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1. Apologies

These proceedings have major defects. First, as

for the references, I only quote the ones I used

for preparing them. These are mostly review

articles and the reader will find there more ex-

tensive citations. Second, I present a survey of

perturbative methods for QCD, including at the

end a part concerning non-perturbative numeri-

cal results. The details on each of the methods

discussed are necessarily limited: they should be

intended as a guide through some of the keywords

of each subject, written in italic. Anyway, I could

not escape for a second time from writing them

without getting into troubles with my friends

Nikos Trachas and George Zoupanos, whom I

thank again for the pleasant athmosphere of the

school.

2. Introduction

The theory is characterized at microscopic level

by the presence of a gluon self interaction with a

strength related by symmetry to the one of the

quark gluon coupling. This is due to the non

abelian property of the gauge group.

In the well known case of QED, the gauge

symmetry is abelian and the invariance of the

action under a local phase rotation of the Fermi

fields,

Ψ(x)→ eiα(x)Ψ(x) (2.1)

is fulfilled if Ψ is minimally coupled to the

gauge field:

∂µΨ(x)→ (∂µ − ie Aµ)Ψ(x) (2.2)

and if the gauge field Lagrangian is invariant

under

Aµ → Aµ + 1/e ∂µα(x) (2.3)

i.e. is of the form:

L(Aµ) = −1/4 FµνFµν
Fµν = ∂µAν − ∂νAµ (2.4)

The Lagrangian is quadratic in the gauge

field.

In the case of an SU(3) gauge symmetry, the

phase transformation affecting the color degrees

of freedom (ic):

Ψ(x)ic → (eiΩ(x))icjcΨ(x)jc (2.5)

where

Ω(x)icjc =
∑
k

T icjck α(x)k (2.6)

with T icjck the 8 traceless and Hermitean gen-

erators of the SU(3) group.

The covariant derivative acts non-trivially in

colour space:

Dicjcµ = ∂µδ
icjc − ie Aicjcµ (2.7)

where
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Aicjcµ =
∑
k

T icjck Akµ (2.8)

There are as many gauge fields as group gen-

erators. In this case, to preserve the invariance

of the fermion action, the gauge field must sat-

isfy a tranformation that consists of a shift of the

field ( like in the abelian case) AND of a color

rotation:

Aµ → Aµ + 1/g ∂µΩ+ i[Aµ,Ω] (2.9)

The gauge action invariant under such a trans-

formation is non-quadratic and contains cubic

and quartic self-interactions.

L(Aµ) = −1/4 GµνGµν
Gµν = ∂µAν − ∂νAµ + ig[Aν , Aµ] (2.10)

The gluon self interactions lead to two ma-

jor consequences: i) the property of asymptotic

freedom i.e. a weakly interacting theory at small

distances, ii) the confinement of colour charges

at large distances.

An analytic solution at all distances is still

missing and various perturbative methods have

been devised, with a lowest order supported in

each case by specific experimental facts.

In Table 1, shown at the end, I give a sum-

mary of the perturbative methods that I will be

briefly reviewing in these lectures, by recalling

the corresponding expansion parameter, the ba-

sic degrees of freedom, the experimental fact sup-

porting the approximation and the name.

3. Perturbative QCD

The experimental evidence that a perturbative

expansion in the coupling constant ( very much

like in QED) might be a good approximation un-

der specific conditions is provided by the validity

of scaling laws for processes with large momen-

tum transfers: adimensional physical quantities,

like cross sections multiplied by suitable powers

of the center of mass energy, depend upon di-

mensionless invariants made from EXTERNAL

momenta only. A prototype of these processes is

the total cross section of electron positron into

hadrons, where only a single external invariant

exist, i.e. the total center of mass energy. In this

case, the scaling law is very simple and states

that the “adimensional cross section” is a con-

stant

σ(e+e− → hadrons)× E2cm = constant (3.1)
The next case, is the cross section for the

hadron inclusive deep inelastic scattering of a lep-

ton off a hadron. Here there are two external

momenta, the momentum transfer of the scat-

tered electron, q , and the momentum of the tar-

get hadron, P . One can the form two indepen-

det kinematic invariants, the momentum trans-

fer squared, q2, and the scalar product Pq . The

dimensionless cross section ( the structure func-

tion) can only depend, in the scaling limit, upon

the dimensionless ratio −q2/2pq = xBjorken
In the two examples above, the validity of

scaling laws suggests pointlike interactions of the

photon with the hadron constituents, the charged

quarks in this case, only affected by small correc-

tions governed by the small value of the strong

coupling constant experienced at large transferred

momenta. The existence of a coupling “running”

with the scale is typical of renormalizable theo-

ries. For these theories, predictions for physical

quantities are free of ultraviolet divergences only

when expressed in terms of renormalised coupling

constant and masses, i.e. of parameters fixed

by some independent experimental input at some

reference physical scale q20 .

Different choices of the reference scale bring

to different values of the renormalized coupling

in such a way that the final physical predictions

to all orders of perturbation theory are identical.

The renormalized coupling as a function of the

renormalization scale moves on a curve of “con-

stant physics” fixed by the integration constant

of the renormalization group equation:

dα(Q2)

dlog(Q2)
= β(α(Q2)) =

−b0α(Q2)2 + b1α(Q2)3 + . . . (3.2)

The first term in the expansion has a nega-

tive sign, opposite to the one of QED and leads

to a solution of the form
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α(Q2) = 1/(b0log(Q
2/Λ2)) (3.3)

where Λ defines uniquely the theory (apart

from quark masses) and is renormalisation group

invariant. With increasing Q2, the coupling con-

stant decreases and opens the way to a perturba-

tive treatment of strong interactions. The iden-

tification of the large momentum transfer of the

process with the renormalisation scale of the “run-

ning” coupling resums the potentially large loga-

rithms of the ratio of the scale of the process over

the renormalization scale (“renormalization scale

logs”) that could make the effective expansion

parameter of order one and makes the pertur-

bative approximation truncated at a fixed order

more reliable. Figures 1 and 2 show the “experi-

mental” running of αS and the determination of

its value at the Z0 mass reference scale.

