Ls = aNs = (5−10) fermi . (1.6)

In the following we set the physical scale by

Tc = 174 MeV, (1.7)

which is in the range of QCD estimates with two light flavor quarks, implying for the temporal
extension

Lτ = aNτ = 1.13 fermi . (1.8)
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2. Simulations with cold boundary conditions

We consider difficulties and effects encountered when one equilibrates a hot volume with cold
boundaries by means of Monte Carlo (MC) simulations for which the updating process provides
the equilibrium. We use the single plaquetteWilson actionon a 4D hypercubic lattice. Numerical
evidence shows that SU(3) lattice gauge theory exhibits a weakly first-order deconfining phase tran-
sition at some couplingβ g

t (Nτ) = 6/g2
t (Nτ). The scaling behaviorof the deconfining temperature

is

Tc = cT ΛL (2.1)

where the lambda lattice scale

aΛL = fλ (β g) = λ (g2)
(

b0 g2)−b1/(2b2
0) e−1/(2b0 g2) , (2.2)

has beendetermined in the literature. The coefficientsb0 andb1 are perturbatively obtained from
the renormalization group equation,

b0 =
11
3

3
16π2 and b1 =

34
3

(

3
16π2

)2

. (2.3)

Higher perturbative and non-perturbative corrections areparametrized in [1] by

λ (g2) = 1+a1e−a2/g2
+a3g2 +a4g4 with (2.4)

a1 = 71553750, a2 = 19.48099, a3 = −0.03772473, a4 = 0.5089052. In the region accessible by
MC simulations this parametrization is perfectly consistent with an independent earlier one in [2],
but has the advantage to reduce forg2 → 0 to the perturbative limit.

Imagine an almost infinite space volumeV = L3
s and a smaller sub-volumeV1 = L3

s,1. The
complement toV1 in V will be calledV0 (outside world). The number of temporal lattice linksNτ

is the same for both volumes. We like to find parameters so thatscaling holds in both volumes,
while V1 is at temperatureT1 = Tc andV0 at room temperatureT0. We denote the coupling byβ g

0

for plaquettes inV0 and byβ g
1 for plaquettes inV1. For that purpose any plaquette touching a site

in V1 is considered to be inV1. We would like to haveβ g
1 in the scaling region, sayβ g

1 = 6. The
relation

1010 ≈
T1

T0
=

a0

a1
=

fλ (β g
0 )ΛL

fλ (β g
1 )ΛL

=
fλ (β g

0 )

fλ (β g
1 )

(2.5)

drivesβ g
0 out of the scaling region and (after moving over to strong coupling relations) practically

to β g
0 = 0, which we calldisorder wallBC. In the disorder wall approximation of the cold exterior

we can simply omit contributions from plaquettes that involve links through the boundary. MC
simulations, which we quickly summarize here, were performed in Ref.[3]. Due to the use of the
strong coupling limit for the outside volume,scaling of the results is not obvious.

We use the maxima of the Polyakov loop susceptibility

χmax =
1

N3
s

[

〈|P|2〉− 〈|P|〉2]

max, P = ∑
~x

P~x (2.6)
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Figure 1: Estimates of finite volume corrections toTc.
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Figure 2: Estimates of finite volume corrections to the width of the Polyakov loop susceptibility.

to define pseudo-transition couplingsβ g
pt(Ns;Nτ). Our BC introduce an orderN2

s disturbance, so
that

β g
pt(Ns;Nτ) = β g

t (Nτ)+ad
1

Nτ

Ns
+ad

2

(

Nτ

Ns

)2

+ad
3

(

Nτ

Ns

)3

+ . . . (2.7)

holds. Fits of pseudo-transition coupling constant valueslead to estimates of finite volume correc-
tions toTc as given in Fig. 1. It is seen from the figure that they are consistent with scaling as the
curves forNτ = 4 andNτ = 6 fall on top of one another. There areno free parameters involvedat
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Figure 3: Double layered torus in two dimensions.

this point, because the non-perturbative parametrizationof the SU(3) lambda scale was determined
in independent literature. Estimates of finite volume corrections to the full width of Polyakov loop
susceptibilities at 2/3 maximum are shown in Fig. 2. Again, the curves are found to be consistent
with scaling.

Results so far show that for volumes of BNL RHIC size the magnitudes ofTc and width
corrections are comparable to those obtained by including quarks into pure SU(3) calculations (Tc

in the opposite, width in the same direction). Similar corrections are expected for the equation of
state. Previous QCD calculations at finite temperatures anddensities should therefore be extended
to cold BC.

However, there remain problematic questions about disorder wall BC. Although the results
show scaling, it is unsatisfactory that the disorder wall BCdo not reflect a physical outside volume.
Two properties are desirable:

1. Inside and outside volumes are kept in the scaling region.

2. The spatial lattice spacingas is the same on both sides of the boundary.

In such simulations one may again keepTinsideatTc and study its dependence onToutside. As outlined
in the next section, this can be done in the newly introduced geometry [4] of a double layered torus
(DLT), but has then to be done for a rather smallToutsideinterval

Toutside∈ [Tc−△T,Tc] , △T > 0. (2.8)

3. Simulations on a double layered torus

For the DLT the boundaries are glued together as indicated bythe arrows in Fig. 3. Note
that interchanging labels 3 and 4 on one of the lattices leadsto a situation in which some sites are
connected by two links and the different geometry of a sphere.
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Figure 4: Polyakov loop susceptibilities on a 834 DLT.

With DLT BC in the spacelike directions and PBC in the fourth direction one can simulate at
two temperatures and each volume becomes the outside world of the other. The two temperatures
are adjusted by tuning the coupling constants in the two volumes. MPI Fortran code for SU(3)
simulations on a DLT is given in Ref.[4, 5]. Preliminary numerical results with both temperatures
in the SU(3) scaling region are compiled in the following.

Figure 4 shows the reweighting inβ1 of Polyakov loop susceptibilities on a 834 lattice, each
simulation point corresponding to a different pair of coupling constant values(β 0

0 ,β 0
1 ), adjusted so

thatβ 0
1 is close to the pseudocritical point.

Using scaling relations the inverse physical pseudocritical temperatures, 1/Tmax
1 from all our

lattice sizes, withTmax
1 corresponding to the maxima of the Polyakov loop susceptibilities, are plot-

ted in Fig. 5 versus the outside temperatureTout. Even for the small range of outside temperatures
in the SU(3) scaling region, one sees already sizable corrections ofTmax

1 . The same data are plotted
in Fig. 6, extending theTout down to zero, so that the estimates from Ref.[3] can be included (on
the 834 lattice not transition was found with disorder wall BC as indicated here by 1/Tmax

1 = 0).

In summary, our preliminary DLT results in the scaling region are consistent with the disorder
wall finite volumeTc estimates. These simulations keep inside and outside temperatures in the
SU(3) scaling region. To achieve also a continuous spacelike lattice spacing across the boundary,
one has to use asymmetric couplings in space and time directions. Considerable work remain to be
done to obtain an overall convincing description.
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Figure 5: Inverse pseudo transition temperatures versus outside temperatures.
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Figure 6: Results of the previous figure together with disorder wall estimates.
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