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1. From general relativity to higher

dimensional Supergravity

E xperimental observations confirm that the

standard model of particle physics works out-

standingly well. However, if we believe that it

should be embedded within a more fundamental

theory, we are faced with grave theoretical prob-

lems. For example, in the context of a grand

unified theory the characteristic scale is of or-

der MGUT ≈ 1015 GeV which gives rise to the
gauge hierarchy problem. There is no symmetry

protecting the masses of the scalar particles, Hig-

gses, against quadratic divergences in perturba-

tion theory. Therefore they will be proportional

to the huge scale MGUT . This problem of nat-

uralness, to stabilize the electroweak scale MW
against quantum corrections MW << MGUT ,

may be solved postulating a new symmetry which

relates bosons and fermions introducing new par-

ticles, the so–called supersymmetry. The scalar

masses and the masses of their superpartners, the

fermions, are related and as a consequence, only

a logarithmic divergence in scalar masses is left.

In diagrammatic language, the dangerous dia-

grams of standard model particles are canceled

with new ones which are present due to the ex-

istence of the additional partners and couplings.

This is shown schematically in Fig. 1.

On the other hand, gravity, the fourth inter-

action in nature, is not included in the standard

model. Nowadays we know that the correct de-

scription of nature involves quantum field theo-

ries. This is of course the case of the standard

model, whose finishing touches were put around

1974. It describes strong, weak and electromag-

netic interactions using the internal (gauge) sym-

metry SU(3)×SU(2)×U(1). However, the the-
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Figure 1: The quadratic divergence due to the loop of standard–model bosons is cancel with the loop of

fermionic superpartners which has opposite sign.

ory describing the gravitational interaction, gen-

eral relativity, which was completed in 1915, is a

classical theory. In this sense both theories seem

to be completely disconnected as is schematically

shown in Fig. 2. The question then is to know if

          (quantum theory)

THE STANDARD MODEL GENERAL RELATIVITY

(classical theory)

Figure 2: The standard model and general relativ-

ity are disconnected. The former is a quantum field

theory whereas the latter is still a classical theory.

we will be able to quantize general relativity and

to unify it with the standard model. As we will

see in the rest of the paper, an important role

in the answer to this question is played again by

supersymmetry, in particular by its local version,

supergravity.

To carry out this project a basic ingredient is

the graviton. This is an elementary particle with

spin 2 which is an excitation of the gravitational

field similarly to the photon which is an exci-

tation of the electromagnetic field. The charge

associated with gravity is mass and therefore en-

ergy since mass and energy are equivalent in rel-

ativity. It is then natural to extend the approach

of quantum field theory to gravity. In particular,

the use of Feynman diagrams as in the example
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Figure 3: Electron–electron scattering through the

exchange of a graviton.

shown in Fig. 3. The problem with this approach

is that the gravitational interaction is extremely

weak since the coupling constant, the Newtonian

gravitational constant GN , is

GN =
1

M2
Planck

≈ 10−38 (GeV )−2 . (1.1)

Thus experimental verification of quantum grav-

ity at low energies (≈MW ) in accelerators seems
to be unlikely. For example, the contribution of

the diagram of Fig. 3 to electron–electron scat-

tering is negligible with respect to the one of the

diagram shown in Fig. 4, since the relation be-

tween the electromagnetic and effective gravita-

tional coupling constants is

αe.m. =
e2

4π
≈ 10−2 >> αG =

E2

M2
Planck

≈ 10−34 .
(1.2)

Note that the energy E must be included to have

a dimensionless scattering amplitude.

Another process that we might study with

the hope of detecting quantum corrections ex-

perimentally is the gravitational light bending.

The first diagram in Fig. 5 reproduces the classi-

cal result for the deflected photon. As mentioned

above, mass and energy are equivalent in relativ-

ity and since all particles have energy, gravity

couples with everything, and in particular with

photons. Unfortunately, the lowest–order quan-

tum correction with a loop of electrons shown in

the second diagram, is too small to be detected

in present solar light–bending experiments.
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Figure 4: Electron–electron scattering through the

exchange of a photon (γ).
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Figure 5: Lowest–order gravitational light bending due to the Sun and a quantum correction.

In conclusion, even if a consistent quantum

theory of gravity is ever built, an issue that we

will discuss in this section below, its experimental

verification is apparently unlikely. Fortunately, a

possible candidate to quantize gravity, supergrav-

ity, gives rise to low–energy signals which could

be detected. This will be discussed in section 2.

Before entering into details, a few words about

bibliography. Although we discussed quantum

gravity above and we will continue discussing it

in the next subsection, it is not the main topic of

these lectures. A simple and interesting introduc-

tion can be found in refs. [1]–[3]. There are excel-

lent books and reviews of supergravity. We quote

several of them in the references. In particular,

refs. [4]–[8] focus mainly on theory and refs. [9]–

[11] focus mainly on phenomenology. Refs. [12]

and [13] although are not so exhaustive as the

above mentioned, are quite recent and introduce

supergravity from a modern perspective. Other

references interesting to understand specific is-

sues will be mentioned in the text.

1.1 Quantum gravity

Let us recall first the relation between global and

local symmetries in quantum field theory using

the Noether procedure. Consider for instance a

free massless spin 1/2 field. Its action

S = i

∫
d4x ψ̄γµ∂µψ , (1.3)

where ∂µ ≡ ∂
∂xµ
, is clearly invariant under the

global transformation

ψ → e−iε ψ (1.4)

with ε a constant phase. However when the trans-

formation is local

ψ → e−iε(x) ψ , (1.5)

where ε now depends on the space–time coordi-

nates, the action is invariant only if we add a

spin 1 gauge field Aµ. This gives rise precisely

to Quantum electrodynamics (QED). Therefore,

spin 1 fields correspond to generalizing internal

(i.e. non–Lorentz) symmetries.

Similarly, a spin 2 appears when space–time

symmetries, global Poincare invariance,

xµ → Λµν xν + aµ , (1.6)

are made local in space–time, i.e. general coordi-

nate transformations:

xµ → x′µ(x) . (1.7)

Let us consider for example the action of a scalar

field in flat space–time:

S =

∫
d4x

[
1

2
ηµν∂µφ∂νφ− V (φ)

]
, (1.8)

where ηµν is the Minkowski metric. This action

is invariant under (1.7) only if we add a spin 2

field, the graviton:

S =

∫
d4x
√−detgµν

[
1

2
gµν∂µφ∂νφ− V (φ)

]
.

(1.9)

Adding the usual Einstein piece,

S = − 1
2k2

∫
d4x
√−detgµν R , (1.10)

one obtains the complete action. Here k is the

gravitational coupling constant

k =
√
8πGN =

√
8π

MPlanck
≡ 1

MP
(1.11)

withMP = 2.4×1018 GeV the so–called reduced
Planck mass.

Once we know the action, we may proceed to

compute various processes. However, as is well
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Figure 6: Graviton–scalar interactions

known, field equations are non linear. One pos-

sible way to solve the problem consists of intro-

ducing the expansion

gµν(x) = ηµν + k hµν(x) , (1.12)

where hµν(x) measures the deviation of the space–

time from flat Minkowski space. We have to

introduce the constant k in front of it since its

quanta should have mass dimensions 1 as ap-

propriate to a bosonic field describing the gravi-

ton. Recalling that perturbation theory works

outstandingly well in the standard model, and

taking into account that gravity is much weaker,

the use of perturbations should be appropriate.

For example, using (1.12) the free part of the ac-

tion (1.9) can be written as∫
d4x
√−detgµν 1

2
gµν∂µφ∂νφ =∫

d4x
1

2
ηµν∂µφ∂νφ

−k
∫
d4x
1

2
hµν∂µφ∂νφ

−k2
∫
d4x

(
1

8
ηµν∂µφ∂νφh

σ
ρ h̄
ρ
σ

−1
2
hµρh̄νρ∂µφ∂νφ

)
+ ... , (1.13)

where the “bar” operation on an arbitrary second

rank tensor is defined by X̄µν = Xµν − 12ηµνXσσ .
The first term in the right–hand side of (1.13) is

the usual action for free scalar fields in flat space–

time (see (1.8)). The second and third ones cor-

respond to the diagrams such as are shown in

Fig. 6. Besides, a graviton has energy and there-

fore interact with each other similarly to glu-

ons in Quantum Chromodynamics (QCD). This

interaction which arises from the Einsten piece

(1.10) is shown in Fig. 7.

