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1. Introduction to lattice QCD

Lattice QCD is defined by the path-integral formalism on the discretized four-dimensional
space time. Physical quantities are extracted from Green functions with appropriate choices of
operators, which are expressed as

〈O[Uµ ,q, q̄]〉 =
1
Z

∫
DUµDqD q̄O[Uµ ,q, q̄]e−SL

QCD[Uµ ,q,q̄], (1.1)

where SL
QCD represents the lattice QCD action. Uµ is the link variable as a function of the gauge

field and q and q̄ denote the quark and anti-quark fields, respectively.
Numerical technique with Monte Carlo method allows us to evaluate the Green functions

nonperturbatively up to statistical errors which can be arbitrarily reduced according to 1/
√

N with
N the number of independent configurations (Monte Carlo samples). We have three sets of physical
parameters: lattice size (Nx,Ny,Nz,Nt), bare coupling g, which controls the lattice spacing a, and
quark masses (mu,md,ms, . . .). There are four major systematic errors in lattice QCD calculations:
(i) finite volume effects, (ii) finite lattice spacing effects, (iii) quenched approximation in which
the vacuum polarization effects are neglected and (iv) chiral extrapolation of up and down quark
masses. It is rather straightforward to diminish the first and the second errors with the use of larger
and finer lattices. We already know how to incorporate the vacuum polarization effects of up, down
and strange quarks to remove the quenching errors. Direct simulation at the physical values of
up and down quark masses can avoid any possible systematic uncertainties associated with their
chiral extrapolation from unphysically heavy simulation values, where the computational cost is
cheap, to the physical ones. The reduction of the systematic errors, however, demands enormous
computational cost. An expected computational cost is roughly described by

cost ∝ (4 dim. physical volume)5/4 · (lattice spacing)−6∼−7 · (quark mass)−2∼−3, (1.2)

where we assume the Hybrid Monte Caro algorithm to incorporate the vacuum polarization effects.

2. Light hadron spectrum

Light hadron spectrum is one of the most fundamental quantities both in physical sense and
technical one. On the physical side we can check the validity of QCD by investigating whether or
not lattice QCD calculations successfully reproduce the light hadron spectrum with the choice of
a couple of physical inputs to fix the quark masses and lattice spacing. On the technical side the
hadron masses are extracted from hadron two-point function that is the simplest Green function
consisting of quark fields: 〈Oh(t)O

†
h (0)〉 t≫0∼ Z exp(−mht). Meson operators are made of the quark

and antiquark fields to represent the correct quantum numbers. Three quark fields are used for
baryon operators.

For almost twenty years after the first lattice QCD calculation of the hadron masses in 1981[1],
most of the large-scale simulations were carried out in the quenched approximation. A primary rea-
son is that the inclusion of the vacuum polarization effects requires O(102) times as much compu-
tational cost as the quenched approximation. In the late 90s the PACS-CS collaboration performed
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Figure 1: Quenched light hadron spectrum com-
pared with experiment[2].
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Figure 2: Light hadron spectrum in 2+1 flavor QCD
with mπ , mK , mΩ (blue) as physical inputs[3].

a detailed investigation of the quenching effects[2]. The systematic study of the light hadron spec-
trum in the quenched approximation with other systematic errors under control reveals that the
results deviate from the experimental values at a 10% level. The comparison is depicted in Fig. 1
where the three physical inputs are chosen to be mπ , mρ , mK (closed triangles) or mπ , mρ , mφ (open
triangles) to determine the averaged up-down quark mass, the strange one and the lattice spacing
a. The confirmation of the discrepancy between the quenched results and the experimental values
drove us to embark on the 2+1 flavor QCD simulations where the vacuum polarization effects of
the up, down and strange quarks are incorporated with an artificial condition mu = md. Figure 2
shows one of the recent 2+1 flavor QCD results for the light hadron spectrum obtained by the
PACS-CS Collaboration[3]. Most of the results are consistent with experimental values within er-
ror bars, though some cases show 2−3% deviations at most. Similar results are obtained by other
groups[4].

