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1. Tree-level amplitudes

Close to a century after its first formulation, the general theory of relativity continues to give
us surprises. In particular, remarkable new insight arisesfrom the intimate relation between grav-
ity and Yang-Mills theories. In perturbation theory one of the most intriguing manifestations of
this comes from the factorization of closed string amplitudes into products of open string ampli-
tudes, the Kawai-Lewellen-Tye (KLT) relations [1]. In the field theory limit, these relations show
that multi-graviton tree-level amplitudes can be expressed as products of color-ordered Yang-Mills
amplitudes.

These KLT-relations between gravity amplitudes and Yang-Mills amplitudes have been proven
in a series of different but equivalent forms using only concepts from relativistic quantum field
theory using on-shell unitarity method in [?, 2,3] and string theory [1,4,5].

From these constructions emerge as central object a momentum kernel [?,3,5]

Sα ′ [i1, . . . , ik| j1, . . . , jk]p ≡ (πα ′/2)−k
k

∏
t=1

sin
(
πα ′ (p·kit +

k

∑
q>t

θ(it , iq)kit ·kiq)
)
, (1.1)

whereθ(it , iq) equals 1 if the ordering of the legsit and iq is opposite in the sets{i1, . . . , ik} and
{ j1, . . . , jk}, and 0 if the ordering is the same.

This momentum kernel maps products of open string amplitudes to closed string amplitudes
and allows to express the closed string amplitudes as

Mn = (−i/4)n−3×

∑
σ

∑
γ ,β

Sα ′[γ(σ(2), . . . ,σ( j−1))|σ(2, . . . , j−1)]k1Sα ′[β (σ( j), . . . ,σ(n−2))|σ( j, . . . ,n−2)]kn−1

× An(1,σ(2, . . . ,n−2),n−1,n)Ãn(γ(σ(2), . . . ,σ( j−1)),1,n−1,β (σ( j), . . . ,σ(n−2)),n) .

(1.2)

where the sum is over the permutationsσ of n−3 external states,γ andβ of j −2 external states.
This expression is independent of choice ofj between 3 andn−1. In the field theory limitα ′ → 0
the expression in (1.1) turns into the field theory momentum kernelS constructed in [3].

Starting from closed type II string, theα ′ → 0 limit gives the expression for multi-graviton
tree-level amplitude expressed in terms of color-strippedmulti-gluon amplitudes. Starting from
the heterotic string one can derive the expression for multi-gluon tree-level amplitude from color-
stripped multi-gluon amplitudes and adjoint scalar amplitudes.

In beautiful agreement with the corresponding observationin field theory, the string theory
momentum kernelSα ′ is precisely the generator of monodromy relations satisfiedby the color-
ordered gauge theory amplitudes [6–8, 11]. It annihilates color-ordered amplitudesAn according
to

∑
σ∈Sn−2

Sα ′[σ(2, . . . ,n−1)|β (2, . . . ,n−1)]k1An(n,σ(2, . . . ,n−1),1) = 0, (1.3)
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whereβ is any permutation of leg 2, . . . ,n− 1 and the sum runs over all permutations of these
legs. The resulting linear system is non-degenerate for a generic choice of momenta and can
be inverted to express the color-ordered amplitudes in the minimal basis of(n− 3)! amplitudes
An(n,σ(2, . . . ,n−2),n−1,1) with σ a permutation ofn−3 external states [6].

For the choice ofj = n−1 the amplitude in (1.2) takes the nice form given by the expansion
of the gravity and gauge theory amplitudes on the minimal basis

Mn = (−1)n−3 ∑
σ ,γ

Sα ′ [γ(2, . . . ,n−2)|σ(2, . . . ,n−2)]k1 (1.4)

×An(1,σ(2, . . . ,n−2),n−1,n)Ãn(n−1,n,γ(2, . . . ,n−2),1) ,

whereσ andγ are permutations ofn−3 external legs.

This momentum kernel formalism allows to derive various interesting properties for tree-level
amplitudes, like new non-linear relations among Yang-Mills amplitudes [10] that can be understood
in the context ofR-charges conservation [11–13].

2. Dressing cubic graphs

So far we have discussed generic properties of the tree-level multiparticle amplitudes in gauge
and gravity without resorting to an explicit parametrisation.

A parametrisation based on dressedϕ3 graphs has been introduced by Bern, Carrasco and
Johansson at tree-level in [14] and generalized at loop orders in [15].

Tree-level gauge and gravityn-point amplitudes can be represented as

A
tree
n = ∑

γ∈Γtree
n

nγ cγ

∏α∈γ p2
α

; M
tree
n = ∑

γ∈Γtree
n

nγ ñγ

∏α∈γ p2
α

, (2.1)

where the sums now run over all distinctn-point tree-graphsΓtree
n constructed with cubic vertices

only. The inverse propagators of the diagram arep2
r , cγ are color factors, andnγ are Lorentz factors.

The color factors are obtained by assigning to each (three-point) vertices a structure constantf a
bc =

− f a
cb and to each propagator a Kronecker deltaδab wherea,b,c are indices in the fundamental

representation of the gauge groupG. Because the structure constants satisfy the Jacobi identity
f d
ab f e

cd + f d
ca f e

bd + f d
bc f e

ad = 0, the color factorsci associated to set of graphs differing only by the
permutation of three external legs satisfy the Jacobi relation ci +c j +ck = 0.