As a matter of fact, we are attacking the

problem of quantizing gravity from the perspec-

tive of particle physics. We have reduce quan-

tum gravity to another quantum field theory, i.e.
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Figure 7: Graviton–graviton vertex.

gravitons and other quanta interact and prop-

agate within a fixed space–time background. In

this sense, the language of general relativity where

the geometry is crucial tends to get lost. In any

case, if using perturbation theory we are able

to compute different gravitational processes, the

analysis is worthwhile. Unfortunately, this is not

what happens. For example, the computation of

photon–photon scattering in the Maxwell–Einstein

theory shown in Fig. 8, turns out to give a result

which is divergent. Of course, this is not a prob-

lem if the theory is renormalizable. However,

we know from quantum field theory that theories

with negative coupling constant are non renor-

malizable, and this is precisely the case of gravity

where [
k2
]
=
[
M−2
P

]
= −2 . (1.14)

So quantum gravity contains an infinite variety of

infinities. One can use simple dimensional argu-

ments to arrive to this conclusion. A dimension-

less probability amplitude of order (k2)n must

diverge as
1

M2n
P

∫
p2n−1dp , (1.15)

where p is the momentum. For instance for n =

2, which is the case of the diagram in Fig. 8,

quartic divergences will appear.

Therefore a consistent theory of gravity must

be finite order by order in perturbation theory.
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tering in the Maxwell–Einstein theory. The dots de-

note other one–loop diagrams involving only gravi-

tons and photons.
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We already know from the above discussion of su-

persymmetry that theories with more symmetry

are more convergent. In supersymmetry quadratic

divergences are canceled (see Fig. 1). Then, why

not to apply the ideas of supersymmetry to grav-

ity to solve the problem of divergences ?. This is

what we will carry out in the next subsection.

1.2 Supergravity

We showed above that gravity is the ‘gauge the-

ory’ of global space–time transformations. Like-

wise we will see in this section that supergravity

is the gauge theory of global supersymmetry.

Let us consider schematically two consecu-

tive infinitesimal global supersymmetric trans-

formations of a boson field B

δ1B ∼ ε̄1 F , (1.16)

δ2F ∼ ε2 ∂B , (1.17)

where F denote a fermion field. Using dimen-

sional arguments one can deduce from (1.16) that

the dimension of the anticommuting fermionic

parameter ε must be [ε] = −1/2 in mass unit
since [B] = 1 and [F ] = 3/2. Thus in the second

transformation (1.17) we must include a deriva-

tive to obtain the correct dimension. This im-

plies that two internal supersymmetric transfor-

mations have led us to a space–time translation,

{δ1, δ2}B ∼ aµ∂µB ; aµ = ε̄2γ
µε1 (1.18)

and therefore supersymmetry is an extension of

the Poincare space–time symmetry

{Q, Q̄} = 2γµPµ . (1.19)

Clearly, the generator Q is not an internal sym-

metry generator like the ones of the standard

model symmetries, SU(3)× SU(2)×U(1), since
it is related to the generator of space–time trans-

lations Pµ.

Promoting global supersymmetry to local, ε =

ε(x), space–time dependent translations aµ∂µ that

differ from point to point are generated, i.e. gen-

eral coordinate transformations. Therefore lo-

cal supersymmetry necessarily implies gravity as

shown schematically in Fig. 9. This situation

is to be compared with the one summarized in

Fig. 2. By obvious reasons local supersymmetry

is also called supergravity.

GENERAL RELATIVITYTHE STANDARD MODEL

Local

Supersymmetry

Figure 9: The standard model and general relativity

are connected through local supersymmetry.

It is instructive to see explicitly the need for

gravity in local supersymmmetry. Let us con-

sider the simple case of a scalar field φ together

with its supersymmetric partner the spin 1/2 fermion

ψ. The Lagrangian

L = −(∂µφ∗)(∂µφ)− 1
2
ψ̄γµ∂µψ (1.20)

is invariant under global supersymmetry:

δφ = εψ (1.21)

δψ = −iσµε̄∂µφ . (1.22)

However L is not invariant under local supersym-
metry since ε→ ε(x) implies

δL = ∂µεαKµα + h.c. (1.23)

with

Kαµ ≡ −∂µφ∗ψα −
i

2
ψβ(σµσ̄

ν)αβ∂νφ
∗ (1.24)

To keep the action invariant, a gauge field has to

be introduced (similarly to the case of an ordi-

nary gauge symmetry where Aµ is introduced as

we mentioned in the previous section) with the

Noether coupling

LN = k KαµΨµα , (1.25)

where k is introduced to give LN the correct di-
mension, [LN ] = 4, and Ψ is a Majorana vector
spinor field with spin 3/2, the so–called gravitino,

transforming as

Ψµα → Ψµα +
1

k
∂µεα . (1.26)

However, L+ LN is not still invariant since
δ(L+ LN ) = k Ψ̄µγνεT µν , (1.27)

where T µν is the energy–momentum tensor. This

contribution can only be canceled adding a new

term

Lg = −gµνT µν (1.28)

5
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Figure 10: Contributions to the photon–photon scattering in the supersymmetric Maxwell–Einstein theory.

Ψ and λ denote gravitino and photino respectively.

provided the tensor field gµν transforms as

δgµν = kΨ̄µγνε . (1.29)

Thus any locally supersymmetric theory has to

include gravity.

In particular, the standard model which global

supersymmetry contains the chiral supermulti-

plets (ψ, φ) studied above with ψ denoting quarks,

leptons, Higgsinos and φ denoting squarks, slep-

tons, Higgses, plus vector supermultiplets (V , λ)

with gauge bosons and gauginos (spin 1/2 Ma-

jorana fermions) respectively. In the presence of

local supersymmetry we must include also the

gravity supermultiplet (gµν , Ψ
α
µ) with graviton

and gravitino respectively. The gravitino plays

the role of the gauge field of local supersymme-

try.

In conclusion we can say that supergravity

is a quantum theory of gravity. Since we have

now more symmetry than in pure gravity we can

expect that the high–energy (short distance) be-

havior will improve. Although this is basically

true, still the (super)symmetry is not enough to

cancel all divergences in the theory. To see this

diagrammatically we have to include the super-

symmetric partners in the graphs. For example,

in the Maxwell–Einstein theory discussed in the

previous subsection, we have to add to graphs in

Fig. 8 those with supersymmetric particles, grav-

itino and photino, shown in Fig. 10. The contri-

bution from each diagram is equal to an infinite

quantity multiplied by the coefficient written be-

low the figure. The infinite quantity is the same

for all figures. Unfortunately, adding the coeffi-

cients shows that the sum is 25/12, i.e. non zero,

and therefore the divergence is not canceled.

We have shown then that simple supersym-

metry is not enough to solve the problem of in-

finities in quantum gravity. In the next subsec-

tion we will try to answer the following question:

Is it possible to extended supersymmetry to a

bigger symmetry solving the problem?.

1.3 Extended supergravity

It is natural to wonder what would be the con-

sequences of the introduction of more than one

supersymmetry generator, i.e.

QA (A = 1, 2, . . . , N) , (1.30)

where

QA|λ〉 = |λ− 1/2〉 (1.31)

with λ the helicity of a massless state. In this

case the gravity supermultiplet will contain N

gravitinos since

Q1|λ = 2〉 = |λ = 3/2〉, . . .

6
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Figure 11: Contributions to the photon–photon scattering in the Maxwell–Einstein theory with N = 2

supersymmetry. Ψ and Ψ′ denote the two gravitinos.

. . . , QN |λ = 2〉 = |λ = 3/2〉 . (1.32)

On the other hand, since

Q1Q2 . . . QN |λ = 2〉 = |λ = 2−N/2〉 (1.33)

we have the bound

N ≤ 8 (1.34)

to avoid massless particles with λ > 2. Recall

that not consistent coupling between massless

spin 2 particles and spin 5/2, 3, . . . seems to exist.

The simplest extension of N = 1 supersym-

metry discussed in the previous section is N = 2

supersymmetry. Precisely this case realizes Ein-

stein’s dream of unifying electromagnetism and

gravity since

Q1,2|λ = 2〉 = |λ = 3/2〉
Q1Q2|λ = 2〉 = |λ = 1〉 (1.35)

giving rise to only one supermultiplet with gravi-

ton, two gravitinos and one photon (2, 3/2, 1).

This model was the first one where finite quan-

tum corrections were found. This is shown in

Fig. 11 where the photino of Fig. 10 correspond-

ing to N = 1 supersymmetry is substituted by

a second gravitino. Now adding the coefficients

the sum is zero.

Although this result seems very promising,

actually beyond one loop photon–photon scatter-

ing is not finite. Including matter the situation

is worse, e.g. scalar–scalar scattering, etc. So

again we have come back to our original prob-

lem in quantum gravity. Is there any way out?

In principle we have not yet exhausted all possi-

bilities. N = 8 is the maximum number of su-

persymmetries we can use. Since theories with

more symmetries are more convergent we should

analyze that case. In fact N = 8 case is also

interesting because gravity, Yang–Mills, matter

multiplets cannot exist in isolation. They belong

to the only supermultiplet of the theory

λ = (2,
3

2
, 1,
1

2
, 0,−1

2
,−1,−3

2
,−2) .

(1.36)

For example the multiplicity of states with helic-

ity 1/2 is 56 since we can do the following com-

binations:

Q1Q2Q3|λ = 2〉 = |λ = 1/2〉
Q1Q2Q4|λ = 2〉 = |λ = 1/2〉

. . . (1.37)

In general, multiplicity of states with helicity λ−
m/2 is (

N

m

)
=

N !

m!(N −m)! . (1.38)
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Therefore N = 8 supergravity has enough de-

grees of freedom to unify all interactions as well

as constituents. But again divergences are present.