Although there is no doubt that we are successfully reducing the systematic errors, the current
situation is not sufficient. The reason is that we find two types of problems in Fig. 2. First one is
the artificial isospin symmetry mu = md which is employed in almost all the current simulations
due to an algorithmic reason. If we want to discuss the errors at a level of 1 %, it is necessary
to incorporate the isospin symmetry breaking effects: up-down quark mass difference and also
electromagnetic interactions. For the latter there are a couple of exploratory studies to investigate
the effects at the unphysically heavy quark mass region[5]. Note that both effects are so small that
the investigation at the physical point is highly desired to avoid any contamination associated with
chiral extrapolations. Second problem is unstable particles. Some hadrons listed in Fig. 2 are the
resonance states in the strong interactions. Although it has been known for a long time that the
resonance states should be treated in a proper manner on the lattice[6], it is quite recently that it is
made possible. In the next section we will explain the current status of lattice QCD calculation of
the ρ-ππ resonance.

3. ρ-ππ resonance

Phase shift is an essential ingredient to investigate hadron-hadron interactions. In case of
the ρ → ππ decay the relevant quantity is the P-wave scattering phase shift for the I = 1 two-
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pion system. To study the ρ decay on the lattice we have both theoretical and practical problems.
The former was already addressed by Lüscher, who provided a finite size formula relating the
energy shift due to the hadron-hadron interactions in a finite box to the phase shift[6]. The latter
is a kinematical condition on the lattice: At least we need to satisfy the condition mρ > 2mπ

incorporating the vacuum polarization effects of the up and down quarks. It is rather recently that 2
(mu = md) and 2+1 (mu = md ̸= ms) flavor simulations at sufficiently light quark masses satisfying
the above condition are realized. After the CP-PACS Collaboration carried out the first lattice
QCD study of the ρ meson decay width based on the phase shift in 2007[7], several groups are
now actively working on it[8].

There are three steps to determine the phase shift in the I = 1 ππ system. Firstly, we choose
the ππ kinematics such that the invariant mass

√
s is sufficiently close to the ρ meson mass. Here

is one technical problem. In current lattice QCD simulations, where typical spatial extent of the
lattice is 2−3 fm, the energy of two pions with finite momentum is much larger than the ρ meson
mass 2

√
m2

π + p2 > mρ , where the momentum is discretized as p⃗ = (2π/L)⃗n with ∃⃗n ∈ Z3 in an
L3 box neglecting the interaction. This difficulty, however, is avoided by considering the moving
frame which is a system with a nonzero total momentum. A simplest case is

√
m2

π + p2 + mπ

for the two free pions and
√

m2
ρ + p2 for the ρ meson. This can reduce the invariant mass of the

free two pions. The extension of the Lüscher’s formula to the moving frame is given in Ref. [9].
Secondly, we extract two energy eigenvalues from 2×2 correlation matrix:(

〈Oππ(t)O†
ππ(0)〉 〈Oππ(t)O†

ρ(0)〉
〈Oρ(t)O†

ππ(0)〉 〈Oρ(t)O†
ρ(0)〉

)
diagonalize−→

(
Z1 exp(−W1(k1)t) 0

0 Z2 exp(−W2(k2)t)

)
,(3.1)

where W denotes the energy in the moving frame and k = |⃗k| is the associated momentum. The rela-
tion between W and k is given by

√
s =

√
W 2 − p2 with k2 = s/4−m2

π . An important point is that k⃗
is not discretized as (2π/L)⃗n with ∃⃗n ∈Z3 anymore because of the interaction effects. Note that the
hadron three- and four-point functions of 〈Oππ(t)O†

ππ(0)〉, 〈Oππ(t)O†
ρ(0)〉, 〈Oρ(t)O†

ππ(0)〉 yield
more complicated quark line diagrams than that of the hadron two-point function of 〈Oρ(t)O†

ρ(0)〉.
This is one of major practical reasons that calculation for the ρ-ππ resonance is more difficult than
that for the stable hadrons. In the final step the phase shift at the momentum k is obtained by the
Lüscher’s finite size formula.

It may be intuitively clear to extract the ρ meson decay width by fitting the phase shift data on
the lattice with the Breit-Wigner formula. With the present computational resources, however, we
are forced to work with the heavier quark masses than the physical values. Since the decay width
strongly depends on the kinematical factors at the quark mass where our calculations are carried
out, we take different approach.