The smallness of the coupling constant at

small distances does not imply necessarily a good

convergence of the perturbative expansion. As

we have seen in the case of a bad choice of the

renormalization scale, each power of the coupling

in the series may appear multiplied by a loga-

rithm of the “running scale”. The “renormal-

isation scale logs” are not the only potentially

dangerous for the convergence of the perturba-

tive expansion [2]. Indeed, hard processes can be

divided into the two following classes:

i) totally inclusive processes , like e+ e− →
hadrons, are “long distance insensitive”, i.e. do

not show in perturbation theory a singular de-

pendence upon quantities related to the non per-

turbative aspects of the “long distance” physics

of QCD,

ii) inclusive, but “long distance sensitive”,

like the deep inelastic scattering, where the per-

turbative corrections to the lowest order contains

logarithms of the running scale over the quark

mass or over any long distance regulator that

tames the singularities of collinear emission of

massless quanta from massless quanta. These

“collinear singularities” are universally factoris-

able and can be “renormalized” like the usual ul-

traviolet singularities, i.e. reabsorbed into FUNC-

TIONS ( the parton distributions) normalized at

some factorisation scale Q20. The “long distance

regulator’ in the ratio over the running scale in

the collinear logaritms is then replaced by the

factorisation scale q20 . Again, a judicious choice

of the factorisation scale close to the “running

scale” avoids the presence large logarithms in the

perturbative series. The “running” with the fac-

torisation scale of the collinear logarithms is gov-

erned by the DGLAP equations that need input

parton densities as boundary values. For the sim-

plest case of the “non singlet” quark densities (

i.e. valence quark distributions”) the equations

are of the form:

dqNS(x,q2)
dlog(Q2)

=
∫ 1
x
dy
y P

qq(x/y)qNS(y,Q2) (3.4)

More complicated coupled equations hold for

the singlet case. The “evolution probabilities”

P qq(z) can be perturbatively expanded:

P qq(Z) = αP qq1 (z) + α
2P qq2 (z) + ... (3.5)

iii) processes with EXCLUSIVE kinematics,

sensitive also to “infrared logarithms” arising from

incomplete cancellation among real and virtual

emissions of soft gluons. As an example, when

the Bjorken variable x tends to 1, the evolution

probabilities contain large corrections due to the

presence of double logs of the type

(α log(1− x)2)N (3.6)

These are resummed by suitable techniques

generalizing the exponentiation of infared singu-

larities of QED.

Figure 3 shows the agreement of the pertur-

bative predictions incuding the resummation of

next-to-leading logarithms, i.e. those appearing

raised to a power equal to the one of the pertur-

bative expansion minus one, for the hadronic jet

inclusive cross section at the Tevatron.

iv) processes affected by “low x “ logarithms

in the gluon evolution probability, affecting the

behaviour of singlet structure functions at very

small values ( 10−4 ) of the Bjorken variables x:

P gglowx = α(1/x+ αlog(x)/x+ (αlog(x))
2/x+ ...)

(3.7)
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The resummation implied by the DGLAP

equation, leading log in the factorisation scale,

leads to a gluon distibution behaving at low x’s

like:

g(x) ' e
√
log 1/x (3.8)

The explicit resummation of the “low x lead-

ing logs” is done via the BFKL equation and

leads to a behaviour like:

g(x) ' x−λg (3.9)

However, next-to-leading-log (NLL) correc-

tions to the BFKL resummation are very large

and render a bit questionable the convergence of

the approach:

λNLLg = λLLg (1− 3.5αS), (3.10)

with

λLLg = 2.65αS (3.11)

The best fits to the Hera data are today ob-

tained by using NLL DGLAP equations together

with a a steep distribution of the gluon distribu-

tion. and are shown in figure 4.

The choice of the renormalisation and of the

factorisation scales is irrelevant to all orders of

perturbation theory, but it may affect a finite

order prediction in a significant way. Altough

on general grounds it should be chosen “close”

to the “running scale”, its actual choice is ar-

bitrary and only the availability of higher order

corrections will reduce the sensitivity of the pre-

dictions to such a choice [1]. Three loops calcu-

lations start to be available, for example, for the

hadonic width of the Z0 that can be used to ex-

tract the value of the strong coupling constant at

that scale,reaching an absolute error of 0.002.

The ultimate limitation of perturbative cal-

culations comes from power corrections; i.e. from

contributions of the type (ΛQCD/Q)P .

The power P can be related to the conver-

gence of the perturbative expansion. Indeed, the

generic perturbative expansion:

f(αS) = f(0) +
∑
n=0

fnα
n+1
S (3.12)

is expected to diverge FACTORIALLY for

large n:

fn ' n!bn (3.13)

The terms of the series first decrease and

have a minimum at n = n∗, with n∗ ' 1/αb.
Nevertheless, the series can be “resummed”

by making a Borel transform:

B(f(t)) = f(0)δ(t) +
∑
n

fnt
n

n!
(3.14)

For the terms of the new series the factorial

growth has been cancelled out and the original

quantity can be recovered by the inverse trans-

form:

f(αS) =

∫ ∞
0

dte−t/αSB(f(t)) (3.15)

This is not possible if there are poles for

B(f(t)) along the integration path: the possibil-

ity of going complex and circumventing the pole

leads to an ambiguity in the choice of the path,

above or below the pole. The difference of the

two paths, i.e. the ambiguity, just amounts to

a closed circle around the pole that can be es-

timated by the Cauchy theorem. For example,

if:

B(t) ' 1

t− t0 , (3.16)

the uncertainty will be proportional to:

et0/αS(Q
2) '

e−t0b0log(Q
2/Λ2) =

(Λ2/Q2)t0b0 (3.17)

i.e. the ambiguity of the perturbative series

is a power correction and is removed only by the

full inclusion of all power corrections. One then

EXPECTS a power correction to be present to

compensate the ambiguities of the perturbative

series. By looking at the location of the poles

of the Borel transform, one can predict the exis-

tence of corresponding power corrections in the

cases where alternative ways to determine their

presence are lacking.
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In QCD, there are poles of the Borel trans-

form on the real and positive ′′t′′ axis related to
the behaviour of the coupling constant at low val-

ues of the virtual momentum running in loop in-

tegrals of hard processe: they are called “renormalons”

[3]. As an example, I report the case of the cor-

relation of two vector currents:

∫
d4xeiqx < 0 | T (Jµ(x)Jν (0) | 0 >
= (qµqν − q2gµν)Π(q2) (3.18)

A sketch of the derivation in the limit of large

number of flavours goes through the following

steps:

1) define:

D(q2) = 4π2dΠ(q2)/dlog(q2) (3.19)

The diagrams leading in the above mentioned

limit are the iteration of fermion bubbles in the

vacuum polarisation and can be resummed through

the renormalisation group running of the cou-

pling constant, with the result:

D(Q2) '
∫
dk2

k2
α(k2)F (k2)

=
∑
n=0

αS

∫ ∞
0

dη

η
F (η)(−b(Nf )0

αSlog(η/C))
n (3.20)

where η = k2/q2, αS = αS(q
2) and b

(Nf)
0

is the term of the leading order beta function

coefficient proportional to the number of flavours

( negative with the convention of eq. 3.2). In the

low η region F (η) ' A × (k2)a and the integral
over η can be performed with the result:

D '
∞∑
n=0

αn+1S n!(b
(Nf )
0 /a)n (3.21)

The Borel transform is easily calculated:

B(t) =
∑
n

tn(b
(Nf )
0 /a)n ' 1

a− (b(Nf )0 t)
(3.22)

The derivation strictly relies on the large flavour

number limit. If extended to the real case of

QCD where the dominant term in the beta func-

tion comes from the gluon vacuum polarization,

the coefficient b0 is positive and from eq. 3.22,

one obtains that the pole of the Borel transform

lies on the positive real axis, leading to an ambi-

guity of the form:

(Λ2/q2)a (3.23)

with a = 2 in this particular case.

From the Operator Product Expansion (OPE)

of the two currents we know indeed that the lead-

ing power corrections are of the type found from

the localization of the first( the closest to the real

axis) renormalon pole.