For instance starting at seven loops in graviton–

graviton scattering.

As a matter of fact this is not the only prob-

lem of extended supergravities. All of them are

non chiral. E.g. in the case of N = 2

Q1,2|λ = 1/2〉 = |λ = 0〉 ,
Q1Q2|λ = 1/2〉 = |λ = −1/2〉

and therefore we have in the same supermultiplet

λ = (−1
2
0 +

1

2
)

(1.39)

left and right handed fields. Since in the case of

the standard model e.g. eL ∈ SU(2) but eR is

a singlet, necessarily unobserved fields ER must

belong to the same supermultiplet as eL. These

are the so–called mirror partners. They must

have a mass beyond the current experimental

bounds. On the one hand, it is extremely in-

volved to build realistic models which generate

masses dynamically to the mirrors. On the other

hand, since chiral anomaly cancels within each

generation, why such mirrors should exist?. All

these arguments make unlikely that extended su-

pergravities be realistic four–dimensional theo-

ries.

1.4 Discussion: supergravity as the low–

energy limit of superstring theory

We can summarize the analyses of previous sec-

tions in the following way. N = 0 quantum grav-

ity, i.e. withouth supersymmetry, is non renor-

malizable. N = 1 supergravity includes gravity

in a natural way but it is also non renormalizable.

N > 1 supergravity is not only non renormaliz-

able but also non interesting from phenomeno-

logical viewpoint (at least in four dimensions).

Given these pessimistic conclusions, one won-

ders whether to work at low energies with the

physically relevant N = 1 supergravity is con-

sistent. The answer is yes if we are consider-

ing the supergravity Lagrangian as an effective

phenomenological Lagrangian which comes from

a (finite) bigger structure. This is a situation
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Figure 12: Weak interaction in Fermi theory.
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Figure 13: Weak interaction in Weinberg–Salam

theory.

similar to the one of the old Fermi theory. The

weak interaction was described as an interaction

of four fermions with a dimensionfull coupling

constant [GF ] = −2. This is shown in Fig. 12.
Now we know that the correct theory involves in

fact the graph shown in Fig. 13. For p ≈ MW
this is the correct way to carry out any compu-

tation. However, for p << MW this diagram is

effectively like the one of Fig. 12 with GF /
√
2 =

g2/M2
W . Thus although the Fermi theory is non

renormalizable, in some particular energy regime

one can trust the results.

Although for p ≈ MP one must use the the-

ory behind supergravity, for p << MP is a good

approximation to work with supergravity. We

will see in section 2 that in fact below MP one

is left with a global supersymetric Lagrangian

plus supersymmetry–breaking terms. This effec-

tive Lagrangian is renormalizable and in order

to study phenomenology we are interested only

in this region.

There is, at the time of writing this lectures,

only one consistent theory of quantum gravity

with matter: string theory. There the solution to

the problem of divergences in quantum field the-

ory consists of considering the elementary par-

ticles to be not points but one-dimensional ex-

tended objects, strings, as shown in Fig. 14.

In fact, the consistency of the theory need

the presence of supersymmetry and that is the

reason why it is called superstring theory. Re-

markably, the low–energy limit (massless modes)

8
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Divergent Finite

Figure 14: Exchange of a graviton between two elementary particles in quantum field theory and superstring

theory.

of superstring theory is supergravity. The picture

is then the following. Around the Planck scale,

E  > M P

PE  << M

PE  < M

SUPERSYMMETRIC

STANDARD MODEL

SUPERGRAVITY

SUPERSTRING THEORY

Figure 15: Supergravity is the intermediate step

between the possible final theory of elementary par-

ticles and the supersymmetric standard model ob-

servable at low energy.

superstring theory might be the correct theory of

elementary particles, but below that scale super-

gravity can be used as an effective theory. This

is schematically shown in Fig. 15. The last step,

around the electroweak scale, corresponds to the

supersymmetric standard model arising from the

spontaneous breaking of supergravity as men-

tioned above.

From the above arguments we conclude that

the study of supergravity is crucial. It is the

connection between the possible final theory of

elementary particles and the low–energy effective

theory which might be tested experimentally.

1.5 Higher dimensional supergravity

Since superstring theory is only consistent in a

ten–dimensional (D = 10) space–time, to build

supergravities in extra space–time dimensions is

important. For example, the coupled D = 10,

N = 1 supergravity super Yang–Mills system is

the massless sector of the type I superstring the-

ory and heterotic string theory.

To build the pure N = 1 supergravity one

has to realize that the number of bosonic and

fermionic degrees of freedommust be equal. These

are shown in Table 1.

For example, to deduce the dimension of Dirac

spinors in D space–time dimensions one can con-

struct the Dirac gamma matrices obeying the

Clifford algebra {Γµ,Γν} = 2ηµν . The result is

DΓ = 2
D/2 ; D even ,

DΓ = 2
(D−1)/2 ; D odd . (1.40)

In our case D = 10 implies that λ has 32 com-

plex components. Taking into account Majorana

condition we reduce this number to 16. With

the Weyl condition it is further reduced to 8 and

finally field equations reduce it to 8 real compo-

nents.

The Lagrangian can be explicitly obtained

by the Noether’s method or by a formal dimen-

sional reduction from higher dimensional theo-

ries, in particular from D = 11, N = 1 super-

gravity. The result is

e−1L = − 1
2k2

R− 3
4
φ−3/2HµνρHµνρ

− 9

16k2
∂µφ∂

µφ

φ2
− 1
2
Ψ̄µΓ

µνρDνΨρ

−1
2
λ̄ΓµDµλ− 3

√
2

8

∂νφ

φ
Ψ̄µΓ

νΓµλ

+

√
2k

16
φ−3/4Hνρσ [Ψ̄µΓµνρστΨτ

+6Ψ̄νΓρΨσ −√2Ψ̄µΓνρσΓµλ]
+ four − fermion terms , (1.41)

where Γµ1...µn stands for the completely antisym-

metrized product of Γ matrices and Hµνρ is the

field strength of the antisymmetric tensor Bµν .

The vierbein emµ with m a local Lorentz index

9
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FIELD CONTENT IN D = 10, N = 1 SUPERGRAVITY

graviton (gµν) = 35 components

dilaton (φ) = 1 ”

antisymmetric tensor (Bµν) = 28 ”

64 real field components

Majorana–Weyl gravitino (Ψµα) = 56 components

Majorana–Weyl fermion (λα) = 8 ”

64 real field components

Table 1: Bosonic and fermionic degrees of freedom in ten–dimensional pure supergravity

FIELD CONTENT IN D = 11, N = 1 SUPERGRAVITY

graviton (gµν) = 44 components

3rd. rank antisymmetric tensor (Aµνρ) = 84 ”

128 real field components

Majorana gravitino (Ψµα) = 128 components

128 real field components

Table 2: Bosonic and fermionic degrees of freedom in eleven–dimensional pure supergravity

must be used instead of the metric gµν when

fermions are present. Their relation is gµν =

emµ e
n
νηmn and therefore e ≡ det emµ =

√−det gµν .
This Lagrangian is invariant under the local

supertransformations

δemµ =
k

2
ε̄ΓmΨµ , (1.42)

δφ = −
√
2 k

3
φε̄λ , (1.43)

δBµν =

√
2

4
φ3/4(ε̄ΓµΨν − ε̄ΓνΨµ

−
√
2

2
ε̄Γµνλ) , (1.44)

δλ = −3
√
2

8

1

φ
(Γµ∂

µφ)ε

+
1

8
φ−3/4ΓµνρεHµνρ

+ two − fermion terms , (1.45)

δΨµ =
1

k
Dµε+

√
2

32
φ−3/4(Γνρσµ

−9δνµΓρσ)εHνρσ
+ two − fermion terms . (1.46)

On the other hand, the dimension of space–

time in supersymmetry is constrained to be

D ≤ 11 . (1.47)

Otherwise, counting the number of degrees of

freedom as above, massless particles with spin

higher than 2 would appear. This is extremely

interesting since D = 11, N = 1 supergravity is

the low–energy limit of so–called M–theory [14].

There is the proposal that M–theory, from which

the five existent superstring theories can be de-

rived, is a consistent quantum theory contain-

ing extended objects. In this sense the study of

D = 11 supergravity may be important.

In fact, D = 11 supergravity is a very attrac-

tive theory by its own since supergravity equa-

tions look very simple and natural. Besides, this

theory is unique. The field content of the theory

together with their degrees of freedom are shown

in Table 2. By brute force the Lagrangian was

built [15] with the following relatively simple re-

sult:

L = − 1
2k2

eR− 1
48
eFµνρσF

µνρσ

−1
2
eΨ̄µΓ

µνρDνΨρ −
√
2k

384
e(Ψ̄µΓ

µνρσδλΨλ

10
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+12Ψ̄νΓρσΨδ)(F + F̂ )νρσδ

−
√
2k

3456
εµ1...µ4ν1...ν4ρσδFµ1...µ4Fν1...ν4Aρσδ .