The Lorentz factornγ have ambiguities corresponding to the freedom in reabsorbing higher-
point vertices. In gauge theory only four-point vertices need to be re-expressed by inserting factors
p2

α/p2
α = 1. In gravity theory one needs to reabsorb all higher-point vertices. The individual

Lorentz factors do not have to be gauge invariant. A consistency condition is that these factors
satisfy a Jacobi-like relationsni +n j +nk = 0 similar to the one satisfied by the color factors [?,14].
Such relations, that are necessary for a correct parametrisation the amplitudes, where shown in [7]
to be a consequence of the monodromy relations discussed in section 1. This derivation indicates
that the Lorentz numerator factors satisfy a generalized Jacobi-like identityni +n j +nk = Pn(kr ·ks).
The right-hand side reflects the ambiguity in reabsorbing the higher-point vertices into three-point
vertices.
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As indicated in (2.1), the numerators of gravity amplitudesare given by two copies of the
Lorentz factors. Only one family of numerator needs to satisfy the strict (without right-hand-side,
Pn = 0) Jacobi-like relations [7,15]. In the case both numeratorfactors satisfy a generalized Jacobi-
relation the right-hand-sides need to satisfy a consistency relation. A five-point example is given
in [7, section 5].

Such a parametrisation has been generalized at loop orders in [14, 15]. TheL-loop four-point
amplitudes inN = 4 super-Yang-Mills andN = 8 supergravity take the form [15]

A
(D)
n,L = g2L+2

YM ∑
j

∫ L

∏
i=1

dDℓi

(2π)D

1
Sj

n jc j

∏3L+1
r=1 p2

r

; M
(D)
n,L = κ2L+2

(D) ∑
j

∫ L

∏
i=1

dDℓi

(2π)D

1
Sj

n j ñ j

∏3L+1
r=1 p2

r

.

(2.2)
whereSj are symmetry factors of the corresponding Feynman diagrams. This parametrisation
requires to include 1-particle reducible graphs arising contact terms [15–17]. The supergravity
amplitudes are build from two copies of the super-Yang-Mills Lorentz numerators. The constraints
on the Lorentz numerators factor are similar to the one at tree-level order [15].

The pure spinor formalism provides a consistent approach tothis ϕ3 graph parametrisation
of N = 4 super-Yang-Mills andN = 8 supergravity amplitudes at tree-level [18] and loop or-
der [17].

3. Superficial ultraviolet behaviour of N = 8 amplitudes

The question of the ultraviolet behaviour of a supersymmetric theory requires a very good
control of supersymmetry in perturbation. In general only part (half) of the supersymmetry is
explicitly realized and the action of the rest of the supersymmetry transformations can be difficult
to analyze.

The particular parametrisation of the multiloop amplitudein N = 4 super-Yang-Mills and
N = 8 supergravity in (2.2) indicates possible relations between the ultraviolet behaviour of the
two theories.

The leading ultraviolet behaviour of the four-pointL-loop amplitude inN = 4 super-Yang-
Mills is given by [16,19–21]

D = 8 for L = 1; D ≥ 4+
6
L

for L ≥ 2. (3.1)

This critical dimension reflects that the leading low-energy behaviour of the amplitude—t8trF4 ΛD−8

at one-loop and∂ 2 t8tr(F4)Λ(D−4)L−6 for L ≥ 2—arises from the planar sector. The leading ultra-
violet behaviour in the non-planar sector is given by [16,17,21]

D ≥ 4+
4+2⌈L/2⌉

L
for L ≤ 4; D ≥ 4+

8
L

for L ≥ 4. (3.2)

This critical dimension reflects that the leading low-energy behaviour in the non-planar sector
of the amplitude is given byt8(trF2)2 ΛD−8 at one-loop,∂ 2 t8(trF2)2 Λ2(D−7) at two-loop and
∂ 4 t8(trF2)2 Λ(D−4)L−8 from three-loop order [16,17].
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Since the four-pointN = 8 supergravity is build from two copies of theN = 4 super-Yang-
Mills Lorentz numerators factors, one concludes [22] that the worst ultraviolet of the four-point
amplitudes inN = 8 behaviour is given by

D ≥ 4+
6
L

for L ≤ 4; D ≥ 2+
14
L

for L ≥ 4. (3.3)

Such behaviour has been supported by a world-line pure spinor analysis in [17].

The rule (3.3) implies that theL = 5 loop four-point amplitude inN = 8 supergravity is
ultraviolet divergent whereas the theN = 4 super-Yang-Mills is finite.

In four dimensions the rule (3.3) implies a logarithmic ultraviolet divergence at seven-loop
order in the four-graviton amplitude. A candidate counterterm is the dimension sixteen operator
∂ 8 t8t8R4 given by eight derivative distributed on four powers of the Riemann tensor. Such oper-
ator have been shown to be compatible with theE7 symmetry ofN = 8 supergravity in [23, 24].
The volume of superspace could provide anE7 N = 8 supersymmetric representation for this
counterterm ∫

d4x
√

−g(4) (∂ 8t8t8R
4 + · · ·) ∼

∫
d4x

∫
d32θ |E| , (3.4)

where|E| is the determinant of the super-vierbein. To the contrary tothe volumes ofN = 1 and
N = 2 superspace this expression does not seem to be vanishing.
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