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1. Introduction

Study of theρ meson decay is a significant step for understanding the dynamical aspects of
hadron interactions with lattice QCD. In the early stage of studies toward this direction the transi-
tion amplitude〈ρ |ππ〉 extracted from the time behavior of the correlation function 〈π(t)π(t)ρ(0)〉
has been used to estimate the decay width, assuming that the hadron interaction is small [1, 2, 3, 4].

A more realistic approach is an estimation of the decay widthfrom theP-wave scattering phase
shift for the isospinI = 1 two-pion system. The finite size formula presented by Lüscher in the
center of mass frame [5] or its extension to non-zero total momentum frame by Rummukainen and
Gottlieb [7] is employed for an estimation of the phase shift. The first study of this approach was
carried by CP-PACS Collaboration usingNf = 2 full QCD configurations (mπ = 330 MeV, a =

0.21 fm,La = 2.5 fm) [7]. After this work, two studies were reported withNf = 2 configurations
on finer lattices, one by QCD-SF Collaboration (mπ = 240−810 MeV ,a= 0.072−0.084 fm) [8]
and the other by ETMC Collaboration (mπ = 391 MeV,a = 0.086 fm,La = 2.1 fm) [9].

In the present work we extend these studies by employingNf = 2+1 full QCD configurations
and working on a larger lattice volume. Our calculations arecarried out on a subset of configura-
tions previously generated by PACS-CS Collaboration with the Iwasaki gauge action and nonper-
turbativelyO(a)-improved Wilson fermion action atβ = 1.9. on a 323×64 lattice [10]. The subset
coresponds to the hopping parametersκud = 0.13754 for the up and down quark andκs = 0.13640
for the strange quark. The parameters determined from the spectrum analysis for this subset are
mπ = 410 MeV (mπ/mρ = 0.46),a = 0.091 fm andLa = 2.91 fm. All calculations are carried out
on the PACS-CS computer at Center for Computational Sciences, University of Tsukuba. We note
that ETMC [11] and BMW [12] Collaborations reported their preliminary results at Lattice 2010.

2. Method

We consider the center of mass frame (CM) and the non-zero total momentum frame (the
moving frame (MF)) with the total momentump = (2π/L)e3. In these frames the ground (n = 1)
and the first exited states (n = 2) with spinJ = 1 and isospinI = 1, ignoring hadron interactions,
are given by

frame pL/(2π) g Γ n = 1 n = 2
CM (0,0,0) Oh T−

1 ρ j(0) π(e j )π(−e j) [1.3]

MF (0,0,1) D4h E− ρ1,2(0,0,1) π(1,0,1)π(−1,0,0) , π(0,1,1)π(0,−1,0) [1.4]

MF (0,0,1) D4h A−
2 ρ3(0,0,1) π(0,0,1)π(0,0,0) [1.02]

,

(2.1)
wherep is the total momentum, g is the rotational group on the lattice andΓ is the irreducible
representation of the group. The vectors in parentheses after π andρ refer to the momenta of the
pion and theρ meson in units of 2π/L. The numbers in square brackets of the two-pion states are
values of

√
s/mρ on our full QCD configurations. In the present work we calculate the scattering

phase shifts of the states marked by under-bar in (2.1). The finite size formulas for these states are
given in Refs. [5, 6].

For theT−
1 and theE− representations the energy of the ground state is much smaller than

that of the exited state as one can see from the value of
√

s/mρ in (2.1). Thus the energy of these
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states can be extracted by a single exponential fit for the time correlation functions of theρ meson.
We use the localρ meson operator for the sink and a smearing operator for the source as discussed
later.

For theA−
2 representation the energy of the first exited state is close to that of the ground state.