(1.48)

It is invariant under

δemµ =
k

2
ε̄ΓmΨµ , (1.49)

δAµνσ = −
√
2

8
ε̄Γ[µνΨσ] , (1.50)

δΨµ =
1

k
Dµε+

√
2

288
(Γνρσλµ (1.51)

−8δνµΓρσλ)εF̂νρσλ . (1.52)

2. D = 4, N = 1 Supergravity

Although some higher dimensional theory will

probably be the unified theory of particle physics

as discussed above, needless to say to connect it

with the observable world one has to compactify

the extra dimensions. At the end of the day, the

theory which is left in four dimensions is N = 1

supergravity. Thus the study of D = 4, N = 1

supergravity is crucial. We will carry it out in

this section in a completely general way with-

out assuming any particular underlying higher

dimensional theory. After analyzing the Lagrang-

ian, we will study the spontaneous breaking of

supergravity. This gives rise to the so–called soft

supersymmetry–breaking terms which determine

the spectrum of supersymmetric particles. The

theory of soft terms provided by this computa-

tion enable us to interpret the (future) experi-

mental results on supersymmetric spectra. This

would be an (indirect) test of supergravity.

In section 3 we will apply these general re-

sults to the particular case of D = 4 supergravity

arising from compactifications of D = 10 super-

strings.

2.1 The Lagrangian

In section 1.2, starting with the global supersym-

metry Lagrangian of free chiral supermultiplets,

we were able to obtain their couplings to su-

pergravity using the Noether procedure. In the

general case, with chiral supermultiplets in in-

teraction, we can also follow the same approach.

However, it is worth noticing that other formu-

lations of D = 4, N = 1 supergravity are also

available. In fact, although various matter cou-

plings had previously been constructed using the

Noether procedure, the complete Lagrangian in-

cluding vector supermultiplets [16] was construc-

ted using the more efficient local tensor calculus

method. For a review of the latter see [6], where

also the references of the authors who have con-

tributed to the subject can be found. In Ap-

pendix A we sketch another formulation, the su-

perspace formalism which is the most elegant one.

In what follows we present the final result

(with up to two derivatives), obtained using any

of the available formulations. Let us concentrate

first on the chiral supergravity Lagrangian. It

turns out to depend only on a single arbitrary

real function of the scalar fields φ∗i and φj with
i, j = 1, ..., n, the Kähler function

G(φ∗, φ) = K(φ∗, φ) + ln |W (φ)|2 , (2.1)

which is a combination of a real function, the so

called Kähler potential K, and an analytic func-

tion, the so called superpotential W . This ex-

presses the fact that the scalar–field space in su-

persymmetry is a Kähler manifold, i.e. a special

type of analytic Riemann manifold (see above

(A.15) in Appendix A for more details). The

scalar fields should be thought of as the coordi-

nates of the Kähler manifold and, in particular,

the metric Kij∗ is given by

Kij∗ =
∂2K

∂φi∂φ
∗
j

. (2.2)

An important property ofG (and therefore of the

Lagrangian) is its invariance under the transfor-

mations

K → K + F (φ) + F ∗(φ∗) ,

W → e−F (φ)W . (2.3)

where F is an arbitrary function. This property

is known as Kähler invariance.

We split the (tree–level) Lagrangian into terms

as

LC = LCB + LCFK + LCF , (2.4)

where LCB contains only bosonic fields, LCFK con-
tains fermionic fields and covariant derivatives

with respect to gravity (i.e. including the su-

persymmetric spin connection) and LCF contains

11
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fermionic fields but no covariant derivatives. Then,

e−1LCB = −
1

2
R−Gij∗∂µφi∂µφ∗j

−eG(Gi(G−1)ij∗Gj∗ − 3) , (2.5)
where repeated indices are summed in our no-

tation and e was already defined below (1.41).

It is worth recalling that emµ gives rise to inter-

actions of the graviton with all other particles

using the expansion studied in section 1.2. Note

that we have set the reduced Planck mass MP
defined in (1.11) equal to 1 for convenience (see

e.g. the usual Hilbert–Einstein piece in (2.5)).

It can easily be inserted using dimensional argu-

ments as we will do below in some examples. We

also follow the notation

Gi ≡ ∂G

∂φi
(2.6)

and

Gij∗ ≡ ∂2G

∂φi∂φ
∗
j

= Gj∗i , (2.7)

with the matrix (G−1)ij
∗
the inverse of the Gj∗k

(G−1)ij
∗
Gkj∗ = δ

i
k . (2.8)

From (2.1) and (2.2) we deduce

Gij∗ = Kij∗ (2.9)

and therefore the Kähler metric Kij∗ determines

the kinetic terms for the scalars φi (see the sec-

ond term in (2.5)). This is also the case for

the spin 1/2 fermions ψi in (2.12) below since

both belong to the same chiral multiplets. Thus

in general we will have non–renormalizable ki-

netic terms as a consequence of the non renor-

malizability of supergravity (see (A.13) in Ap-

pendix A for more details). As we will see in

the next subsection, some scalar fields φi may

acquire dynamically vacuum expectation values

implying Kij∗ 6= 0. This will give rise in general
to non–canonical kinetic terms and therefore we

will have to normalize the fields to obtain, at the

end of the day, canonical kinetic terms. A sim-

ple form of K leading to canonical kinetic terms

Kij∗ = δij (the so called minimal supergravity

model), which will be used in the next subsec-

tion as a toy model, is given by

K = φiφ
∗i . (2.10)

Finally, the third term in (2.5), which arises when

the auxiliary fields Fi appearing in the chiral su-

permultiplets are eliminated by their equations

of motion (an extra gaugino bilinear piece given

by − 14 ∂fab∂φk
(G−1)ik

∗
λaλb should be added when

vector supermultiplets be considered below)

Fi = eG/2(G−1)ij
∗
Gj∗ − (G−1)ik∗Gjlk∗ψjψl

+
1

2
ψi(Gj∗ψ

j) , (2.11)

contributes to the (tree–level) scalar potential.

It is a fundamental piece for model building. In

particular, as we will discuss in the next sub-

sections, it is crucial to analyze the breaking of

supersymmetry as well as the so called soft terms

which determine the supersymmetric spectrum.

Note the exponential factor eG which obviously

indicates the non renormalizability of the theory.

The piece

e−1LCFK = −
1

2
e−1εµνρσΨ̄µγ5γνDρΨσ

+
1

4
e−1εµνρσΨ̄µγνΨρ(GiDσφi

−GiDσφ∗i) +
[
i

2
Gij∗ ψ̄

i
LD/ψ

j
L

+
i

2
ψ̄iLD/φ

jψkL(−Gijk∗ +
1

2
Gik∗Gj)

+
1√
2
Gij∗ Ψ̄

µ
LD/φ

i∗γµψ
j
R + h.c.

]
(2.12)

contains the kinetic terms for the fermions (i.e.

for the spin 3/2 gravitino Ψ and the spin 1/2

fermions ψi) and some non–renormalizable inter-

action terms. For example, even assuming canon-

ical kinetic terms Gij∗ = δij , the last term in

(2.12) has at least mass dimension 5 and there-

fore must be suppressed by a power of 1/MP .

This interaction term is shown in Fig. 16. Fi-

nally,

e−1LCF = eG/2Ψ̄µσµνΨ
ν +

[
eG/2GiΨ̄

µ
Lγµψ

i
L

+
1

2
eG/2

(−Gij −GiGj
+ Gijk∗ (G

−1)k
∗lGl

)
ψ̄iLψ

j
R + h.c.

]
+

(
1

2
Gijk∗ l∗ − 1

2
Gijm∗ (G

−1)nm∗Gnk∗l∗

− 1
4
Gik∗Gjl∗

)
ψ̄LiψLjψ̄

k
Rψ
l
R

12
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Ψ

ψ φ

1/MP

Figure 16: gravitino–fermion–scalar non–

renormalizable interaction

− 1
8
Gi∗jψ̄

i
RγdψLj

(
εabcdΨ̄aγbΨc

−Ψ̄aγ5γdΨa
)
, (2.13)

where σµν stands for the antisymmetrized prod-

uct of γ matrices, contains the fermion Yukawa

couplings and several non–renormalizable terms.

The former are due to the third piece in (2.13)

since Gij is proportional to
∂2W
∂φi∂φj

, and therefore

for a trilinear superpotential, W = Yijk φiφjφk,

terms of the type shown in Fig. 17 will arise. It

is worth noticing that the first term in (2.13) is

a potential mass for the gravitino (local super-

symmetry breaking) if some of the scalar fields

φi develop expectation values in such a way that

eG/2 6= 0. We will discuss this possibility in de-
tail in the next subsection.

To obtain the complete supergravity Lagrang-

ian which couples pure supergravity to supersym-

metric chiral matter and Yang–Mills we still have

to include the vector supermultiplets in the for-

mulation. The result is:

L = LCB + LCFK + LCF
+ LVB + LVFK + LVF , (2.14)

where LCB, LCFK and LCF are as in (2.5), (2.12) and
(2.13), but with the derivatives covariantized also

with respect to the gauge group in the usual way.