The information coming from the presence

of renormalons in the perturbative series is then

“redundant” when there is an OPE, but may be

used as an indication for the leading power cor-

rections affecting processes that do not admit an

operator product expansion analysis.

4. Heavy Quark Effective Theory

A second useful approximation is the expansion

around the limiting case of an infinitely massive

quark. The effective Lagrangian describing the

leading term in the approximation exhibits ad-

ditional symmetries with respect to the ordinary

QCD Lagrangian [4]. The basic step is the sepa-

ration of the heavy quark four momentum q into

a dominant term proportional to the quark mass

and into a residual one, according to:,

qµ =Mvµ + kµ (4.1)

Correspondingly, the Dirac spinor ψ(x) can

be factorized as follows:

ψ(x) = e−iMvxψ̃(x) (4.2)

where, in turn:

ψ̃(x) =
1 + /v

2
Qv +

1− /v
2

χ−v (4.3)

The decomposition up to now is fully gen-

eral, with Qv and χ−v eigenstates of the velocity
operator /v with ± eigenvalues, respectively.
By inserting the decomposition above in the

QCD Lagrangian:

5
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ψ̄(i/D −M)ψ (4.4)

we get:

(Q̄v + χ̄−v)(M(/v − 1) + i/D)(Qv + χ−v)
= Q̄vivDQv − χ̄−v(ivD + 2M)χ−v
+Q̄vi /D

T , χ−v + χ̄−vi /DTQv (4.5)

where DTµ v
µ = 0. The field χ−v has a mass

of 2M , a quadratic action and can be integrated

out to derive the effective Lagrangian for the Qv
field:

Leff = Q̄v(ivD + i /D
T 1

2M + ivD
i /DT )Qv(4.6)

The Heavy Quark Effective Lagrangian is ob-

tained by expanding in inverse powers of M the

expression above. In particular, to the first or-

der, one gets:

L = L0 +
1

2M
L1 (4.7)

where,

L0 = Q̄vivDQv

L1 = −Q̄v /DT /DTQv
= −Q̄vD2TQv − gQ̄vσµνGµνQv/2 (4.8)

The leading term (L0) is diagonal in Flavour

and Spin space ( Spin-Flavour symmetry). The

coefficient of the first term in the next-to-leading

Lagrangian L1 can be shown to be “protected”

to all orders by the invariance under redefinition

of the “residual” momentum in eq. 4.1, while

the one of the second term, proportional to the

strong coupling constant g, is not.

The effective Lagrangian leads to many phe-

nomenological predictions: I will only quote some

of them.

The first refers to the mass formulae for heavy-

light mesons: in particular, the independence of

the leading Lagrangian from the heavy quark

spin, leads to the prediction of a degeneracy among

doublets of mesons with a given spin for the light

quark and different values of the heavy quark

spin. In the zero orbital angular momentum sec-

tor, this applies to D − D∗ and B − B∗ states

of total angular momentum 0 and 1 respectively.

In the angular momentum 1 sector, a degener-

acy is expected for the states D∗2 − D1, where

the light spin combines with the orbital angular

momentum to give a partial angular momentum

3/2 and the total angular momentum is 2 and 1

respectively, and for the states where the orbital-

light partial angular momentum is 1/2 and the

total is 1 and 0 respectively.The latter have not

been observed experimentally because, according

to M.Wise, they are too wide to be found, The

splitting among members of a doublet is induced

by the spin dependent part of the order 1/M la-

grangian , i.e. by the second term in the equation

cited.

The relevant hadron matrix element respon-

sible for the splitting is:

< σH · Bl > (4.9)

where the Bl is the chromomagnetic field

generated by the light quark. The matrix el-

ement above, taken between the members of a

doublet ( denoted by +/−), is given by:

< (σH · Bl)−± >=
±n±/4 ∗ constant (4.10)

where n± = (2S± + 1) with S± is the total
spin of the state. The mass formula for an ele-

ment of the doublet can be finally parametrised

as:

MH =M + Λ̄− λ1

2M
± n±λ2
2M

(4.11)

The splitting inside a doublet depends upon

the parameter λ2, that only depends upon the

light system partial angular momentum. From

B − B∗ splitting, one gets: λ2 = 0.12GeV 2 and
from D − D∗ splitting, λ2 = 0.10 GeV 2, rather
consistently.

From the D1 −D∗2 “doublet” one expects in
general a different value and gets: λ′2 = 0.013GeV 2.
The second application of HQET is repre-

sented by the “Isgur-Wise” function, a universal

function for semileptonic heavy → heavy′ de-
cays, crucial for the determination of the weak

6
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interaction CKM mixing matrix. To leading or-

der in 1/M , the momentum trasfer to the lep-

tonic current in the decay qµ is given by:

qµ =MHvµ −M ′
Hv
′
µ (4.12)

and its square depends upon the “overlap”

between the two four velocities: w = v × v′.
The four velocities are then used to parametrise

the possible form factors:

<D|Vµ|B>√
MBMD

= h+(w)(v + v
′)µ + h−(w)(v − v′)µ

<D∗(ε∗µ)|Vν |B>√
MBMD

= hv(w)ε
νµαβε∗µv′αvβ

<D∗(εµ)∗|Aν |B>√
MBMD

= hA1(w)(w + 1)ε
∗
µ − hA2(ε∗v)v′µ − hA3(ε∗v)vµ

(4.13)

The strategy is to derive the most general

effective Heavy Meson interactions that preserve

the symmetry induced by the heavy mass limit

at quark level and to find the independent form

factors surviving in this limit.

Meson effective interactions are built from

the field:

Hab = Q̄aqb (4.14)

with the following properties:

1+/v
2 H = H

∗ Tr(Hγ5) ' pseudoscalar
∗ Tr(Hγ5) ' pseudoscalar

T r(Hγµ) ' vector (4.15)

The field H with the above properties can be

parametrised as:

H =
1 + /v

2
(γµP

µ
v + γ5P

5
v ) (4.16)

where Pµv and P
5
v are the vector and pseu-

doscalar meson fields, respectively.