The ρ → ππ decay is phenomenologically described by the interaction lagrangian Lint =
gρππεabcρa

µπb∂ µπc, where ρa
µ and πa are effective fields for the ρ meson and the pion, respec-

tively, with canonical kinetic terms. In terms of the effective ρ → ππ coupling constant gρππ , the
resonance behavior of the ππ phase shift is given by

tanδ (k) =
g2

ρππ

6π
k3

√
s(m2

ρ − s)
(3.2)
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with mρ the resonance mass. We have two parameters mρ and gρππ to be determined by fitting the
lattice data. The decay width at the simulation point is obtained by

Γ =
g2

ρππ

6π
k3

mρ 2 . (3.3)

However, the result for Γ cannot be directly compared with the experimental value of the decay
width. The kinematics on the lattice is completely different from the real world because of the
heavier quark masses. Instead, assuming the mild quark mass dependence of gρππ we compare the
lattice results for gρππ and “the physical value” of gph

ρππ = 5.98(2) obtained from Γph = 149.1(8)
MeV with the experimental values of mph

ρ and mph
π and (kph)2 = (mph

ρ )2/4− (mph
π )2. Table 1 sum-

marizes the recent results for gρππ based on the ππ phase shift[7, 8]. An encouraging observation
is that all the results scatter around the physical value, though the errors are rather large.

Table 1: Results for the effective ρ → ππ coupling constant gρππ .

collab. #flavor mπ [MeV] gρππ

CP-PACS 2 330 6.25(67)
QCDSF 2 240−810 5.3+2.1

−1.5
ETM 2 290,330,420,480 6.77(67),6.31(87),6.19(42),6.46(40)

PACS-CS 2+1 410 5.24(51)
BMW 2+1 200,340 5.5(2.9),6.6(3.4)

4. Nuclei from lattice QCD

The atomic nuclei have been investigated by treating protons and neutrons as effective degrees
of freedom at the nuclear energy scale of a few MeV. At present we know for certain that protons
and neutrons are made of quarks and gluons which are more fundamental degrees of freedom. It
is a great challenge to reveal the hierarchical structure and property of nuclei based on the first
principle of QCD. After an exploratory study of the nucleon-nucleon (NN) system in the mid
90s[10], important steps were recently made with two different kinds of approaches: determination
of nuclear force[11] and direct construction of helium nuclei[12] in lattice QCD.

4.1 Nuclear force

The authors in Ref. [11] proposed a method to extract a NN potential in lattice QCD. The
potential is defined by the equal-time Nambu-Bethe-Salpeter (NBS) wave function

φE (⃗r) = 〈0|N (⃗x+ r⃗,⃗0)N (⃗x,⃗0)|B = 2,E〉, (4.1)

where |B = 2,E〉 is an eigenstate of QCD with the baryon number 2 and the energy E. The local
nucleon operator N(x) is constructed from the up and down quark fields u(x) and d(x). The proton
operator is defined as pα(x) = εabc([ua(x)]tCγ5db(x))uα

c (x) where C = γ4γ2 and α and a,b,c are the
Dirac index and the color indices, respectively. The neutron operator nα is obtained by replacing uα

c

5
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by dα
c in the proton operator. The non-local potential U (⃗r, r⃗′) is defined by an effective Schrödinger

equation for the NBS wave function

− ∆
2µ

φE (⃗r)+
∫

d3r′U (⃗r, r⃗′)φE (⃗r′) = EφE (⃗r), (4.2)

where µ ≡ mN/2 and E are the reduced mass of the nucleon and the nonrelativistic energy, re-
spectively. The velocity (derivative) expansion of U is expressed as U (⃗r, r⃗′) = V (⃗r,∇)δ 3(⃗r − r⃗′)
with

V (⃗r,∇) = VC(r)+VT (r)S12 +VLS(r)⃗L · S⃗ +O(∇2). (4.3)

Here S12 = 3(σ⃗1 · r⃗)(σ⃗1 · r⃗)/r2 − σ⃗1 · σ⃗2 is the tensor operator with σ⃗i/2 the spin of i-th nucleon,
S⃗ is the total spin operator and L⃗ the relative angular momentum operator. Note that the first and
second terms in the right hand side are the leading order contributions and the third term is the next
leading order one.

In the phenomenological analysis of the NN scattering phase shift the solution of the Schrödinger
equation with parametrized NN potential is compared with the experimental data. On the other
hand, calculation of φE on the lattice for various E allows us to determine the nonlocal potential U
from Eq. (4.2). However, it is practically difficult to change E with a good resolution, because the
momentum is discretized due to the finite lattice size. This problem may be avoided by focusing
on the leading term in the derivative expansion of Eq. (4.3) at low energies. The central potential
VC(r) at fixed E is extracted as VC(r) = E + ∆φE(r)/φE(r)/(2µ), where E is obtained from the
Green function G(⃗r;E) as a solution of the Helmholtz equation on the lattice[13]. An exploratory
study of the central NN potentials at rather heavy quark mass in quenched QCD successfully re-
produced empirically known features of the potential[11]: a strong repulsive core at short distances
surrounded by an attractive well at medium and long distances. In this conference Aoki, who is
one of the authors in Ref. [11], reported recent developments on the potential calculations[14].
They have now succeeded in extracting the tensor potential using the 3S1 and 3D1 components
mixed by the tensor operator. The potential method is currently applied to investigate the hyperon
interactions in 2+1 flavor QCD.