For example, the term which gives rise to the

kinetic energies for the fermions ψi in (2.12) gives

@
@
@@�

�
��

φ

ψ ψ

Figure 17: scalar–fermion–fermion Yukawa cou-

pling

@
@
@@�

�
��

)

)
(

(
V

ψ ψ

Figure 18: Gauge boson–fermion-fermion interac-

tion

also rise to interactions between gauge bosons

and fermions. This is shown in Fig. 18 for the

minimal supergravity model. The other pieces in

(2.14) are written below.

The piece LVB is given by

e−1LVB = −
1

4
(Refab)(F

a)µν(F
b)µν

+
i

4
(Im fab)(F

a)µν(F̃
b)µν

− 1
2
g2
[
(Re f)−1

]ab
Gi(Ta)

ijφjGk(Tb)
klφl

(2.15)

where g denotes the gauge coupling constant, a

denotes the gauge group index, T a the group gen-

erators in the same representation as the chiral

matter and (F a)µν the gauge field strength.

Note that the supergravity Lagrangian de-

pends not only on G but also on an arbitrary

analytic function of the scalar fields φi,

fab(φ) . (2.16)

It must transform as a symmetric product of ad-

joint representations of the gauge groupG to ren-

der the Lagrangian invariant. The function f ,

which appears due to the non renormalizability

of the theory (see (A.24) in Appendix A for more

details), is called the gauge kinetic function since

it is multiplying the usual gauge kinetic terms.

It is remarkable that this fact provide us with

a mechanism to determine dynamically the gauge

coupling constant. By defining gVµ = V ′µ in
quantum field theory, g is removed from the field

strength covariant derivative and appears only

in an overall 1/g2 in the kinetic terms. There-

fore if some scalar fields φi acquire dynamically

vacuum expectation values we may obtain expec-

tation values for fab and this may play the part

of the coupling constant. In particular,

Re fab =
1

g2ab
. (2.17)

13
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This is in fact the case of supergravity models

deriving from superstring theory as we will see

in section 3. In the formulae of this section we

keep for completeness both g and f .

The third term in (2.15), which arises when

the auxiliary fields Da appearing in the vector

supermultiplets are eliminated by their equations

of motion,

Da = i [(Ref)−1]ab
(
gGi(Tb)

ijφj +
1

2
i
∂fbc

∂φi
ψiλ

c

−1
2
i
∂f∗bc
∂φ∗i

ψiλc

)
+
1

2
λa(Gi∗ψi) , (2.18)

contributes to the (tree–level) scalar potential to-

gether with the third term in (2.5) which was

studied above. The complete scalar potential is

then

V = eG
(
Gi(G

−1)ij
∗
Gj∗ − 3

)
+
1

2
g2
[
(Re f)−1

]ab
Gi(Ta)

ijφjGk(Tb)
klφl ,

(2.19)

where obviously the first piece is due to the F–

term contribution and the second piece is due to

the D–term contribution. Note that F and D

terms in (2.11) and (2.18) are supergravity gen-

eralizations of the ones in global supersymmetry,

where

Fi = −∂W
∂φi

,

Da = −gφ∗i (Ta)ijφj , (2.20)

and the scalar potential Vglobal = FiF
i∗+ 12DaD

a

is given by

Vglobal =

∣∣∣∣∂W∂φi
∣∣∣∣
2

+
1

2
g2φ∗i (Ta)

ijφjφ
∗
k(Ta)

klφl .

(2.21)

It is worth mentioning the striking difference be-

tween the scalar potentials (2.21) and (2.19). Whe-

reas the global one (2.21) is positive semi–definite,

the local one (2.19) may be negative (see e.g. the

piece −3eG). This fact will be crucial to break
supergravity being able to fine tune the vacuum

energy density (cosmological constant) to zero,

as we will discuss in the next subsection.

_ _^ ^�
�
��

@
@
@@

@
@
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�
�
��

V
1/MP

λ

Ψ

Figure 19: Gravitino–gauge boson–gaugino non–

renormalizable interaction

The piece LVFK is given by

e−1LVFK =
1

2
(Re fab)

(1
2
λ̄aD/λb

+
1

2
λ̄aγµσνρΨµ(F

b)νρ

+
1

2
GiD

µφiλ̄aLγµλ
b
L

)
− i

8
(Im fab)Dµ(eλ̄

aγ5γ
µλb)

− 1
2

∂fab

∂φi
ψ̄iRσ

µν(F a)µνλ
b
L + h.c. .

(2.22)

The first term determines the kinetic energies

for gauginos λa. They will be non canonical in

general due to the contribution of the gauge ki-

netic function f . A simple form of f leading to

canonical kinetic terms is

fab = δab . (2.23)

The other terms in (2.22) are in general non renor-

malizable. For example, the second one, even

assuming f as in (2.23), has at least mass di-

mension 5. This interaction is shown in Fig. 19.

Finally, the piece LVF is given by

e−1LVF =
1

4
eG/2

∂f∗ab
∂φ∗j

(G−1)j
∗kGkλ

aλb

− i

2
g Gi(T

a)ijφjΨ̄µLγ
µλaL

+ 2ig Gij∗ (T
a)ikφkλ̄aRψiL

− i

2
g
[
(Re f)−1

]ab ∂fbc
∂φk

Gi(Ta)
ijφjψ̄kRλcL

− 1

32
(G−1)lk

∗ ∂fab

∂φl

∂f∗cd
∂φ∗k

λ̄aLλ
b
Lλ̄
c
Rλ
d
R

+
3

32

(
Refabλ̄

a
Lγmλ

b
R

)2
+
1

8
Refabλ̄

aγµσρσΨµΨ̄ργσλ
b

+
1

2

∂fab

∂φi

(
ψ̄Liσ

µνλaLΨ̄νLγµλ
b
R

+
1

4
Ψ̄µRγ

µψLiλ̄
a
Lλ
b
L

)
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+
1

16
ψ̄Liγ

µψjRλ̄
d
Rγµλ

c
L

(
2Gij∗Refcd

+
[
(Re f)−1

]ab ∂fac
∂φi

∂f∗bd
∂φ∗j

)

+
1

16
ψ̄LiψLjλ̄

c
Lλ
d
L

(
− 4Gijk∗ (G−1)lk∗ ∂fcd

∂φl

+ 4
∂2fcd

∂φi∂φj
− [(Re f)−1]ab ∂fac

∂φi

∂fbd

∂φj

)

− 1

16
ψ̄LiσµνψLj λ̄

c
Lσ
µνλdL

[
(Re f)−1

]ab
×∂fac
∂φi

∂fbd

∂φj
+ h.c. (2.24)

It is remarkable that if some of the scalar fields

φi acquire vacuum expectation values, gaugino

masses may appear through the first term in (2.24).

This is an indication of supersymmetry breaking

which will be discussed in detail in subsection 2.3.

The third term is a typical supersymmetric in-

teraction. It is shown in Fig. 20 for the minimal

supergravity model. Note finally that (2.24) con-

tains numerous four–fermion terms.

In summary, the D = 4, N = 1 supergravity

Lagrangian (2.14) depends only on two functions

of the scalar fields. the Kähler function and the

gauge kinetic function

G(φ∗, φ) = K(φ∗, φ) + ln |W (φ)|2 ,
fab(φ) . (2.25)

The Kähler potential K is a real gauge–invariant

function and f and the superpotentialW are an-

alytic functions. Once G and f are given, the

full supergravity Lagrangian is specified. Unfor-

tunately for the predictivity of the theory, both

functions are arbitrary. However, as we will see

in section 3, in supergravity models deriving from

superstring theory they are more constrained and

explicit computations can be carried out.

@
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λ

ψ φ

Figure 20: fermion–scalar–gaugino supersymmetric

interaction

We finally give the explicit form of the local–

supersymmetry transformations:

δemµ = −ikε̄γmΨµ , (2.26)

δΨµ =
2

k
Dµε+ kε(GiDµφi −Gi∗Dµφ∗i)

+ ieG/2γµε

− 1
2
σµνεLGi∗jψ̄

i
Rγ
νψLj

− 1
4
ΨµL

(
Giε̄LψLi −Gi∗ ε̄RψiR

)
+
1

4
(gµν − σµν)εLλ̄aLγνλbRRefab ,(2.27)

δV µa = −ε̄LγµλaL + h.c. , (2.28)

δλaL = σµν(Fa)µνεL

+
i

2
g[(Re f)−1]abGi(Tb)ijφjεL

+
1

4
iεR[(Re f)

−1]ab
(
i
∂fbc

∂φi
ψ̄Liλ

c
L

− i
∂f∗bc
∂φ∗i

ψ̄iRλ
c
R

)

− 1
4
λαR
(
Giε̄LψLi −Gi∗ ε̄RψiR

)
, (2.29)

δφi =
√
2ε̄ψi , (2.30)

δψi =
1

2
D/φiεR −

√
2eG/2(G−1)ij

∗
Gj∗ε

+
1

8
εLλ̄

a
Rλ
b
R(G

−1)ik
∗ ∂f∗ab
∂φ∗k

+
1

2
εL(G

−1)ik
∗
Gjlk∗ ψ̄LjψLl

− 1
4
ψLi

(
Gj∗ ε̄Rψ

j
R −Gj ε̄LψLj

)
.(2.31)

2.2 Spontaneous supersymmetry breaking

In section 1.2 we arrived to the conclusion that

supergravity is the gauge theory of global super-

symmetry with the gravitino as the gauge field.