As an example, we derive the constraint on

the form factors describing the matrix element

of a vector current among pseudoscalar heavy

mesons:

< D | Vµ | B >

=< D | c̄γµb | B >→ Tr(H̄v′c γµH
v
b χ)(4.17)

where the hadronic physics is entirely parametrized

by χ, a general matrix restricted by parity to be

built from:

1 γµ σµν vµ v
′
µ:

χ = χ0 + χ1/v + χ2/v
′

+χ3/v/v
′ (4.18)

However, the states H̄v
′
c and H

v
b are eigen-

states of v′ and v, respectively and only a single
form factor survives, with the Lorentz structure

that can be obtained by selecting inside H the

pseudoscalar part:

Tr(H̄v
′
c γµH

v′
b χ)

' Tr(γ5 1+/v
′

2 γµ
1+/v
2 γ5)

' vµ+v
′
µ

2 (4.19)

With the same procedure, one obtains the

relations:

h+(w) = hv(w) = hA1(w) = hA3(w) = ξ(w)

h−(w) = hA2(w) = 0 (4.20)

The reduction of the form factors for the vec-

tor matrix element can also be obtained from the

conservation of the vector current between the

different flavours in the infinite quark mass limit:

It follows that:

qµ < Vµ >= 0 (4.21)

i.e. :

0 = (vµ − v′µ)×
(h+(w)(v + v

′)µ + h−(w)(v − v′)µ)
(4.22)

that leads to: h−(w) = 0. Fermion charge
conservation also leads to the normalisation con-

dition for the Isgur-Wise function at zero recoil,

i.e. at w =1, in the infinite quark mass limit:

ξ(1) = 1 (4.23)
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5. Chiral perturbation theory

The expansion parameter of this approximation

is
E2π

(4πfπ)2
where Eπ is the energy of a light pseu-

doscalar. Indeed, the method relies on the con-

struction of an effective theory among psudoscalars

that embeds the spontaneous breaking of chiral

symmetry of QCD. In the QCD Lagrangian, at

zero quark mass, both vector and axial phase

transformations for the fermion field:

δψ = iαψ

δψ = iαγ5ψ (5.1)

are exact symmetries, at classical level. In a

theory with Nf flavours, the symmetry extends

to SU(Nf )left × SU(Nf)right ×U(1)vector, ( the
U(1)axial is broken by the anomaly at quantum

level) and it is realised “a’ la Goldstone”, i.e. is

spontaneously broken to U(Nf )vector.

The effective theory of light pseudoscalars for

Nf = 2 can be constructed starting from a linear

sigma model for a set of scalar fields organised in

a matrix as follows:

Φ = σ + i~τ · ~π (5.2)

with the following most general renormalis-

able Lagrangian:

L = Tr(∂µΦ
∗∂µΦ)

−µ2/2Tr(Φ∗Φ)− λ/48Tr((Φ∗Φ)2) (5.3)

The Lagrangian is invariant under the trans-

formation:

φ→ VRΦV
+
L (5.4)

where VL,R are unitary 2× 2 matrices. foot-
note ?? The model exhibits an SU(2)left×SU(2)right
symmetry. Note that the φ field transforms like

an interpolating field for a “meson” psudoscalar

made of qleft− ¯qright pair. The Lagrangian writ-

ten in terms of σ and π fields, reads:

L = ((∂µσ)
2 + (∂µπ)

2)/2

−µ2(σ2 + π2)− λ(σ2 + π2)2/4! (5.5)

The “potential” is a function of ρ2 = σ2+π2:

the symmetry of the model can also be seen as

an O(4) invariance in the for the vector (σ, π).

There is a total analogy with the Higgs sector

of the standard model, and, as in that case, the

spontaneous breaking of the symmetry depends

upon the location of the minimum of the poten-

tial. A spontaneously broken solution is obtained

when the mass term is negative and the location

of the minimum is at:

ρ =
√
−12µ2/λ (5.6)

The “unbroken” solution has a minimum at

the origin that is obviously invariant :

0→ VR0V
+
L = 0 (5.7)

the residual invariance of the broken solution

depends upon the direction of the breaking: by

choosing it proportinal to the identity in the no-

tation of equation 5.2, i.e. in the direction of the

σ field, one gets:

ρ · 1→ ρ · VR · 1 · V +L
= ρ · VR · V +L (5.8)

IF, VR = VL, the minimum is invariant. There

is a residual symmetry left unbroken represented

by the SU(2)vector trasnformations, like in the

QCD case.

The physical set of states is found by expand-

ing around the new minimum, i.e. by shifting the

σ field:

σ ≡ S + ρ (5.9)

The Lagrangian in the shifted fields has now

a positive mass term for the S field and a zero

mass term for the ~π fields: a Lagrangian for

the ~π fields alone is obtained by sending the S

field mass to infinity while keeping the position

of the minimum constant. This limit transforms

the “double well” section of the potential into a

“double delta function” potential, with a fixed

modulus for the O(4) vector:

σ2 + ~π2 = ρ2 (5.10)

and the model becomes the non-linear sigma

model.

8
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By measuring the fields in “ρ units, the con-

dition above simply states that the original Φ

matrix is an SU(2) matrix. The field S is now a

function of the ~π fields and the matrix Φ is more

conveniently reparametrised as:

Φ = ei~τ ·~π/ρ (5.11)

The expression for Φ, expanded to the second

order in powers of ~π, reduces to the original one

with S expressed, to the same order, as a function

of ~π.

The non linear Lagrangian contains only a

kinetic part: the potential enforces the constraint

between S and ~π fields already taken into ac-

count:

L = ρ2Tr(∂µΦ
+∂µΦ)/4 (5.12)

One can extract the Noether axial current:

~J5µ =
δS

δ(∂µΦ)
~δ5Φ ' ρ∂µ~π (5.13)

in the one pion sector.

Its matrix element between a pion and the

vacuum is

< 0 | ~J5µ | π >=
ρ < 0 | ∂µ~π | π(q) >= ρ qµ (5.14)

By comparing with the well known PCAC

relation, we identify ρ with fπ and fix the only

unknown constant of the effective Lagrangian for

massless pseudoscalar interactions. Indeed, by

expanding to higher orders in the “pion” fields,

one get multifield interacting terms. The first is

a four pion interaction with strength:

∂µ~π
2∂µ~π2/ρ2 (5.15)

Proportional to E2π/f
2
π, i.e.to the expansion

parameter of the χpT approach.

The theory is NOT renormalizable ( the price

of decoupling the S field...), very much like the

standard model without the Higgs field. Loop

corrections need the presence of higher dimen-

sional operators with proper coefficients to cancel

the ultraviolet divergences.

In principle one should include all countert-

erms ( an infinite number) needed to keep the

predictions finite. However, these terms are or-

ganized in incresing powers of the expansion pa-

rameter and can be neglected if the energy of

the pions much smaller than 4πfπ, under the as-

sumption that the finite part of the counterterms

is not anomalously large.

The next order (O(E4)), where there are 12

new operators entering the Lagrangian with co-

efficients related to experimental quantities, still

retains some degree of predictivity.

Interesting extensions of the low effective La-

grangian approach are beingdeveloped for vector

mesons and for baryons.

6. The large Nc expansion

The approximation consists in considering the

theory in the limit of large number of colours

where only a subset of diagrams survive, preserv-

ing the main non perturbative aspects of the the-

ory at finite colour number ( three...) [5]. The

diagrammatic simplification was first noticed by

G.’t Hooft and it is best seen by adopting his

notation for describing fermions and gluons.

The first possess only one colour index and

their propagation in a diagram is indicated by

a line with an arrow distinguishing the fermion

from the antifermion case. The second belong

to the adjoint representation, have an upper and

a lower index and are represented by two paral-

lel lines with opposite arrows. To each ordinary

Feynman diagram corresponds a “color” diagram

constructed according to the notation described.

The color lines can be open or closed. In the lat-

ter case, a color index is summed and a factor

Nc is gained for the diagram. As an example,

the lowest order correction due to a quark loop

to the photon vacuum polarisation contains a sin-

gle closed colour line ( the fermion loop) and is

of order Nc.