4.2 Direct construction of helium nuclei

There are two major technical difficulties in treating the multi-nucleon systems on the lattice.
First one is discrimination between the bound state and the scattering state. The binding energy
∆E of the nucleus, consisting of NN nucleons with the mass mN , is very tiny compared with the
mass M of the nucleus: ∆E/M ∼ O(10−3) with ∆E = NNmN −M. This causes a complicated
situation where it is difficult to distinguish the physical binding energy from the energy shift due
to the finite volume effect in the attractive scattering system[15]. One way to solve the problem
is to investigate the volume dependence of the measured energy shift: In the attractive scattering
system, the energy shift is proportional to 1/L3 at the leading order in the 1/L expansion[15], while
the physical binding energy remains at a finite value at the infinite spatial volume limit. It requires
huge computational cost to change the lattice spatial volume systematically. Second problem is a
factorially large number of Wick contractions of quark-antiquark fields required for evaluation of

6
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the nucleus correlation functions: 〈OA(t)O†
A(0)〉 t≫0∼ Z exp(−Mt). Suppose OA represents a nucleus

composed of Np protons and Nn neutrons. A naive counting gives (2Np + Nn)!(2Nn + Np)! quark
line diagrams after the Wick contractions of the up and down quark fields. This number quickly
diverges beyond a three-nucleon system, e.g., 2880 for 3He and 518400 for 4He. This problem,
however, is partially tamed by considering equivalent contractions under permutation symmetry in
terms of the protons or the neutrons in the operator. The computational cost can be reduced by
avoiding the redundancy. In case of the 4He nucleus, which consists of the same number of protons
and neutrons, the artificial isospin symmetry mu = md also helps us reduce the necessary quark
line diagrams. After all, it is found that only 1107 (93) contractions are required for the 4He (3He)
nucleus correlation function[12].

The 4He nucleus has zero total angular momentum and positive parity JP = 0+ with the isospin
singlet I = 0. The simplest 4He operator is obtained by choosing the zero orbital angular momen-
tum L = 0, and hence J = S with S the total spin. Such an operator was already studied a long
time ago[16]. Each nucleon in the sink operator is projected to have zero spatial momentum. An
operator for 3He nucleus, whose quantum numbers are JP = 1

2
+, I = 1

2 and Iz = 1
2 , is constructed

in a similar manner following the spin-isospin function given in Ref. [17].
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Figure 3: Spatial volume dependence of −∆EL = M −NNmN in GeV units for 4He (left) and 3He (right)
nuclei with two types of source operators. Extrapolated results in the infinite spatial volume limit (filled
circle) and experimental values (star) are also presented.

In order to determine the energy shift ∆EL = NNmN −M precisely, the ratio of the He nucleus
correlation function divided by the fourth power of the nucleon correlation function:

R(t) =
〈OHe(t)O†

He(0)〉(
〈ON(t)O†

N(0)〉
)4

t≫0∼ Z exp(∆ELt) (4.4)

The energy shift is extracted by exponential fit of R(t) in large t region. Figure 3 shows the volume
dependence of ∆EL together with the combined error of the statistical and systematic ones as a
function of 1/L3. The measurements are performed with L = 24, 48 and 96 corresponding to 3.1,
6.1 and 12.3 fm, respectively. We observe little volume dependence for ∆EL indicating a bound
state, rather than the 1/L3 dependence expected for a scattering state, for the ground state of He
nuclei.
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The physical binding energy ∆E defined in the infinite spatial volume limit is extracted by a
simultaneous fit of the data for two types of source operators employing a fit function of ∆E +C/L3

with ∆E and C free parameters. The 1/L3 term represents that ∆EL may be contaminated by the
scattering states, which are O(1/L3) effects. The extrapolated result ∆E = 27.7(9.6) MeV for the
4He nucleus agrees with the experimental value of 28.3 MeV. The consistency, however, is a little
bit surprising because the calculation is performed at the unphysically heavy pion mass mπ = 0.8
GeV which could considerably change a form of nuclear potential. For the 3He nucleus the physical
binding energy is ∆E = 18.2(4.5) MeV, which is about twice larger than the experimental value of
7.72 MeV.
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