Now that we know the supergravity Lagrangian

our next step is to ask whether the analog of

the Higgs mechanism exists in this context. We

will see in this subsection that this is indeed the

case. The process is the following: scalar fields

acquire dynamically vacuum expectation values

giving rise to spontaneous breaking of supergrav-

ity. The goldstino, which is a combination of the

fermionic partners of those fields, is swallowed by

the massless gravitino to give a massive spin 3/2

particle. This is the so–called super–Higgs effect.

Let us study it in detail.
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As usual in gauge theories the condition for

(super)symmetry breaking is< δχm > 6= 0, where
χm is at least one of the fields in the theory.

The only local-supersymmetry transformations

in (2.26–2.31) which may acquire non–vanishing

expectation values without breaking Lorentz in-

variance are (2.29) and (2.31). Then, for non–

spatially varying expectation values one obtains1

< δλa > =
i

2
g
[
(Re f)−1

]ab
Gi(Tb)ijφjεL ,

(2.32)

< δψi > = −
√
2eG/2(G−1)ij

∗
Gj∗ε , (2.33)

where the scalar fields φi (present also through

G and f in (2.32) and (2.33)) are being used to

denote their vacuum expectation values. Note

that (2.33) corresponds to vacuum expectation

values for auxiliary fields Fi in (2.11)

Fi = e
G/2(G−1)ij

∗
Gj∗ . (2.34)

Likewise, (2.32) corresponds to expectation val-

ues for auxiliary fields Da in (2.18)

Da = i [(Ref)−1]abgGi(Tb)ijφj . (2.35)

There are then two ways of breaking supersym-

metry, the so–called F–term and D–term super-

symmetry breaking. For example, if gauge sin-

glets scalar fields acquire expectation values, the

right–hand side of (2.32) is zero and supersym-

metry may be broken only by F terms (2.33).

Clearly, in the case of gauge non–singlet scalar

fields the two possibilities, F–term and D–term

breaking, are allowed.

From the above discussion, we deduce that

the relevant quantity for the study of supersym-

metry breaking is Gi. We need

Gi 6= 0 , (2.36)

for at least one value of i, if we want to break

supersymmetry. For example, for the minimal

supergravity model of (2.10) this means

φ∗i +
1

W

∂W

∂φi
6= 0 . (2.37)

1An expectation value of bilinear fermion–antifermion

states may occur in presence of a strongly interacting

gauge force. For example, the third piece in (2.31) must

be taken into account if one wants to study supersymme-

try breaking by the mechanism of a gaugino condensate

[17].

Whether or not scalar fields acquire expecta-

tion values producing supersymmetry breaking

by F and/or D terms is a dynamical question

which must be answered minimizing the scalar

potential (2.19). Note that using (2.34) and (2.35)

this can also be written as

V =
(
Fi∗Gi∗jFj − 3eG

)
+
1

2
(Re fab) DaDb , (2.38)

The form of the scalar potential allows in princi-

ple the possibility of local supersymmetry break-

ing with V = 0 (at tree level) unlike global su-

persymmetry breaking where the scalar poten-

tial (2.21) is always positive definite. The former

possibility seems to be preferred experimentally

since the upper bound on the cosmological con-

stant is extremely close to zero V ≤ 10−45(GeV )4.
Of course this is not a solution to the cosmo-

logical constant problem. We do not know why

the terms in the scalar potential conspire to pro-

duce V = 0, but at least we can fine tune them

to obtain the value we want2. Otherwise, V ≈
m23/2M

2
P ≈ 1040(GeV )4 as we will see below.

Let us now study a consequence of local su-

persymmetry breaking, the super–Higgs effect.

Discussing first F–term supersymmetry break-

ing, we know that in global supersymmetry a lin-

ear combination of the spinors in the supermul-

tiplets of the auxiliary fields Fi is the Goldstone

fermion (Goldstino). In supergravity, where the

mass terms from (2.13) are given by (assuming

for simplicity the minimal model of (2.10))

e−1
(LCF )m = i

2
eG/2Ψ̄µσ

µνΨν

+
i√
2
eG/2GiΨ̄µγ

µψi

− 1
2
eG/2(Gij +GiGj)ψ̄

iψj ,

(2.39)

the Goldstino

η = Giψ
i , (2.40)

as in ordinary gauge theory, gets mixed with

the gravitino as shown in Fig. 21 due to the sec-

ond term in (2.39). Its two degrees of freedom,

2In fact higher–order corrections to the scalar potential

will spoil this cancellation.
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Figure 21: Gravitino–goldstino mixing interaction

helicity ± 12 states, are eaten by the gravitino
which then gets helicity ± 32 ,± 12 states. Redefin-
ing fields we are left with a gravitino

Ψ′µ = Ψµ −
i

3
√
2
γµη −

√
2

3
e−G/2∂µη , (2.41)

with mass

m3/2 = e
G/2MP = e

K/2 |W |
M2
P

, (2.42)

where we have inserted the reduced Planck mass

to obtain the correct mass unit, using G dimen-

sionless and W with mass dimension 3. In par-

ticular,

e−1
(LCF )m = i

2
eG/2Ψ̄′µσ

µνΨ′ν −
1

2
eG/2

(
Gij

+
1

3
GiGj

)
ψ̄iψj . (2.43)

In the case ofD–term supersymmetry break-

ing, the term in the Lagrangian mixing the grav-

itino with the Goldstino is not only given by the

second term in (2.39) but also the second one in

(2.24) contributes

e−1Lmixing = i√
2
eG/2GiΨ̄µLγ

µψiL

− i
2
gGi(Ta)ijφjΨ̄µLγ

µλaL + h.c.

(2.44)

At the end of the day, with the Goldstino given

by

η = Giψ
i − g√

2
e−G/2Gi(Ta)ijφjλa (2.45)

one obtains similar results to the previous ones.

Now we know that spontaneous supersym-

metry breaking in the context of supergravity is

possible, but still we have to specify the mecha-

nism that generates it. Clearly, e.g. from (2.37)

and (2.42), we can deduce that the crucial func-

tion regarding this issue is the superpotential of

the theory. The most useful form for this consists

of a sum of two functions

W (Cα, hm) =WO(Cα) +WH(hm) , (2.46)

where Cα denote the usual scalar fields of the the-

ory, squarks, sleptons, Higgses (and other possi-

ble particles in case we are working with a grand

unified model), which constitute the so–called

observable sector, and hm denote additional scalar

fields responsible for the spontaneous breaking of

supersymmetry. The latter are assumed to have

only gravitational interactions with the observ-

able sector. This means that they are singlets un-

der the observable gauge group, constituting the

so–called hidden sector. Therefore the hidden–

sector fields do not have neither gauge interac-

tions nor Yukawa couplings with the observable

sector. In principle, other very weak interactions

between both sectors might be present without

being in conflict with experimental observations,

however we prefer not to consider this complica-

tion.

The simplest model, proposed in an unpub-

lished paper by Polonyi [18], consists of a gauge–

singlet scalar field h with the following superpo-

tential:

WH(h) = m
2(h+ β) . (2.47)

The superpotential must have mass dimension

3 and therefore m and β are parameters with

dimension of mass. Since the hidden–sector field

is a gauge singlet, the scalar potential that we

have to minimize is given only by the F part of

(2.19)

V =M4
P e
G
(
Gh(G

−1)hh
∗
Gh∗ − 3

)
, (2.48)

where G is dimensionless to obtain the correct

mass unit for the potential. Note that if there

is no any cancellation, at the minimum V ≈
m23/2M

2
P giving rise to a huge cosmological con-

stant. Considering for simplicity the minimal su-

pergravity model of (2.10)

G =
h∗h
M2
P

+ ln
|WH |2
M6
P

, (2.49)

one obtains

Gh =
h∗

M2
P

+
1

WH

∂WH

∂h
, (2.50)
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and

(G−1)hh
∗
=M2

P , (2.51)

with the following result for the scalar potential

(2.48):

V = m4e
h∗h
M2
P

(
| h
∗

M2
P

(h+ β) + 1|2 − 3 |h− β|
2

M2
P

)
.