To the next order, the first non trivial in

the strong coupling constant, one can exchange a

gluon inside the quark loop generating a color di-

agrams with two closed loops, i.e. of order N2c g
2,

where I have also included the order in the cou-

pling constant for future use.

At order g4 there are three possible diagrams:

two with the exchange of two gluons, one planar

and another non-planar where the two gluon lines

9
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cannot be drawn in a plane without crossing them,

an a third diagram with two quark loops con-

nected by two gluons. The corresponding “colour”

diagrams have three colour loops, one colour loop

and two colour loops, respectively. Their rele-

vance is then very different in the large Nc limit.

Indeed, in this limit, the expansion is governed by

the “effective coupling” g2N ≡ Ncg2 and the limit
should be taken while such a coupling is kept

fixed. The three diagrams in the new coupling

are of order: Ncg
4
N , Ncg

4
N/N

2
c and Ncg

4
N/Nc re-

spectively. Notice that the extra fermion loop,

the third diagram, costs an extra inverse power

of Nc. This appears also in the one-loop expres-

sion for the beta function of the g2N coupling,

where the fermion contribution to the vacuum

polarisation is suppressed by an inverse power of

Nc.

Qualitative important consequences of the

fermion loops suppression in the large Nc limit

are the prediction of infinitely narrow qq̄ reso-

nances: their decay needs the formation of an

extra qq̄ pair. Experimentally, such a suppression

seems at work in the Φ decay that occurs pref-

erentially in the KK channel, unfavoured by the

restricted phase space, instead of the ππ channel

( the Zweig rule). The latter would require an

extra fermion loop.

An interesting recent application of large Nc
suppression is the estimate of the relevance of

finite parts of the counterterms of the effective

Chiral Lagrangian. The leading lagrangian con-

tains only a single flavour trace ( remember that

the group is a flavour group) and among all dia-

grams, there is a leading subset in the large Nc
limit with a single fermion loop. The situation is

different for the next-to-leading lagrangian: there

are terms with a single flavour trace, like:

L3 × Tr(∂µΦ+∂µΦ∂νΦ+∂νΦ) (6.1)

and terms with two flavour traces, like:

L2 × Tr(∂µΦ+∂µΦ)Tr(∂νΦ+∂νΦ) (6.2)

In the second case, the two traces require

a second fermion loop and a suppression is ex-

pected. In Table 2, I report the experimental

determinations of the finite parts of the coun-

terterms of the order E4 Lagrangian compared to

their relative relevance in the large Nc limit. The

average value of the group of O(1) is about 0.4

and the one of the group of O(Nc) is about 3.3,

showing again the qualitative agreement with large

Nc predictions.

Unfortunately, although the approximation

seems a very promising one, no real quantita-

tive progress has been achieved along this line

for QCD, while it has been successfully exploited

in various 2-dimensional models.

Li value order

2L1 − L2 -0.6±0.5 1

L4 -0.3±0.5 1

L6 -0.2±0.3 1

L7 -0.4±0.2 1

L2 1.4±0.3 Nc
L3 -3.5±1.1 Nc
L5 1.4±0.5 Nc
L8 0.9±0.3 Nc
L9 6.9±0.7 Nc
L10 -5.5±0.7 Nc

Table 2: Large N order of finite counterterms of the

O(p4) χpT Lagrangian

7. Lattice QCD

The basic approximation of lattice QCD is the

discretisation of the space time: quarks and glu-

ons live on a 4-d crystal. In particular, fermions

live on lattice sites. A fermion field ψA(i, j, k, l)

is a function of four discrete coordinates [6] [7].

The theory on the lattice is the Euclidean ex-

tension of the origina Minkowski theory, where

the time has been rotated to the imaginary axis,

but the original continous O(4) symmetry of the

theory has been replaced by a discrete hypercu-

bic symmetry. The main appeal of the lattice

formulation of the theory, originally proposed by

K.Wilson , is that gauge invariance can be main-

tained EXACT. The explicit construction can be

found by “undoing” the limits of ordinary dif-
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ferential calculus, i.e. by introducing the “finite

difference derivatives:

∂µψ → 1/2(∇µ +∇∗µ)ψ (7.1)

where

∇µψ(x) ≡ ψ(x+ µ)− ψ(x)
∇∗µψ(x) ≡ ψ(x) − ψ(x− µ) (7.2)

The request of LOCAL gauge invariance reads:

ψA(x)→ GAB(x)ψB(x) (7.3)

where GAB(x) is a unitary SU(3) matrix,

is violated( as in the continuum) by the finite

difference derivative: ψ(x) and ψ(x + µ) trans-

form differently under a LOCAL gauge rotation,

they are at different sites, and cannot be com-

bined together in the finite difference derivative.

Again, the solution is the introduction of a field

Uµ to match the gauge phase rotation of neigh-

bouring fermions. If:

Uµ(x)→ G(x)Uµ(x)G(x + µ) (7.4)

then :

Uµ(x)ψ(x + µ)→ G(x)Uµ(x)ψ(x + µ) (7.5)

A kinetic gauge invariant lattice action for

the fermions can be constructed:

Lfermions =
1

2
¯ψ(x)( ∇(U) +∇∗(U))ψ(x) (7.6)

where

∇µ(U)ψ(x) ≡ Uµψ(x+ µ)− ψ(x)
∇∗µ(U)ψ(x) ≡ ψ(x)− U+µ ψ(x− µ) (7.7)

The gauge fields are represented by the group

elements, instead of the group generators, they

“live” on the links connecting neighbouring lat-

tice sites ( they are also named “links”). A gauge

invariant interaction among them is the colour

trace of any closed circuit, the “Wilson loops”. It

is straightforward to check that the cyclic prop-

erty of the trace ensures the invariance, under the

transformation of eq. 7.5, of the Wilson loops.

The simplest circuit that can be formed is the

elementary plaquette PL, i.e. a square around

four neighbouring corners. The Wilson action

for the gauge fields is just the sum of all possible

plaquettes.

The “naive continuum limit” of the action is

obtained by expanding in powers of the lattice

spacing, traditionally called ′′a′′. For this, we
need the expression relating the gauge link to the

ordinary gluon fields of the continuum theory:

Uµ = exp(i

∫ x+µ
x

dxµA
µ) (7.8)

The plaquette is easily handled in the abelian

case: the results is the exponential of the curl of

the gauge field around the elementary square:

Plaquette ' exp(i ∫
perimeter

dxµA
µ)

= exp(i
∫
surface

dσµνF
µν)

' 1− a4FµνFµν . . . (7.9)

up to terms of higher order in the lattice

spacing or that vanish by the antisymmetry of

the gauge field tensor Fµν .

The Dirac term is also reduced to the usual

continuum expression, by neglecting higher or-

ders in the lattice spacing:

Uµψ(x+ µ) ∼ (1 + iaAµ)ψ(x) + a∂µψ
→ ψ(x) + a(∂µ + iAµ)ψ(x) + . . .(7.10)

Notice that the coupling constant has disap-

peared in the covariant derivative. This comes

from a redefinition of the gauge fields that now

incorporate the coupling constant. As a conse-

quence, the pure gauge action appears DIVIDED

by the coupling constant square.