Thus we use the variational method [13] with a matrix of the time correlation function,

G(t) =

(

〈0| Ω†(t) Ω(ts) |0〉 〈0| Ω†(t) ρ3(ts) |0〉
〈0| ρ†

3(t) Ω(ts) |0〉 〈0| ρ†
3(t) ρ3(ts) |0〉

)

. (2.2)

We extract the energy by a single exponential fit for the two eigenvaluesλ1(t) andλ2(t) of the ma-
trix M(t) = G(t)G−1(tR) with some reference timetR, assuming that the lower two states dominate
the correlation function. In (2.2),ρ3(t) is the local operator for the neutralρ meson at timet with
momentump and the polarization vector parallel to the momentum.Ω(t) is an operator for the two
pions with the momentum0 andp = (2π/L)e3,

Ω(t) =
1√
2

(

π+(0, t1)π−(p, t)−π−(0, t1)π+(p, t)
)

×emπ ·(t1−t) , (2.3)

whereπ(p, t) is the local pion operator with momentump at timet. The times slice of the pion
with zero momentum is fixed att1 >> t, and an exponential time factor is introduced, so that
the operator has the same time behavior as that of the usual Heisenberg operator fort1 >> t, ie.,
〈0|Ω†(t) = 〈0|Ω†(0)exp(−H · t).

Two operatorsρ3(ts) andΩ(ts) are used for the source in (2.2), which are given by

Ω(ts) =
1√
2

(

π+(0, ts)π−(p, ts)−π−(0, ts)π+(p, ts)
)

, (2.4)

ρ3(ts) = ∑
z∈Γ

1√
2

(

U(z, ts)γ3U(z, ts)−D(z, ts)γ3D(z, ts)
)

eip·z . (2.5)

The operatorU(z, ts) (D(z, ts)) is a smearing operator for the up (down) quark given byU(z, ts) =

∑x
u(z+ x, ts) ·F(|x− z|), whereu(x, ts) is the quark operator at positionx and timets. We use the

same smearing functionF(x) as in Ref. [10]. This operator is used after fixing gauge configurations
to the Coulomb gauge. In (2.5) a summation overz is taken to reduce contaminations from the
states with different total momenta andΓ = { z | z = (L/2) · (n1,n2,n3) , n j = 0 or 1} is chosen in
the present work. The smearing operator (2.5) is also used toextract the energy of the ground state
for theT−

1 and theE− representations setting the momentum top = 0 and(2π/L)e3.
The quark contractions ofG(t) in (2.2) are given by

−

+− +− −

−p, t

p, ts0, ts

0, t1

Gππ→ππ(t) =

Gππ→ρ(t) = Gρ→ππ(t) =

−p, t

p, ts0, ts

0, t1

−p, t

p, ts

− +

(2.6)

3



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
1
0
8

Calculation ofρ meson decay width from the PACS-CS configurations N. Ishizuka

where the time runs upward in the diagrams. The vertices refer to the pion or theρ meson operator
with the momentum at the time specified in the diagrams. Theρ meson operators atts are the
smearing operators, and the other is the local operator.

In order to calculate the quark contractions in (2.6), we usethe source method and the stochas-
tic noise method as in the previous work by CP-PACS Collaboration [7]. We introduce aU(1)

noiseξ j(x) which satisfies

NR

∑
j=1

ξ †
j (x)ξ j(y) = δ 3(x−y) for NR → ∞ , (2.7)

whereNR is the number of noises taken to be 10 in the present work. We calculate the following
four types of quark propagators :

QAB(x, t|q, ts,ξ j) = ∑
y

(D−1)AB(x, t;y, ts) ·
[

eiq·yξ j(y)
]

, (2.8)

WAB(x, t|k, ta|q, ts,ξ j) = ∑
y

∑
C

(D−1)AC(x, t;z, ta) ·
[

eik·zγ5 Q(z, ta|q, ts,ξ j)
]

CB
, (2.9)

QAB(x, t|z, ts) = ∑
y

(D−1)AB(x, t;y, ts) ·
[

F(|y− z|)
]

, (2.10)

WAB(x, t|k, ta|z, ts) = ∑
y

∑
C

(D−1)AC(x, t;y, ta) ·
[

eik·yγ5 Q(y, ta|z, ts)
]

CB
, (2.11)

whereA and B refer to color and spin indices, andF(x) is the smearing function. The square
bracket is used as the source for the inversion of the Dirac operatorD.

