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1. Motivation and overview

Despite the fact that the latest results from the Large Hadron Collider make it more and more
unlikely that supersymmetry, at least in its variety as a minimal extension to the Standard Model,
is accommodated in nature, supersymmetric quantum field theories remain to be interesting in
their own right. In particular, spontaneous supersymmetrybreaking and the corresponding phase
transition is an interesting non-perturbative phenonemonwhich often evades a quantitative descrip-
tion even in simple models such as theN = 1 Wess-Zumino model in two dimension on which
we focus in these proceedings. Often, a specific model may or may not undergo a supersymmetry
breaking phase transition and it is usually not clear how such a transition is realised in detail. While
the lattice regularisation provides a convenient setup to perform detailed non-perturbative numeri-
cal investigations, for systems which exhibit spontaneoussupersymmetry breaking straightforward
Monte Carlo simulations are not possible due to a fermion sign problem related to the vanishing
of the Witten index [1]. However, it has been shown that the sign problem can be circumvented
by using the fermion loop formulation [1, 2, 3] and simulating the system with the open fermion
string algorithm [4, 5].

In these proceedings, we present a quantitative non-perturbative investigation of the 2d N = 1
Wess-Zumino model as follows. First we give a brief definition of the model and then discuss its
formulation in terms of fermion loops. After reviewing its vacuum structure and the symmetry
breaking pattern we go on to describe quantitatively its mass spectrum in the supersymmetric and
the supersymmetry broken phase as well as across the phase transition.

2. The N = 1 Wess-Zumino model on the lattice

TheN = 1 Wess-Zumino model in two dimensions [6] is one of the simplest models which
may exhibit spontaneous supersymmetry breaking. Its degrees of freedom consist of one real Majo-
rana fermion fieldψ and one real bosonic fieldφ , while its dynamics is described by the Lagrangian
density

L =
1
2

(

∂µφ
)2

+
1
2

P′(φ)2 +
1
2

ψ
(

∂/+P′′(φ)
)

ψ . (2.1)

Here,P(φ) denotes a generic superpotential, andP′,P′′ its first and second derivative with respect
to φ . In the following we will concentrate on the specific form

P(φ) =
m2

4g
φ +

1
3

gφ3 (2.2)

which leads to a vanishing Witten indexW = 0 and hence allows for spontaneous supersymmetry
breaking [7]. The corresponding action enjoys the following two symmetries. First, there is a single
supersymmetry given by the transformations

δφ = εψ , δψ = (∂/φ −P′)ε , δψ = 0, (2.3)

and secondly, there is a discreteZ(2) chiral symmetry given by

φ →−φ , ψ → γ5ψ , ψ →−ψγ5 , (2.4)
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whereγ5 ≡ σ3 can be chosen to be the third Pauli matrix. The fact that the Witten index is zero for
the chosen superpotential can be derived from the transformation properties of the Pfaffian of the
Dirac operator under theZ(2) symmetryφ →−φ [3].

Let us now move on to describe the regularisation of the modelon the lattice. For the fermionic
fields we use the Wilson lattice discretisation yielding thefermion Lagrangian density

L =
1
2

ξ T
C (γµ ∂̃µ −

1
2

∂ ∗∂ +P′′(φ))ξ ,

whereξ is a real, 2-component Grassmann field,C = −C T is the charge conjugation matrix and
∂ ∗,∂ are the backward and forward lattice derivatives, respectively. In order to guarantee the full
supersymmetry in the continuum limit, one needs to introduce the same derivative, in particular the
Wilson term, also for the bosonic fields [8]. As a consequence, in addition to the supersymmetry
also theZ(2) chiral symmetry is broken by the lattice regularisation both in the bosonic and the
fermionic sector.

Nevertheless we can now use the exact reformulation of the fermionic degrees of freedom in
term of closed fermion loops (cf. [1] for further details). Together with the fermion string algorithm
[4, 5] this allows simulations with unspecified fermionic boundary conditions which do not suffer
from the fermion sign problem [3] and for which critical slowing down is essentially absent even
in the presence of a massless fermionic mode such as the Goldstino.