The properly normalized lattice action is then:

Lgauge = β
∑

plaquettes

PL (7.11)

where β ≡ 2Ncolours/g2.
The above limit is called “naive” because it

refers to a classical continuum limit. In the quan-

tum theory, the lattice spacing acts as an ultra-

violet cutoff ( the fields cannot vary at distances

11
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smaller that the lattice spacing) and the con-

tinuum limit is affected by divergences if taken

naively without a proper renormalization proce-

dure.

Quantum averages are obtained from func-

tional integrals of the type:

< φ1φ2...φn >=∫
Dφe(−SE(φ))φ1φ2...φn∫

Dφe(−SE(φ))
(7.12)

where the real exponent instead of a complex

one is a consequence of the Euclidean rotation.

Quantum averages appear like statistical av-

erages on a 4-d system in the canonical formu-

lation. The usual sum over states of statistical

mechanics is replaced by the functional integral

that on a discretized space-time is a functional

sum over possible gauge and fermion fields “con-

figurations”.

Analytic estimates for the quantum averages

can be obtained in the language of stat-mech, in

the “high temperature approximation”, i.e. in

the limit when βBoltzmann → 0. From the ex-
pression for the gauge action of eq. 7.11, this

limit corresponds to the “strong coupling expan-

sion”, i.e. g2 → ∞ In normal perturbation the-
ory, one solves exactly the free part of quantum

correlations and expands the rest in powers of

the coupling constant, in this case the whole ex-

ponential is expanded in a power series in β.

This approximation reproduces an important

feature of QCD, colour confinement, and is taken

as a good starting point of the lattice QCD ap-

proach, with some caveats to be seen.

A confinement test can be constructed from

the connected correlation of two plaqettes, when

the relative distance becomes very large. Each

plaquette is a “gluon source” that can be decom-

posed into a sum of terms with a given number

of gluons by expanding to an arbitrary order the

expression for Uµ as a function of Aµ, starting

from a 2 gluon state. If confinement is ABSENT,

massless gluons are the good degrees of freedom

also at large distances, if it is PRESENT, only

colour singlets survive at large distances, with a

non zero mass.

The plaquette correlation provides a test of

the mass of the states surviving at large dis-

tances.

∑
~x < 0 | PL(~0,0)PL(~x,T ) | 0 >=∑
n

∑
~x(|< 0 | PL(~00) | n >|)2eipnx

→ (Euclidean)∑n | Cn |2 e−mnT (7.13)
For large time separation, only the lowest

energy state with the quantum numbers of the

source survives. A free multigluon state has zero

lowest energy, therefore the existence of a “mass

gap”, i.e. of a non zero mass state provides evi-

dence for colour confinement.

In the strong coupling approximation, lattice

QCD confines. Technically, this is a consequence

of exact gauge invariance of the lattice functional

measure and of the action. This implies that the

link integral:

∫
DUµ Uµ → (on the lattice)∫ ∏

i,µ dUµ(i)Uµ(i) = 0 (7.14)

should be zero. Indeed, its matrix elements

can be arbitrarily changed with a gauge transfor-

mation and the the only invaraiant value is zero.

This implies that after expanding the whole

action, the non zero integrals always imply that

a link must appear with its hermitian conjugate

(or powers of U − U+ pairs).
The connected correlation of the two plaque-

ttes at large time separation:

< PL1PL2 >=∏
iµ

∫
dUiµexp(−β

∑
plaquettes)PL1PL2∏

i,µ

∫
dUiµexp(−β

∑
plaquettes)

→ ( strong coupling)∏
iµ

∫
dUiµ

∑
(−β
∑
plaquettes)n/n!PL1PL2∏

i,µ

∫
dUiµ

∑
(−β
∑
plaquettes)n/n!

(7.15)

Remembering that links must overlap pair-

wise, the leading term is the one with a “tube”

with the two plaquettes in the correlation as end-

caps. Up to irrelevant constants , one gets for the

time dependence of the correlation:
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< PL1PL2 >

' (4β)T ' e−T log(4/β)) (7.16)

i.e. a “mass gap “ M ∼ log(4/β).
In the same strong coupling limit, “meson”

correlations, i.e. the correlations to leading order

of two point-like currents made of a q − q̄ pair,
are obtained from a sum of paths where the q− q̄
pair do not separate at all: a non zero “internal”

area between the path of the quark and the one

of the antiquark would be penalized by a factor:

βarea.

Overall, the strong coupling expansion pro-

vides a good starting picure of confined quarks

and gluons. However, such a limit of the theory

is very unphysical and might be very misleading:

also “compact QED” ( a version of QED on the

lattice) exhibits confinement in this limit, while

electric charges are well propagating to large dis-

tances in reality!

The point is that the strong coupling limit is

very far from the “continuum limit” of the the-

ory, where the lattice cutoff is small enough to

produce negligible effects.

The continuum limit can be seen from a stat-

mech point of view as the approach to a second

order ( or higher) phase transition. Indeed, in

LATTICE units, the correlation length increases

toward the continuum limit ( the basic length

measure is shrinking) like in a phase transition.

The transition point is obtained at the “critical

temperature” of the system, i.e. at a critical cou-

pling. From the point of view of field theory,

PHYSICAL units are kept fixed and the lattice

spacing goes to zero or equivalently the UV cut-

off diverges. In order to approach a finite the-

ory, the renormalized one, the (bare) coupling

must be properly tuned to keep physical quanti-

ties constant.

In both views, the continuum limit occurs

at a critical value of the coupling. Such a value

is known from the asymptotic freedom property

of the theory, where the behaviour of the bare

coupling upon the cutoff, at small distances, i.e.

large values of the momentum cutoff, can be ex-

tracted from a perturbative calculation. The in-

finite cutoff limit ( the continuum limit) is ob-

tained at zero bare coupling, i.e. at β →∞. The

knowledge of the Λ parameter of QCD, trans-

lated into the particular renormalization scheme

represented by the lattice regularization, provides

an estimate of the cutoff in physical units, given

the value of the bare coupling. The strong cou-

pling approximation holds at most when g2(a) '
10 that corresponds to a lattice spacing of a Fermi

or slightly below. The QCD dynamics is not “re-

solved” by such an approximation and the issue

is wether the important property of confinement

persists to higher values of β,i.e. for relatively

small values of the bare coupling where:

a−1 � ΛQCD (7.17)

Entering the “weak (bare) coupling region”

in a non perturbative way can only be achieved

numerically. The discretization on the lattice

and therefore the reduction of the theory to a

finite number of degrees of freedom is a prereq-

uisite for a numerical estimate.

Numerical simulations are done through the

following steps.

1) one generates a set of “equilibrium” con-

figurations, distributed according the Boltzmann

functional measure. As an example, one a) starts

from a random configuration, b) updates the field

values LOCALLY until the equilibrium distribu-

tion is reached by applying an iterative algorithm

that leads from a field value to the next one after

comparing the action in the two cases, as follows:

φ→ φ′ and Sold → Snew (7.18)

if ∆S ≡ Snew − Sold < 0 the new value that
decreases the action is accepted, otherwise it is

accepted with a conditional probabilty

p ≡ e−∆S (7.19)

The first choice correspond to the search of

the absolute minimum, i.e. to the classical limit,

the second option takes into account quantrum

fluctuations around the minimum.