The first term of theππ → ππ component of (2.6) can be calculated by introducing an another
U(1) noiseη j(x) having the same property asξ j(x) in (2.7),

∑
j
∑
x,y

e−ip·y ·
〈

Q†(x, t1|0, ts,ξ j) Q(x, t1|0, ts,ξ j)
〉

·emπ ·(t1−t) ·
〈

Q†(y, t|p, ts,η j) Q(y, t|p, ts,η j)
〉

,

(2.12)
where the bracket means trace for the color and the spin indices. The exponential time factor
comes from the definition of the operator of the two pions in (2.3). The second term is given by
exchanging the momentum and the time slice of the sink in (2.12). The 3rd to 6th terms can be
calculated by

G[3rd]
ππ→ππ (t) = ∑

j
∑
x

e−ip·x ·
〈

W†(x, t|0, t1|0, ts,ξ j) W(x, t|0, ts|p, ts,ξ j)
〉

·emπ ·(t1−t) ,

G[4th]
ππ→ππ (t) = ∑

j
∑
x

e−ip·x ·
〈

W†(x, t|0, t1|0, ts,ξ j) W(x, t|p, ts|0, ts,ξ j)
〉

·emπ ·(t1−t) ,

G[5th]
ππ→ππ (t) = ∑

j
∑
x

e−ip·x ·
〈

W(x, t|0, t1|0, ts,ξ j) W†(x, t|0, ts|−p, ts,ξ j)
〉

·emπ ·(t1−t) ,

G[6th]
ππ→ππ (t) = ∑

j
∑
x

e−ip·x ·
〈

W(x, t|0, t1|0, ts,ξ j) W†(x, t|−p, ts|0, ts,ξ j)
〉

·emπ ·(t1−t) .(2.13)

The two terms ofππ → ρ of (2.6) can be similarly obtained by

G[1st]
ππ→ρ(t) = ∑

j
∑
x

e−ip·x ·
〈

W†(x, t|−p, ts|0, ts,ξ j) (γ5γ3) Q(x, t|0, ts,ξ j)
〉

,
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G[2nd]
ππ→ρ(t) = ∑

j
∑
x

e−ip·x ·
〈

Q†(x, t|0, ts,ξ j) (γ5γ3) W(x, t|p, ts|0, ts,ξ j)
〉

. (2.14)

We can calculate the two terms ofρ → ππ of (2.6) by

G[1st]
ρ→ππ(t) = ∑

z∈Γ
eip·z ∑

x
e−ip·x ·

〈

Q
†
(x, t|z, ts) W(x, t|0, t1|z, ts) (γ3γ5)

〉

·emπ ·(t1−t) ,

G[2nd]
ρ→ππ(t) = ∑

z∈Γ
eip·z ∑

x
e−ip·x ·

〈

W
†
(x, t|0, t1|z, ts) Q(x, t|z, ts) (γ3γ5)

〉

·emπ ·(t1−t) . (2.15)

Theρ → ρ component is given by theQ-type propagators as the usual two point function.
The quark propagators are calculated with the Dirichlet boundary condition imposed in the

time direction and the source operators are set atts = 12 to avoid effects from the temporal bound-
ary. We put the zero momentum pion introduced in (2.3) att1 = 42. We calculate theQ-type propa-
gators (2.8) for four combinations ofq andU(1) noise :(q,noise)= {(0,ξ ),(0,η),(p,ξ ),(−p,ξ )}.
The W-type propagators (2.9) are calculated for five combinations of k, ta and q : (k, ta|q) =

{(p, tS|0), (−p, tS|0), (0, tS|p),(0, tS|−p),(0, t1|0)}, using the sameU(1) noiseξ in common. We
calculate theQ-type propagator (2.10) and theW-type propagator (2.11) with(k, ta) = (0, t1) for
the setz ∈ Γ. Thus we calculate(4+5)×10+(1+1)×8= 106 quark propagators for each config-
uration. The total number of the configurations analyzed every 10 trajectories is 440. We estimate
the statistical error by the jackknife method with bins of 400 trajectories.

