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1. Introduction

It is an interesting and long standing problem whether the UA(1) symmetry is restored or not
above the phase transition temperature of QCD. At low temperature it is well known that the flavor
non-singlet chiral symmetry is spontaneously broken according to the pattern:

SU(N f )L⊗SU(N f )R⊗U(1)V ⊗U(1)A→U(1)V ⊗SU(N f )V , (1.1)

where U(1)V is the baryon number and V,A stand respectively for vector and axial sectors. Here
the UA(1) symmetry is special because it is violated by a quantum effect through anomaly. In
particular, it is broken by the presence of gauge configurations with topological charge Q different
from zero, that generate an anomalous contribution to the divergence of flavor-singlet axial-vector
current.

While the theoretical understanding of the UA(1) symmetry at zero temperature is well estab-
lished, its finite temperature behavior has not been investigated in full detail yet. Some predictions
come from the instanton gas models that are supposed to work only at very high temperatures,
where the instanton density is exponentially suppressed and so the UA(1) symmetry effectively
restores. An interesting question is then if this suppression occurs at the chiral phase transition.
Only recently the problem was studied with ab-initio lattice QCD calculations. The problem is in-
teresting because whether the UA(1) is restored or not could influence the order of the chiral phase
transition [1].

We investigate the behavior of the UA(1) symmetry at high temperature by the numerical
simulation of lattice QCD. For a systematic study of the UA(1) symmetry, chiral symmetry has to
be realized to a good approximation. The current optimal answer to this problem is the overlap
fermion [2], whose Dirac operator is

Dov =
r0

a
[1+ sign(HW (−r0/a)], (1.2)

with HW (m) the massive hermitian Wilson operator. Overlap fermions realize exact chiral symme-
try on the lattice.

Dynamical simulations with the overlap fermions are possible with current algorithms and
machines and were performed by the JLQCD collaboration in the past years [3] at the cost of
fixing topology throughout the HMC trajectories. A technique has been developed [4] to obtain the
physical θ = 0 results from these ensembles, which works nicely at zero temperature. It was shown
that the effect of fixing topology is of order O(1/V ) on a lattice of volume V . Fixing topology is
helpful also in checking results of chiral random matrix theory [5], that requires isolation of one
topological sector. The theoretical predictions are nicely confirmed by the lattice data.

At finite temperature the application of the methods developed at zero temperature is not
straightforward, as pointed out in [6]. We checked numerically in pure gauge theory [7] that even
at finite temperature these systematic errors are under control.

In this work, we report our results on two-flavor QCD with overlap fermions.

2. Lattice setup

In Table 1 we list simulation parameters. The lattice size is 163 × 8 in lattice units. We
use Iwasaki gauge action and two flavors of overlap fermions. The topology is fixed to Q = 0
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β am am=0 (fm) T (MeV) T/Tc = 180 MeV Neigenval Ncorrelators

2.18 0.01 0.14379 171.5 0.95 118 100
2.18 0.05 0.14379 171.5 0.95 350 320

2.20 0.01 0.13909 177.3 0.985 187 187
2.20 0.025 0.13909 177.3 0.985 303 272
2.20 0.05 0.13909 177.3 0.985 279 279

2.25 0.01 0.12818 192.4 1.06 335 331

2.30 0.01 0.11834 208.4 1.15 512 479
2.30 0.025 0.11834 208.4 1.15 226 183
2.30 0.05 0.11834 208.4 1.15 281 281

2.40 0.01 0.10137 243.3 1.35 477 319
2.40 0.05 0.10137 243.3 1.35 210 210

2.45 0.05 0.09403 262.3 1.45 80 -

Table 1: Parameters for the N f = 2 simulations. Lattice 163× 8 and Q = 0. Reported also the number of
configurations analyzed to produce the correlators.

throughout the HMC simulations by adding extra terms to the action [8]. The temporal size Nt = 8
was chosen in order to obtain configurations smooth enough to guarantee the localization properties
of the overlap operator [9]. The aspect ratio Ns/Nt is not optimal for finite temperature simulation
but we do not consider volume dependence in this exploratory work. Stored configurations were not
enough to precisely estimate the transition point, so we assume a critical temperature of Tc = 180
MeV and quote the temperature relative to this value. An interpolating curve obtained at zero
temperature is used for an estimate of the lattice spacing at several β ’s (in the chiral limit) and thus
the temperature. We have only one measurement of the zero temperature pion mass at β = 2.30
and bare quark mass am = 0.015, where mπ = 290 MeV.

3. Dirac spectrum

We begin our discussion with the properties of the Dirac operator spectrum. The region we
are interested in is the near-zero modes sector which represents the infrared behavior of QCD. At
zero temperture we expect non-zero density of eigenvalues at zero as dictated by the Banks-Casher
relation [10]. We expect that this density vanishes once we cross the chiral phase transition at Tc in
the infinite volume limit.