By iterating this algorithm, one finally ob-

tains, after some “thermalization time”, a set of

equilibrium configurations.

2) One makes the functional integral (sum)

by averaging the observables, functions of the

gauge fields, over the set of equilibrium config-

urations collected.
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Fermions are a special case. 1) they cannot

be associated with C numbers ( they are non-

commuting Grassman variables), 2) their corre-

lations can be worked out analytically, thanks to

the quadratic form of the action.

Fermion correlations, according to the Wick

theorem, are sums of products of two point cor-

relations given by the “propagators”, i.e. the

inverse of the quadratic operator in the action.

Besides, their integration produces a “fermion

determinant”, i.e. the determinant of the same

quadratic operator raised to a power equal to the

number of flavours . The quadratic fermion op-

erator is a function of the gauge configuration

and its determinant represents a NON-LOCAL

function of the links, i.e. contains Wilson loops

of arbirtary length and complexity and not just

the elementary plaquette of the pure gauge ac-

tion. They arise from the wondering on the lat-

tice of virtual fermions. The updating of a single

link in the lattice action including the fermion

determinant requires a calculation that involves

most of the links on the lattice and not just the

neighbouring ones of the plaquettes containing

the updated link. Numerically, this represents

a formidable task and has delayed for a long

time simulations including the effects of virtual

fermion loops.

The last part of these lectures is devoted to

a summary of some of the important results in

lattice QCD along its history.

Strong coupling lattice QCD was invented by

K.Wilson in ’74. He wanted to connect the un-

physical strong coupling region to the physical

weak coupling region through a renormalisation

group approach in configuration space, succes-

fully exploited in the analysis of phase transitions

in statistical mechanics. The idea is to define

an effectiv action for the theory by integrating

the high frequecy modes of the fields. In figure

5 there is a sketch of the “blocking” procedure,

leading from the original variables, the small cir-

cles, to the blocked ones, the big circles, defined

on a coarser lattice with a lattice spacing larger,

in the figure, by a factor two than the original

one. The basic ingredient of the transformation

is the coupling of the new block variables to the

site ones, defined by:

T (Ulocal, Ublock) (7.20)

The integration over the old , local variables,

produces an effective action among the block ones:

e−Seffective(Ublock) =∫
dUlocale

−S(Ulocal)+T (Ulocal,Ublock) (7.21)

If the transformation kernel T satisfies:

∫
dUblocke

T (Ulocal,Ublock) = 1 (7.22)

the partition function in the blocked vari-

ables is identical to the one in the local vari-

ables. The integration of the local variables has

tinned the degrees of freedom of the theory, but

the “block” theory has the same cutoff effects of

the original one. In the new variables, the lat-

tice spacing is larger ( twice the old one) and the

physical correlation length in units of the NEW

lattice spacing is SMALLER than the old one:

The expected effective action “moves” in the

coupling constant space away from the critical

point ( small g) and toward the strong coupling

region.

The effective action itself cannot be expected

to have the simple form of the original one. In

general many couplings are generated beside the

“elementary plaquette” coupling and one is forced

to truncate the effective action to a finite set of

coupling, reducing the precision of the blocking

transformation.

The strategy of the project was to integrate

numerically and iteratively local variables along

the “renormalised trajectory” to move from large

β ( small g) to small β ( large g)until one would

reach the region of large couplings where an an-

alytic strong coupling expansion would converge

in a reliable way.

The project failed mainly because of the lim-

ited computer resources available at that time

that required wild approximations for the form

of the effective action with a consequent loss of

precision of the method.

In ’79, M.Creutz showed numerically that

the confinement property valid in the strong cou-

pling region indeed does extend to the weak cou-
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pling region by calculating the potential between

two static quarks parametrised as follows:

V (R) ' α(R)/R+ kR (7.23)

i.e. as the sum of a Coulomb part and of a

part linearly rising with the separation, the con-

fining potential, governed by the “string tension”

k.

He made simulations showing the persistence

of the string tension up to values of β ∼ 5.4 −
5.7 corresponding to a lattice resolution of about

.25Fm. The latter estimate was obtained by

comparing the value of the string tension in lat-

tice units extracted from the simulations with the

phenomenological value ( extracted from a sim-

ple model for resonaces) of about half a GeV.

From the 80’s have started the simulations

aiming to calculate the hadron spectrum. The

first, done by Hamber and Parisi, used a 53 × 10
lattice !

Since, there has been an increase in the com-

puting power by about a factor 106, i.e. from ma-

chines with a peak speed in the Megaflop range

( a Million of Floating Point Operations per sec-

ond), to present machines close to the Teraflop

range. This increase in computing power is much

less dramatic when translated into an improve-

ment of the lattice resolution. The point is that

the CPU power scales with the number of points

per side N like N4+ε where ε is of order one in

the most favourable calculations like those in-

volving gluons only, but bigger for those involv-

ing fermions. This leads to an improvement in

the resolution by about a factor 20 at the best.

A better resolution is not the only obstacle

to precise numerical estimates. As already men-

tioned, the simulations involving virtual fermions,

i.e. including in the gauge action the effective

part due to integration over fermion loops, are

more demanding by about a factor 100 than those

where fermion loops have been “manually” sup-

pressed ( the “quenching” approximation). Fur-

thermore, the light quark mass values cannot be

set equal to the physical ones of a few MeV with-

out stepping into severe finite volume effects that

increase exponentially, for a fixed physical vol-

ume, when the pion mass goes to zero. Most of

the results are obtained by chiral extrapolations

of calculations made at sizeable quark masses, for

example of the order of a 100 MeV, when the to-

tal lattice size does not axceed a couple of Fermi.

The onset of lattice artifacts, with a given

number of lattice points, depends upon the form

of the action that is not unique. They are of or-

der a2 for the pure gauge part of the Wilson ac-

tion, but of order a for the Wilson fermion action,

where a problem not mentioned in this rapid sur-

vey, the fermion doubling, is solved by explicitely

breaking the chirality on the lattice.

Indeed, there are two approaches to use the

frredom in the choice of the action to deal with

acceptable lattice artefacts. The first is the one

already presented and due to Wilson. The ac-

tion along the renormalised trajectory is “perfec-

t”, i.e. embodies the CONTINUUM properties,

but is very complicated to determine. The sec-

ond approach, originally suggested by Symanzik,

consists in a systematic “improvement” of the

action. The lattice action can be expanded in a

power series in the lattice spacing:

Llattice = L
0
continuum + aL

1
continuum+

a2L2continuum + . . . (7.24)

and the approach aims to eliminate lattice

artefacts up to a finite order in the lattice spac-

ing. For example, the L1continuum part can be

eliminated by a single “counterterms” added to

the lattice action with a coupling non-perturbatively

tuned. However, physical observables involving

composite operators in general also require an

additional operator improvement.