3. Results

In the left panel of Fig. 1 we show the real part of the diagonalcomponents (ππ → ππ and
ρ → ρ) and the imaginary part of the off-diagonal components (ππ → ρ , ρ → ππ) of G(t). The
other real or imaginary part of the components vanish fromP andCP symmetry. We calculate
the two eigenvaluesλn(t) (n = 1,2) for the matrixM(t) = G(t)G−1(tR) with the reference time
tR = 23. In the right panel of Fig. 1 we plot the eigenvalues normalized by the correlation function
of the two free pionsN(t) = 〈0|π(−p, t)π(p, ts)|0〉〈0|π(0, t)π(0, ts)|0〉. Thus the slope of the figure
corresponds to the energy difference with respect to the energy of the two free pions. We observe
that the energy difference is negative forλ1(t) and positive forλ2(t). This means that the two-pion
scatting phase shift is positive for the ground state and negative for the first exited state of theA−1

2

representation.
We extract the energies for both states by a single exponential fitting of the eigenvaluesλn(t)

(n = 1,2) for the time ranget = 24−33. For theT−
1 and theE− representations the energy of the

ground state is obtained from the time correlation functions of theρ meson as explained before.
Converting the energies on each frame to the invariant masses

√
s and substituting them into the

finite size formulas, we obtain the scattering phase shifts plotted in Fig. 2. In the figure we show
(k3/ tanδ (k))/

√
s as function of(

√
s)2 in unit of the lattice cutoff, wherek =

√

s/4−m2
π is the

scattering momentum.
In order to estimate theρ meson decay width at the physical quark mass we parametrize the

scattering phase shift with the effectiveρ → ππ coupling constantgρππ by

k3

tanδ (k)
/
√

s=
6π

g2
ρππ

· (M2
R−s) , (3.1)

5
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Figure 1: Left panel : Real part of the diagonal components (ππ → ππ andρ → ρ) and imaginary part of
the off-diagonal components (ππ → ρ andρ → ππ) of the time correlation functionG(t) ; Right panel :
Eigenvaluesλ1(t) andλ2(t) normalized by the correlation function of the two free pionsN(t).
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Figure 2: (k3/ tanδ (k))/
√

s as function of(
√

s)2 in unit of the lattice cutoff. Dotted lines refer to the finite
size formulas for each representation.

whereMR is the resonance mass. The couplinggρππ generally depends on the quark mass, but our
present data at a single quark mass do not provide this information. Here we assume that the mass
dependence is weak and try to estimategρππ andMR by fitting our results with (3.1). We estimate
the ρ meson decay width at the physical quark mass from the formulaΓρ = g2

ρππ ×4.128 MeV.
Our results of the fitting are given by

aMR = 0.4064±0.046 , gρππ = 5.24±0.51 , Γρ = 113±22 MeV . (3.2)

In Fig. 2 we indicate the result for the resonance massMR and draw the fitting curve by a solid line.
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Our result of theρ meson decay widthΓρ at the physical quark mass is smaller than the
experimental value (150 MeV). Possible reasons of the discrepancy are the mass dependence of
the effective coupling constantgρππ and the finite lattice spacing effects. We will study these issues
in next investigations.

4. Summary

In the present work we estimated theρ meson decay width from theNf = 2+ 1 full QCD
configurations generated by PACS-CS Collaboration. The decay width is estimated from theP-
wave scattering phase shift forI = 1 two-pion system. We used the effectiveρ → ππ coupling
constantgρππ to extrapolate from our simulation pointmπ = 410 MeV to the physical pointmπ =

135 MeV, assuming thatgρππ does not depend on the quark mass. The decay width may be
estimated directly from the energy dependence of the phase shift data assuming the Breit-Wigner
resonance formula, if the simulations are made close to the physical quark mass and we have data
at several values of energy near the resonance mass. We leavethese issues to studies in the future.

This work is supported in part by Grants-in-Aid of the Ministry of Education (Nos.
20340047, 20105001, 20105003 , 20740139 , 20540248 , 21340049 , 22244018, 20105002 ,
22105501, 22740138 , 10143538 , 21105501 20105005 ). The numerical calculations have been
carried out on PACS-CS at Center for Computational Sciences, University of Tsukuba.
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