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1. Introduction

Many systems of physical relevance have a complex action, QCD with a firdtaical poten-
tial is a particularly interesting example. Such theories are difficult to studyenoally because
the weight is complex and therefore standard Markov chain Monte Cathmitgees based on a
probability interpretation cannot be applied; this is often called the sign profdle The complex
Langevin equation (CLE) enjoyed a certain limited popularity after beinggseqg in the early
1980s [2, 3] because it can, in principle, avoid the sign problem sinage dot rely on impor-
tance sampling. In some cases, complex Langevin simulations have beedrtddusmnumerically
unstable due to runaway solutions but this can be cured by use of ativaddppsize [4]. A more
serious and vexing issue is convergence to the wrong limit, where the simwjateswell defined
results, but when compared with known values are found to be incolrethis problem that we
shall focus on here.

In Section 2 we briefly cover a formal argument for the correctnesseo€ttE and identify
points at which it might fail. By studying the long time evolution of observables wedpect
to real and complex measures, we derive a criterion which must be satistieder for correct
results to be obtained [5, 6]. In Section 3 these ideas are applied to th¢ §lil{3nodel at finite
chemical potential [7, 8, 9]. A comparison with imaginary chemical potent@alvstthat the CLE
works correctly in the regiop? ~ 0. An analysis of the criterion with a larger chemical potential
supports the claim that in this case complex Langevin dynamics can be trii6jed [

2. Criteriafor correctness

The central object of interest is the expectation value of a particulardise, given by

[O(x)e"S¥dx

(0) = smax

(2.1)
where for notational simplicity we use a single real degree of freedoniThe actionS(x) is
complex, preventing a probability interpretation of the measure and rulingietitods based on
importance sampling. The complex Langevin equation is

dx d
a:Kx+\/NR’7R» d%’zKyﬂNm, (2.2)
where the real variable is analytically continuedkkas z = x+iy. The drift terms are given by
K, = Re 35X , Ky — Im 35X , 2.3)
dx X—X+1y X X—XA1y

and the two noise termgg, 1, are independent Gaussian random numbers with variance 2 and nor-
malisationN; > 0 andNg — N, = 1. A numerical simulation can then be implemented by integrating
these equations to large times> co.

The resulting dynamics is described by a dual Fokker-Planck equatitinef@volution of the
probability densityP(x,y;t),

%P(x,y:t) =L"P(xy;t), (2.4)
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with the operator
LT = Ox[NrOx — Ky] + Oy[Ni Oy — K] (2.5)

To understand the time evolution of the real denBity,y;t) one must also examine the evo-
lution of the complex densitp(x;t), determined by

5P =L5p(x;1). (2.6)
Here, the complex Fokker-Planck operaléris
LY = Ox[Ox + OxS(X)]. (2.7)

This equation hap(x; ) [0 exp—S(x)] as a stationary solution, which is expected to be unique.
Numerical studies (where feasible) of Eq. (2.6) confirm this to be trueiat) Eonvergence to this
distribution seems exponentially fast.

Expectation values with respect to the two densities can now be defined as

(O)pn) = fo()}:(li?s(t);ayxgs xdy’ (O)pn) = W (2.8)
The result that one would like to show is
(O)pt) = (O)p(t); (2.9)
if the initial conditions(O)p(o) = (O),(g) Match, which is assured provided
P(x,y;0) = p(x;0)3(y). (2.10)

One expects the dependence on the initial conditions to vanish in the liméb by ergodicity.

To establish a connection between the expectation values with resgeanthp, one moves
the time evolution from the densities to the observables. Since we are onlysietkie functions
of z= x+ iy (holomorphic functions), we may act with the Langevin operator

L =[0;— (082)) ],

whose action on holomorphic functions agrees with that. of
We now usé. to evolve observables according to the equation

0 i Ty
50z =Lo), (2.11)

which is formally solved by
O(zt) = exptL]O(2).

Due to the fact that and agree on holomorphic functions, the tilde may be dropped.
To examine the evolution we define the function

F(t,1) :/P(x,y;t—r)O(x—Hy; T)dxdy (2.12)
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and observe thdt(t, 7) interpolates between the two expectation values:

The first can be seen easily, while the second makes use of the initial cosditid
F(t,t) = / P(x,y;0) (6-0) (x+iy; 0)dxdy

:/p(x;O) (¢'0) (x;O)dx:/O(x;O) <e“-3p> (x,0)dx= (O} 1), (2.14)

where it is only necessary to assume that integration by parslaes not produce any boundary
terms.