I will present a selection of results for the

spectrum, quenched and unquenched, for the η′,
for some quantities “running” with the scale, like

αS(Q
2) or the first moment of valence quark dis-

tribution
∫
dxxq(x,Q2). There many other sub-

ject where there is a lot of activity in the lat-

tice community, and in particular on the calcu-

lation of hadronic matrix elements of the weak

Hamiltonian, on the study of the high temper-

ature properties of the theory, on bound states

with exotic quantum numbers and on the defin-

tion of an exact chiral symmetry on the lattice

that would allow a non-perturbative study of the

standard model. Figure 6 shows the octet baryon
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quenched spectrum as a function of the pseu-

doscalar mass squared both normalized by the

K∗ mass at a fixed lattice spacing slightly be-
low 0.1Fermi, at β = 6.2, and for the standard

and the improved cases. The same plots for the

decuplet is in figure 7 where the partial cancella-

tion of lattice artifacts brings into a better agree-

ment with experimental data reprsented by the

crosses. The results for unquenched simulations

are given in figure 8 and 9. In the first, show-

ing the spectrum, the lowest value of the pion

mass reached is higher than in quenched simula-

tions given the much higher computing demand

of these calculations. Figure 9 shows the consis-

tency of the lattice spacing extracted from differ-

ent physical quantities, when extrapolated to the

chiral limit. Indeed, in the unquenched case, the

quark mass enters in the effective gauge action

through the fermion determinant, changes the

action and therefore the value of the lattice cut-

off. Notice that the β values of unquenched sim-

ulations are much lower than those of quenched.

If one takes the lattice spacing as function of the

bare coupling from perturbation theory:

a = 1/ΛQCDe
−1/(b0g2(a)) (7.25)

to be the same in the quenched and unquenched

case, one gets:

g2quenched

g2unquenched
∼ bunquenched0

bquenched0

(7.26)

and, since bunquenched0 < bquenched0 , one gets

g2quenched < g2unquenched.

The effects of unquenching are often barely

visible, at present values of dynamical quark masses.

Figure 10 show the unquenched effective quark

potential, where at large enough separation the

possibility of creating quark-antiquark pairs should

break the string tension, i.e. the potential should

flatten out. The horizontal line shows where this

should happen but the data do not show a clear

indication of the phenomenon. Precise quenched

calculations now available show the inadequacy

of the quenched approximation in a few cases,

like the pseudoscalar meson constants that are

larger than their experimental values.

A quantity where unquenching effects are EX-

PECTED to be crucial is the splitting of the η′

mass with respect to the mass of the pseudoscalar

octet, due to the anomaly. This is a fermion

loop effect and is proportional to the number of

flavours running in the loop. One of the first es-

timates of the effect was done with a trick that

replaces fermion statistics with boson statistics.

In this case the η′ becomes LIGHTER for larger
flavour number. The effect of virtual BOSON

loops, with a Dirac operator (the “bermions) is

easy to simulate by MonteCarlo ( boson fields

ARE C numbers) and has been used succesfully

to find the sign and the order of magnitude of

unquenching effects.

Running quantities are difficult to calculate,

because one needs to follow their running over

many orders of energy scale. This cannot be

done on a single lattice that can accomodate only

scales differing at most by the number of points

per side. A finite volume recursive method allows

to “match” simulations done at different values of

the lattice spacing and of the bare coupling and

to explore a large range of energy scales. These

calculations have only been done in the quenched

approximation so far. Figure 11 shows the non-

perturbative calculation of the running coupling

constant. The final precision attainable is of the

order of 2 per cent at the reference Z0 mass scale.

Recently some effort has been devoted to the

calculation of the non perturbative running of the

average momentum carried by valence quarks.

The basic ingredient, preesnt also in the calcula-

tion of the running coupling constant, is the”step

scaling function”, i.e. the change in the running

quantity when the scale is changed by a factor

two, at various values of the scale, or equivalently

of the coupling renormalized at that scale. The

extrapolation to the continuum of such a func-

tion given in figure 12 shows that a common limit

is reached by using diferent actions ( improved

and not) and gives confidence on the relibility

of these continuum extrapolations. The ultimate

goal, still far in a quenched aproximation, is to

compute the first few moments of the gluon dis-

tribution that may provide an information com-

plementary to the one extracted, mainly at low

values of xBjorken, from fits to hard processes.
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8. Conclusions

We have been rapidly surveying different analytic

perturbative approaches and we have landed on

a numerical non-perturbative method. Solving

QCD by computer might not be easthetically ap-

pealing, but 1) it may clarify the validity of per-

turbative approaches, 2) it may “join” the ana-

lytic method of the strong coupling expansion at

some point 3) as a byproduct pushes the develop-

ment of fast algorithms and machines, 4) it is the

only method we have to investigate, without fur-

ther assumptions, the non perturbative aspects

of the theory.

References

[1] R.Bonciani, S.Catani, M.Mangano and

P.Nason, hep-ph/9801375.

[2] S.Catani, talk given at the XVIII symposium

on Lepton-Photon Interactions LP97, Hamburh,

aug. 97.

[3] M.Beneke, “Renormalons”, Phys. Reports 317

(99) 1.

[4] M.B.Wise, “Heavy Quark Physics”,

hep-ph/9805468

[5] A.V.Manohar, “Large N QCD”, in “Probing the

standard model of particle interactions”, Ed. El-

sevier, hep-ph/9802419.

[6] H.J.Rothe,”Lattice gauge theories – An Intro-

duction”, 1992 World Scientific Publishing

[7] I.Montvay and G.Muenster, ”Quantum Fields

on a Lattice”, Cambridge Univ. Press, 1994

17



Corfu Summer Institute on Elementary Particle Physics, 1998 Roberto Petronzio

perturbation in basic degrees of freedom supported by name

αs quarks and gluons scaling laws perturbative QCD

1
Mq

infinitely heavy mesons HQET

heavy quarks splittings

( Eπ4πfπ )
2 light pseudoscalars PCAC, χ pT

low energy theorems

1
Ncolors

narrow resonances, Zweig rule, Nc expantion

planar theory sea/valence ratio

β ≡ 1
g2
bare

quarks and gluons confinement lattice QCD

on a crystal

Table 1: The summary of perturbative approaches

Figure 1: The running of αS
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Figure 2: Determinations of αS at the Z0 mass

Figure 3: Jet inclusive cross section at Tevatron
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Figure 4: Theoretical predictions are compared with observed scaling violations at Hera( DESY-Hamburg)

a

2a

Figure 5: Schematic view of a blocking procedure from local variables ( small circles) to block variables (big

circles)
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Figure 6: The spectrum of the baryon octet in the quenched approximation

Figure 7: The spectrum of the baryon decuplet in the quenched approximation
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Figure 8: The state of the art for the spectrum in full QCD

Figure 9: Chiral extrapolation of the lattice spacing in physical units in full QCD
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Figure 10: The static quark potential in full QCD

Figure 11: Non-perturbative running of αS in quenched QCD
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Figure 12: Continuum limit of step scaling functions for the running of the the average valence momentum

in quenched QCD
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