The next question is what happens if we assume that the UA(1) symmetry is restored. It was
recently shown [11] that the strongest constraint from the Ward-Takahashi identities in two-flavor
QCD is:

lim
λ→0

lim
m→0

ρ(λ )

λ 2 = 0. (3.1)

As a consequence it can be shown that the difference of susceptibilities (volume integrals of the

3



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
1
9
7

UA(1) symmetry at the phase transition - An update Guido Cossu

correlators) related by a parity transformation, such as:

χπ −χδ =
∫

∞

0
dλ

4m2ρ(λ )

(m2 +λ 2)2 (3.2)

vanishes in the infinite volume limit. Then, the UA(1) symmetry appears to be restored if we
measure such kind of operators. A gap in the spectrum ρ(λ ), a much stronger condition than
(3.1), is also a sufficient condition for the U(1)A symmetry restoration in the chiral limit. Thus, the
low-lying Dirac spectrum at different temperatures is a good observable to investigate the UA(1)
symmetry restoration. We can look for the minimal λ 3 behavior or eventually for a stronger gap.

We calculate 50 lowest eigenpairs of the overlap Dirac operator (Dov not γ5Dov). The result is
plotted in figure 1 after a rescaling of the imaginary part to dimensionful quantities to compare the
spectra at various temperatures.
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Figure 1: Spectral density of the massless overlap Dirac operator for N f = 2. The several β s were isolated
to emphasize the sea quark mass dependence of the density. Zero counting of eigenvalues is intended on the
left when the filled area ends.

The outcome of our calculation is quite clear: in the chiral limit a gap opens in the spectrum
at high temperatures implying a strong suppression of the U(1)A violating terms. The gap seems
opening at the temperature around the chiral phase transition∼ 180 MeV, but is difficult to identify
the exact point with current data due to possible volume effects. Certainly a gap is there starting
from β = 2.25, i.e. ' 192 MeV. We do not observe any accumulation of near-zero modes in the
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chiral limit. A small peak is visible in the highest mass case, but could be most probably ascribed
to the explicit, strong, violation of chiral symmetry by the mass term.

An evident limitation of this calculation is the volume dependence. A bigger volume could
lead to a closure of the gap for example because there is more space to create the topological objects
that are related to the near zero modes. This is an issue that needs to be investigated in the future.

4. Correlators

Further information can be obtained from degeneracies of four different meson channels. The
scalar flavor-singlet (σ ) and the pseudoscalar triplet (π) are related by the SU(2) chiral transforma-
tion, like the pseudoscalar singlet (η) and the scalar triplet (δ ), see figure 2. These two channels
are expected to be degenerate at T > Tc when chiral symmetry SU(2)L⊗ SU(2)R is restored. If
the UA(1) symmetry is effectively restored all correlators should be identical. This degeneracy im-
plies that the disconnected parts in the singlet correlators should vanish. A gap in the spectrum is
compatible with a strong suppression of the disconnected part but the opposite cannot be inferred.

Figure 2: Diagram of symmetry relations between the lightest meson in two flavors QCD.

We measure the spatial correlators in the four channels: σ ,π,δ ,η . The very short distance part
of meson correlators is unreliable, since they are estimated using 50 eigenmodes only. Therefore,
the screening mass could not be reliably extracted from the small spatial extension.

Nevertheless we can extract a qualitative estimate of the degeneracy of various channels.
Looking at Figure 3 we again observe hints for the UA(1) symmetry restoration near the chiral
limit. At the lowest mass all correlators are identical within errors and this becomes more evident
as temperature increases. This means that the disconnected diagrams are zero. The conclusion in
this case is that the diagram in Figure 2 is valid in every direction, i.e. all mesons are degenerate:
the U(1)A symmetry is restored.

5. Conclusions

By measuring the eigenmodes of the overlap Dirac operator we have found that a gap is present
once we approach the chiral limit. This is a convincing evidence of restoration of UA(1) symmetry
above the chiral phase transition. The exact point where the symmetry is restored cannot be checked
with current data, so we cannot settle the question whether the restoration is at or above Tc.
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Figure 3: Meson correlators at temperatures 171 ∼ 208 MeV. Mass is decreasing towards the bottom of
every column. PS and S stand for pseudoscalar and scalar respectively.

A second evidence comes from the related correlator degeneracy at the same temperatures.
All the two point meson spatial correlators look the same in the chiral limit as soon as the critical
temperature is crossed. In two flavor QCD this is a sign of UA(1) symmetry restoration [12].

Some systematics are to be addressed in future studies: volume dependence and deeper chiral
limit and cross checking current results with an action that allows topology change while retaining
a very good chiral symmetry.
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