3. Supersymmetry breaking pattern

It is useful to briefly review the (super-)symmetry breakingpattern. The potential for the
bosonic field is a standardφ2-theory which may trigger aZ(2) symmetry breaking phase transition.
In particular, for largem/g one expects that theZ(2) symmetry is broken. In that case, the vacuum
expectation value of the boson field〈φ 〉 = ±m/2g is expected to select a definite ground state for
the system, either bosonic or fermionic. On the other hand, for smallm/g one expects theZ(2)

symmetry to be restored with〈φ 〉 = 0 in which case no unique ground state is selected and hence
supersymmetry is broken. In fact, the associated tunnelingbetween the two allowed bosonic and
fermionic vacua corresponds to the infamous massless Goldstino mode.

In [3] it was indeed demonstrated, using the Witten index

W ≡ Zpp = ZL00 −ZL10−ZL01−ZL11 ,

as an order parameter, that a supersymmetry breaking phase transition occurs for specific cou-
plings ĝ/m̂ depending on the lattice spacing set byag. Here,Zpp denotes the partition function
with periodic boundary conditions in both directions whileZLi j denote partition functions with
fixed topological boundary conditions [2]. The expected symmetry breaking pattern and the corre-
sponding vacuum structure follow exactly the expectationsdescribed above. In particular, for large
m/g one is in aZ(2) broken phase where supersymmetry is unbroken, while for small m/g the
Z(2) symmetry is restored and the supersymmetry is broken. Note that this situation only holds in
the infinite volume limit: at any finite volume theZ(2) symmetry is always restored (and hence the
supersymmetry broken) by soliton solutions which mediate transitions between boson field con-
figurations with〈φ 〉 = ±m/2g [9]. We have now further confirmed this scenario using the Ward
identity 〈P′〉.
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Figure 1: Susceptibility of the volume averaged Ising projected boson field (left plot) and the Binder cumu-
lant of the boson field (right plot) for several volumes atag= 0.0625.

3.1 Z(2) phase transition

In order to further quantify the phase transition we investigated in detail several order pa-
rameters sensitive to theZ(2) phase transition. It should be noted that there exists no real order
parameter for theZ(2) transition, since the Wilson lattice discretisation breaks not just the super-
symmetry, but also theZ(2) chiral symmetry in the bosonic sector. However, it turns outthat at the
lattice spacingsag≤ 0.25 which we simulated, the system behaves sufficiently continuum-like, so
that accurate determinations of the phase transition are possible without problems. This is exem-
plified in figure 1. In the left plot we show the susceptibilityχIsing of the volume averaged Ising
projected boson fieldφ Ising = 1/V ∑xsign[φx]. The susceptibility shows a nice finite volume scaling
and the scaling of the susceptibility peak indicates a second order phase transition, presumably in
the universality class of the 2d Ising model. The right plot of figure 1 shows the Binder cumulant
of the boson field for various volumes, all at fixed lattice spacing ag= 0.0625. From the position
of the susceptibility peak and the crossing of the Binder cumulant one can infer the critical bare
massamc at which the phase transition occurs.

In general, different order parameters consistently indicate a phase transition only in the ther-
modynamic limit when the finite volume pseudo-phase transition becomes a true one. In the left
plot of figure 2 we show the critical bare massamc as a function of the inverse volume expressed
in units of g, as obtained from the two (pseudo-)order parameters discussed above. We find that
the determination from the Binder cumulant shows rather large finite size effects, in contrast to
the one from the susceptibility. However, in the thermodynamic limit they both agree and this is
sustained for all lattice spacings (right plot). The inset finally shows the continuum extrapolation
of the critical couplingfc = g/mc using the bare massamc and the one renormalised using 1-loop
continuum perturbation theory,amR

c . The renormalised critical coupling in the continuum can now
be compared to the one obtained in [10] using a different discretisation and algorithm.

4. Mass spectrum

We determine the mass spectrum from the temporal behaviour of correlators projected to zero
spatial momentum,C(t) ∼ 〈O(0)O(T)(t)〉. For the boson masses we use theZ(2)-odd and -even
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Figure 2: Thermodynamic limit of the critical massamc from the Binder cumulant and the peak of the
susceptibility atag= 0.0625 (left plot) and for a range of other couplingsag= 0.25−0.03125 (right plot).
The inset shows the continuum limit of the bare and the renormalised critical couplingfc = g/mbare,R

c .