(2.52)

Choosing

β =
(
2−√3

)
MP , (2.53)

one can show that V has an absolute minimum

at

< h >=
(√
3− 1

)
MP , (2.54)

with vanishing cosmological constant V = 0. Note

that at this minimum supersymmetry is broken

since Gh in (2.50) is different from zero

Gh =

√
3

MP
. (2.55)

The gravitino acquires a mass eating the Gold-

stino which in this case is the fermionic partner

of h. Using the result (2.42), this is given by

m3/2 = e
1
2 (
√
3−1)2 m

2

M2
P

MP . (2.56)

Note that the gravitino mass can be much smaller

than the Planck mass if m
MP
is small. For exam-

ple, to obtain the gravitino mass of order the

electroweak scale, m3/2 ≈ MW , we need m ≈√
MWMP ≈ 1010 GeV. This implies < WH >≈
1020MP ≈ 1038(GeV )3. We will discuss in the
next subsection that this possibility is in fact

crucial if we want to avoid a hierarchy problem.

The soft parameters which determine the super-

symmetric spectrum and in particular contribute

to the Higgs potential are of order the gravitino

mass. Therefore we need this mass to be of or-

der MW to obtain a correct electroweak symme-

try breaking. A value of m3/2 larger than 1 TeV

would reintroduce the hierarchy problem solved

by supersymmetry.

Defining the supersymmetry–breaking scale

MS by

M2
S =< Fi >=MP < eG/2(G−1)ij

∗
Gj∗ > ,

(2.57)

where we have insertedMP in (2.34) to have the

correct mass unit, one obtains using (2.42)

M2
S = m3/2 < (G

−1)ij
∗
Gj∗ > . (2.58)

For example, in the Polonyi model studied above

results (2.51) and (2.55) imply

M2
S =
√
3m3/2MP . (2.59)

If, as discussed above, m3/2 ≈MW one obtains

MS ≈
√
m3/2MP ≈

√
MWMP ≈ 1010GeV .

(2.60)

This is in fact a generic result that must be ful-

filled by any supersymmetric model. Apart from

that, let us finally remark that the Polonyi mech-

anism must be considered as a toy model. It is

rather ad hoc. There is no a special reason why

W should be given as in (2.47). For example, in a

fundamental theory like superstring theory such

kind of superpotentials are not present. A more

realistic mechanism is gaugino condensation in

some hidden–sector gauge group [17]. For exam-

ple in superstring theory, besides the gauge group

where the standard model is embedded, other ex-

tra gauge groups are usually present providing a

hidden sector. Due to non–perturbative effects a

superpotential breaking supersymmetry is gener-

ated dynamically.

2.3 Soft Supersymmetry–Breaking Terms

On experimental grounds supersymmetry cannot

be an exact symmetry of Nature: supersymmet-

ric partners of the known particles with the same

masses (e.g. scalar electrons with masses of 0.5

MeV) has not been detected. Let us recall a

mechanism to avoid this problem in the context

of global supersymmetry. Simply one introduces

terms in the Lagrangian which explicitly break

supersymmetry. The only constraint they must

fulfil is not to induce quadratic divergences in or-

der not to spoil the supersymmetric solution to

the gauge hierarchy problem. This is the reason

why these terms are called soft supersymmetry–

breaking terms, soft terms in short. The sim-

plest supersymmetric model is the so–called min-

imal supersymmetric standard model (MSSM),

where the matter consists of three generations of

quark and lepton superfields plus two Higgs dou-

blets superfields (supersymmetry demands the

presence of two Higgs doublets unlike the stan-

dard model where only one is needed) of oppo-

site hypercharge, and the gauge sector consists
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of SU(3)C × SU(2)L×U(1)Y vector superfields.
The associated superpotential, in an obvious no-

tation, is given by

W =
∑

generations

[
Yu Q̃LH̃2ũ

c
L + Yd Q̃LH̃1d̃

c
L

+ Ye L̃LH̃1ẽ
c
L

]
+ µ H1H2 , (2.61)

where the first piece is related with the Yukawa

couplings (we have taken for simplicity diago-

nal couplings), which eventually determine the

fermion masses, and the second piece, the so–

called µ term, is necessary in order to break the

electroweak symmetry.

The soft terms can be parameterized by the

following parameters: gaugino massesMa, scalar

massesmα, trilinear parameters (associated with

the Yukawa couplings) Au,d,e and a bilinear pa-

rameter (associated with the µ term) B. Thus

the form of the soft Lagrangian is given by

Lsoft = 1
2

(
Ma λ̂aλ̂a + h.c.

)
−m2α C∗αCα

−

 ∑
generations

[
Au Ŷu Q̃LH̃2ũ

c
L

+ Ad Ŷd Q̃LH̃1d̃
c
L +Ae Ŷe L̃LH̃1ẽ

c
L

]
+ B µ̂ H1H2 + h.c.) , (2.62)

where Cα denote all the observable scalars, i.e.

Q̃L, ũ
c
L, d̃

c
L, L̃L, ẽ

c
L, H1, H2, and λa with a corre-

sponding to SU(3)C , SU(2)L, U(1)Y , denote all

the observable gauginos, i.e. g̃, W̃1,2,3, B̃. The

hat on Yukawa couplings and µ parameter de-

note that they are rescaled. We will discuss these

points in (2.66) and (2.73) below.

These soft terms are crucial not only because

they determine the supersymmetric spectrum, like

gaugino, Higgsino, squark and slepton masses,

but also because they contribute to the Higgs po-

tential (together with the quartic terms coming

from D terms) generating the radiative break-

down of the electroweak symmetry. Let us recall

that in the standard model the whole Higgs po-

tential has to be postulated ad hoc.

Although in principle the breaking of super-

symmetry explicitly may look arbitrary, remark-

ably in the context of local supersymmetry it

happens in a natural way: when supergravity is

spontaneously broken in a hidden sector, the soft

terms for the observable fields are generated. Let

us discuss this in some detail.

In the previous subsection we studied mech-

anisms in order to break local supersymmetry,

where the presence of fields in a hidden sector

was crucial to achieve it. Let us divide the super-

potential as in (2.46) and consider for simplicity

the form of the Kähler potential K that leads

to canonical kinetic terms (2.10) for the chiral

supermultiplets

G =
1

M2
P

(∑
α

C∗αCα +
∑
m

h∗mhm

)
+ ln

|W |2
M6
P

.

(2.63)

Then, assuming that supersymmetry is broken

by F terms, only the first piece of the scalar po-

tential in (2.19) will contribute

V = e
1

M2
P

(
∑

α
C∗αCα+

∑
m
h∗mhm)

×
(∑
α

|∂WO
∂Cα

+
C∗α
M2
P

(WH +WO)|2

+
∑
m

|∂WH
∂hm

+
h∗m
M2
P

(WH +WO)|2

− 3 |WH +WO|
2

M2
P

)
, (2.64)

where we are using for the moment a generic

hidden–sector superpotential WH(hm). The ob-

servable sector superpotential WO(Cα) might be

for example the one of the MSSM in (2.61) or a

GUT generalization of it. Note that non renor-

malizable terms can in principle be ignored for

analyses far below the Planck scale, MP → ∞,
since they are suppressed by powers of 1

M2
P

. For

example −3|WO |
2

M2
P

→ 0. Thus apparently one

is left in the observable sector with the usual

global–supersymmetry scalar potential |∂WO
∂Cα
|2 and

nothing new arises from the breaking of super-

gravity. However, if some fields acquire large

vacuum expectation values, the new gravitation-

ally induced terms may be important. We saw

in the previous subsection that although the first

term in (2.13) is non renormalizable it gives rise

to a sizeable contribution to the gravitino mass

m3/2 ≈ |WH |
M2
P

(see (2.42)). For example, using the

Polonyi mechanism we obtained < h >≈MP im-
plying WH ≈ 1038(GeV )3 and therefore m3/2 ≈
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100 GeV. From this discussion we conclude that

we must hold m3/2 = e
1

2M2
P

(
∑

m
h∗mhm) |WH (hm)|

M2
P

fixed when we take the limit MP → ∞. Here
hm are being used to denote their vacuum ex-

pectation values at the minimum of the potential

(2.64). This limit where MP → ∞ but m3/2 is
held fixed is the so–called flat limit. Then, al-

though the observable sector does not contribute

to give mass to the gravitino and therefore does

not feel directly the breaking of supersymmetry,

it feels the breaking indirectly due to the appear-

ance of soft terms through gravitational inter-

actions in (2.64). For example, the term pro-

portional to
−3W∗

H

M2
P

WO will give rise to couplings

−3m3/2WO. Also from the term proportional to
|WH
M2
P

C∗α|2, masses m23/2C∗αCα for the scalars will
arise. In total, from (2.64) one obtains in the

low–energy limit

V = e
1

M2
P

∑
m
h∗mhm

{∑
α

∣∣∣∂WO
∂Cα

∣∣∣2

+
∑
α

|WH |2
M4
P

C∗αCα +
W ∗
H

M2
P

[∑
α

Cα
∂WO

∂Cα

+

(∑
m

h∗m

(
1

W ∗
H

∂W ∗
H

∂h∗m
+
hm

M2
P

)
− 3
)
WO

+ c.c

]}
. (2.65)

Rescaling the observable superpotential

ŴO ≡WO W ∗
H

|WH |e
1

2M2
P

∑
m
h∗mhm

, (2.66)

and taking into account that the expectation val-

ues Fm of the auxiliary fields associated with the

scalars hm are given by (see (2.57))

Fm = m3/2M
2
P

(
1

W ∗
H

∂W ∗
H

∂h∗m
+
hm

M2
P

)
, (2.67)

(2.65) may be rewritten as

V =
∑
α

∣∣∣∂ŴO
∂Cα

∣∣∣2 +∑
α

m23/2C
∗
αCα

+ m3/2

[∑
α

Cα
∂ŴO

∂Cα

+

(∑
m

h∗m
Fm

m3/2M
2
P

− 3
)
ŴO + c.c

]
.