The desired result (2.9) follows F(t, 7) is independent of. To check this, we need the
derivative to vanish,

;TF(t,r) = —/(LTP(x,y;t—r))O(x+iy; r)dxdy+/P(x,y;t—r)LO(x+iy; T)dxdy (2.15)

Integration by partsf applicable without boundary terms at infinjthen shows that the two terms
cancel and thereforfé(t, 7) is independent of , irrespective of;.
This is therefore a point at which the formal argument might fail: if the deddlge product

P(x,y;t — T)O(X+1y; 1)

and its derivatives is insufficient for integration by parts without booyterms.
In Ref. [6] a study of the U(1) one-link model found that the&lerivative is largest at = 0.
This motivates the superficially weaker condition

7}
lim —F(t,1 =0. 2.16
Hwt(,)rzO (2.16)
This modification to the condition is still sufficient for correctness if it holdsafsufficiently large
set of suitably chosen observables. Taking the limit  in Eq. (2.15) causes the first contribu-
tion to vanish because of the equilibrium conditidlhrP(x, y; ) = 0. Therefore, the criterion for
correctness reduces to

Eo= / P(x,y; 0)LO(X+ iy, 0)dxdy= (LO) = 0. (2.17)

This is fairly simple to check for a given observable, but it is in fact a stretatement since it
must holdfor all observablesTherefore, Eq. (2.17) really represents an infinite tower of identities
which must all be satisfied. In practice it can be checked for a small nuofiledrservables, still
yielding a necessary criterion [6].

3. SU(3) spin model

Motivated by recent work [9] (for related models see e.g. Ref. [11§)re-examine the three-
dimensional SU(3) spin model at finite chemical potential, for which promiseglts with com-
plex Langevin dynamics have been obtained in earlier studies [7, 8]. Gttmnas formed from
three contributions

S=S+F+5, 3.1)
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which read
Ss=—B (TrUTrU % +Tru Uy (3.2)
S =-hY (HTruc+e HTru ), (3.3)
Si=- Y log [s,in2 ("’“;")ZX> sir? <2“’“2+"’2X> sir? <¢’1X+22‘pzx>] . (3.4)

The final componenty, originates from the Haar measure introduced by diagonaligimgterms
of angles,
U =diag(e®,d%, e (®t@)),

The action is complex due to the “heavy fermion” contributi§g,u) = S-(—pu*). For small
h the theory has a confined and deconfined phase separated by edfistransition line at small
U, turning into a crossover at largar(see Figure 1, left) [7].

u\

H
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Figure 1: Left: sketch of the phase diagram at snialRight: (Tr (U +-U~1)/2) as a function of8 atu =0,
h=0.02 on a 18 lattice.

Figure 1 (right) shows the transition as a functioradt u = 0, using the observabldr (U +
U~1)/2). Note that aju = 0, (TrU) = (TrU 1), but atu? > 0 they differ. Since observables that
are even inu should be continuous acrogs = 0, we also perform simulations with an imaginary
chemical potential, for which the action is real and simulations using standdmlidgees can be
used (we use real Langevin dynamics). A comparison with complex Landata should therefore
show even observables to be continuous aqudss 0. In Figure 2 the observab(@r (U +U1)/2)
is plotted. The data from complex Langevin dynamics with> 0 is consistent with those from
real Langevin dynamics witpi? < 0 in both phases, including the critical region, suggesting that
complex Langevin dynamics is working correctly here. This is in contrastea@#ése of the XY
model recently studied using complex Langevin dynamics, where coagglts were obtained in
only part of the phase diagram [12].

At larger values ofu?, one can no longer rely on analytical continuation to justify the results.
Instead, we assess them using the criteria developed above and cdhfpufer O = TrU. The
outcome is shown in Figure 3 for real chemical potential (left) and also in hiasgquenched
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Figure2: (Tr(U +U1)/2) as a function ofu? for variousp values. Fou? < 0 (imaginaryu) the action
is real and real Langevin dynamics is used; wp€n> 0 complex Langevin is necessary.
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(a) Complex Langevin dynamics (b) Phase-quenched using real Langevin dynamics

Figure 3: Langevin stepsize dependence of the correctness critiorrU with complex Langevin dy-
namics (left) and in the phase-quenched approximatiohtjrigsing real Langevin dynamics. The points for
u = 3.5 are shifted horizontally for clarity¥ = 0.12,h = 0.02 and lattice volume%.

theory (right), usingt = 3 and 35. In the phase-quenched theory, the action is real and we use real

Langevin dynamics. The figures indicate that at nonzero stepsize th@ocrigenot satisfied, both

for real and complex Langevin dynamics, but that in the lignit- O it is satisfied.

We find therefore that in this model the test is passed successfully. Mordimite stepsize
corrections can be quantified by the deviation(b©) from zero. We are currently extending
this analysis and have implemented a higher-order algorithm to eliminate thtseffémnite step-



Complex Langevin dynamics: criteria for correctness Frank A. James

size [10].

4. Conclusions

Complex Langevin dynamics can in principle be applied where the sign prqirievents the
use of importance sampling. An analysis of the long-time evolution of real amgplex measures
using the Fokker-Planck equation shows that the correct stationanjoso&xists. However, if
the decay of the distributioR(x, y;t) is insufficient to allow integration by parts without boundary
terms, convergence to the wrong limit can occur. In practice, this can gaatiad by testing the
condition that{LO) = O for a suitably large set of observables in the limit of vanishing stepsize. In
the case that the criterion is not satisfied, complex Langevin dynamics fails.

An analysis of the SU(3) spin model shows that the criterion for correstisesatisfied, justi-
fying the claim that complex Langevin dynamics works correctly with this modeis & corrob-
orated by analytic continuation from imaginary chemical potential in the regiesmall chemical
potential|u2} < 1, which shows that data for observables even are continuous between results
from a real action whep? < 0 and a complex action witp? > 0. A further and more detailed
study of the criterion and stepsize dependence is in progress [10].
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