operatorsO = φ andφ2, respectively, while for the fermion masses we useO = ξ andξ φ . We note
that in the supersymmetric/Z(2)-broken phase the vacuum can not distinguish between the even and
odd states and hence we extract the same mass using the two operators, while in the supersymmetry
(SUSY) broken/Z(2) restored phase, the vacuum respects theZ(2) symmetry and distinguishes
between states with differentZ(2) quantum numbers. Furthermore, in the SUSY broken phase
we can measure excitations both in the bosonic vacuum, i.e. in ZL00, and in the fermionic one,
i.e.ZL10 +ZL01 +ZL11. We emphasise that simulations in the SUSY broken phase are only feasible
due to the fact that the fermion loop algorithm essentially eliminates critical slowing down [4, 5],
despite the emergence of the (would-be) Goldstino.

In figure 3 we show examples of boson mass extractions in the SUSY broken/Z(2)-symmetric
(left plot) and in the supersymmetric/Z(2) broken phase (right plot), both in the bosonic vacuum.
The top panel shows the full correlator, the middle one the connected part and the lowest one the
corresponding effective masses. In the SUSY broken phase wecan fit double exponentials (plus a
small shift due to the residualZ(2) breaking), while in theZ(2) broken phase only one exponential
can be fitted, since the signal is quickly dominated by the fluctuations stemming from the large
disconnected contribution.

In figure 4 we show examples of fermion mass extractions in both phases. In the left plot
(SUSY broken phase) the top panel shows the correlator of theZ(2)-even state which can be well
fitted with a double exponential with the lowest mass corresponding to the Goldstino mass. The
middle panel shows theZ(2)-odd state fitted with a single exponential. The right plot shows the
fermion correlator in the supersymmetric phase (top panel), on a log scale (middle panel) and the
corresponding effective masses (bottom panel). It is remarkable that the signal of the fermion
correlator can be followed over more than six orders of magnitude. Of course this just reflects the
efficiency of the employed fermion loop algorithm [4].

Finally, in figure 5 we show the full boson and fermion mass spectrum in the left and right plot,
respectively, as a function of the bare massamacross the supersymmetry breaking phase transition
occurring at aroundamc ∼ 0.042. We see how the mass spectrum in the SUSY broken/Z(2)-
symmetric phase fans out into theZ(2)-even and -odd states, with bosonic and fermionic masses
non-degenerate, while in the supersymmetric/Z(2)-broken phase the states collapse onto a degen-
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Figure 3: Boson mass extraction in the SUSY broken/Z(2)-symmetric (left plot) and in the
supersymmetric/Z(2) broken phase (right plot).

erate mass, in addition to the boson and fermion masses beingequal. In the SUSY broken phase we
can crosscheck the mass determination in the bosonic sectorwith the one in the fermionic sector
and we find very convincing consistency. This agreement in the SUSY broken phase and the de-
generacy of the boson and fermion masses in the supersymmetric phase is rather surprising, given
the fact that the simulations are at finite and rather coarse lattice spacingag= 0.25. Moreover, it
should be kept in mind, that in the SUSY broken phase it is rather difficult to keep the systematic
effects from mixing with higher excited states under control.

A first preliminary investigation of the effects of the finitevolume on the spectrum reveals that
they are essentially negligible for the volumeL/a = 64 that we are using here. This is not quite
the case for the boson mass spectrum in the SUSY broken phase.In fact, the investigation in [11]
suggests a distinct finite volume scaling of the boson masseswith the lowest boson mass vanishing
towards the thermodynamic limit.

An interesting feature of the spectrum of a theory with spontaneously broken supersymmetry is
of course the occurrence of the massless Goldstino. Since inour regularisation the supersymmetry
is broken explicitely at any finite lattice spacing, the Goldstino is only approximately massless as
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Figure 4: Fermion mass extraction in the SUSY broken/Z(2)-symmetric (left plot) and in the
supersymmetric/Z(2) broken phase (right plot).
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Figure 5: Mass spectrum for bosonic (left plot) and fermionic excitations (right plot). The superscript(2)

denotes the excited state.

can be seen in figure 5. To corroborate the identification of this low mass state as the Goldstino, we
plot in the inset of the right plot also the contribution (amplitude) of that state to the full fermion
correlator. It turns out that the amplitude decreases as we increase the bare mass and vanishes
at the transition to the supersymmetric phase, i.e. the Goldstino decouples from the system at the
supersymmetry restoring phase transition.
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