(2.68)

INTERACTIONS

GRAVITATIONAL

(observable sector)

MSSM
SUPERSYMMETRY

BREAKING ORIGIN

          (hidden sector)

Figure 22: Supersymmetry breaking occurs in a

hidden sector and is transmitted to the observable

sector by gravitational interactions giving rise to soft

terms.

Therefore at the end of the day we are left with

the usual global supersymmetric potential (with

superpotential ŴO) plus soft terms. The proce-

dure studied in this section and the previous one

to break supersymmetry is schematically sum-

marized in Fig. 22. We can apply this result

to the case of the MSSM (2.62). For example,

absorbing the above rescaling (2.66) in Yukawa

couplings and µ parameter as usual,

Ŷu,d,e = Yu,d,e
W ∗
H

|WH | e
1

2M2
P

∑
m
h∗mhm

,

µ̂ = µ
W ∗
H

|WH | e
1

2M2
P

∑
m
h∗mhm

, (2.69)

one obtains the following soft parameters:

mα = m3/2 ,

Au,d,e = m3/2
∑
m

h∗m
Fm

m3/2M
2
P

,

B = m3/2
∑
m

h∗m
Fm

m3/2M
2
P

−m3/2 .(2.70)

It is worth noticing that the gravitino mass set

the overall scale of the soft parameters. This

was expected since the F part of the scalar po-

tential in (2.19) has an overall factor eG and

therefore it is a general result valid for any su-

pergravity model. This implies that the effective

supersymmetry–breaking scale in the observable

sector is of orderm3/2 as already mentioned above

and not the supersymmetry–breaking scale Fm
which is of order 1010 GeV.

Note that the scalar masses are automati-

cally universal mα ≡ m. In particular, in this

model they are all equal to the gravitino mass,

m = m3/2. Actually, universality of scalar masses

is a desirable property not only to reduce the

number of independent parameters in supersym-

metric models, but also for phenomenological rea-

sons, particularly to avoid flavour changing neu-

tral currents. Besides, the A parameters are also
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universal, Au,d,e ≡ A, and they are related to the
B parameter3

B = A−m3/2 . (2.71)

These results show us that it is possible to learn

things about soft terms without knowing the de-

tails of supersymmetry breaking, i.e. the ex-

plicit form of the function WH(hm). We are

left in fact with only two free parameters, m3/2
and A ≡ Au,d,e. Of course once this function

is known we can compute these quantities since

m3/2 and Fm depend on WH(hm). For example,

for the Polonyi mechanism studied in the previ-

ous subsection one obtains straightforwardly

A =
(
3−√3

)
m3/2 . (2.72)

The above results (2.70) should be under-

stood as being valid at some high scale O(MP )
and the standard renormalization group equa-

tions must be used to obtain the low–energy (≈
MW ) values.

On the other hand, from the fermionic part

of the supergravity Lagrangian, (tree–level) soft

gaugino masses may also be obtained. Let us

assume for simplicity fab = δabfa. After canon-

ically normalizing the gaugino fields in the first

term of (2.22),

λ̂a = (Refa)
1/2λa , (2.73)

the first term in (2.24) gives rise to a mass term

as in (2.62) with

Ma =
1

2
(Refa)

−1Fm
∂fa

∂hm
, (2.74)

with Fm as in (2.57). Note that the gauge ki-

netic function f is dimensionless and therefore

the mass unit above is correct. For this to be

non–vanishing at tree level, which is phenomeno-

logically interesting (experimental bounds on glu-

ino masses imply M3 > 50 GeV), it is necessary

a non–canonical choice of the vector supermulti-

plets fa 6= const. For example, universal gaug-

ino masses can be obtained if all the fa have the

3In fact, this relation depends on the particular mech-

anism which is used to generate the µ parameter. Its

generation is the so–called µ problem and several solu-

tions have been proposed in the context of supergravity

[20].

same dependence on the hidden–sector fields, i.e.

fa(hm) = caf(hm), for the different gauge group

factors. This is in fact the case of supergrav-

ity models deriving from (tree–level) perturba-

tive superstring theory as we will see in the next

section. Let us use the general formula (2.74)

to consider the simple case fa = h/MP with

the same Kähler function (2.63) studied above,

where some hm ≡ h. Then, one obtains the uni-

versal mass

M =
1

2
(Re h)−1Fh , (2.75)

where Fh is given by (2.67) with hm = h. For

example, for the Polonyi mechanism one obtains

M = m3/2

√
3

2(
√
3− 1) . (2.76)

As in the case of scalar soft parameters (2.70),

the gravitino mass set the overall scale of the soft

gaugino masses. Note to this respect the overall

factor eG/2 in the first term of (2.24).

Let us finally remark that with the inclusion

of the other unsuppressed terms in (2.14) we are

left finally with the usual global–supersymmetry

Lagrangian plus the soft terms. This effective La-

grangian is obviously renormalizable and there-

fore perfectly consistent in order to study phe-

nomenology. For example, the third term in (2.13)

gives rise to the usual Yukawa couplings and Hig-

gsino masses. Note that Gij give rises to the

observable–sector piece 1
WH

∂2WO
∂Cα∂Cβ

and therefore

eG/2Gij induces the contribution
∂2ŴO
∂Cα∂Cβ

with

Yukawa couplings and the µ parameter rescaled

as in (2.69), i.e.

−1
2

∑
α,β

∂2ŴO

∂Cα∂Cβ
ψ̄αLψβR + h.c. (2.77)

The Higgsino masses given by µ̂ are obviously

supersymmetric masses. The same contribution

will appear in the Higgs masses through the first

term in (2.70)

In conclusion, we have shown in this subsec-

tion that supergravity models are interesting and

give rise to concrete predictions for the soft pa-

rameters. However, one can think of many possi-

ble supergravity models (with differentK,W and

21



Corfu Summer Institute on Elementary Particle Physics, 1998 D.G. Cerdeño and C. Muñoz

f) leading to different results for the soft terms4

For example, if instead of assuming the form ofK

for the observable sector given by (2.63) we take

K = Kα(h
∗
m, hm)C

∗
αCα it is straightforward to

see that soft scalar masses are no longer univer-

sal (we also must canonically normalize the scalar

fields in (2.62) Ĉα = K
1/2
α Cα similarly to the case

of gaugino fields (2.73)). Also, the Polonyi su-

perpotential WH in (2.47) give rise to soft terms

which are different from those obtained using

a gaugino–condensation mechanism. This arbi-

trariness, as we will see in the next section, can be

ameliorated in supergravity models deriving from

superstring theory, where K, f , and the hidden

sector are more constrained. We can already an-

ticipate, for example, that in such a context the

kinetic terms are generically not canonical.

3. Supergravity from superstrings

Recently there have been studies of supergravity

models obtained in particularly simple classes of

superstring compactifications. Such models have

a natural hidden sector built-in: the complex

dilaton field S and the complex overall modulus

field T . These gauge singlet fields are generically

present in four-dimensional models: the dilaton

arises from the gravitational sector of the theory

and the modulus parameterizes the size of the

compactified space < T >≈ R2M2
string, where R

denotes the overall radius. Both fields are taken

dimensionless. Assuming that the auxiliary fields

of those multiplets are the seed of supersymmetry

breaking, interesting predictions for this simple

class of models are obtained. Here we will ana-

lyze very briefly this issue. More details can be

found in [20].

Once we choose the compact space, K and f

are calculable. Starting with the D = 10 super-

gravity Lagrangian, obtained as the low–energy

limit of superstring theory, and expanding inD =

4 fields, the D = 4, N = 1 supergravity La-

grangian can be computed. In particular, work-

ing with orbifold compactifications in the context

4General formulae for tree–level soft parameters were

computed in [19]. See also [20] for a review with super-

gravity and superstring examples. One–loop corrections

to the soft parameters were computed recently in [21].

of the perturbative heterotic string, one obtains

L = −1
4
(Re S) Fµνa F aµν

+
1

(S + S∗)2
M2
P ∂µS∂

µS∗

+
3

(T + T ∗)2
M2
P ∂µT∂

µT ∗

+(T + T ∗)nα∂µCα∂µC∗α + ... , (3.1)

where nα are negative integer numbers called

modular weights of the matter fields Cα. A com-

parison of this result with the general supergrav-

ity Lagrangian (2.14), in particular with the sec-

ond term in (2.5) and the first term in (2.15), al-

lows us to deduce the Kähler potential and gauge

kinetic function

K = − ln(S + S∗)− 3 ln(T + T ∗)
+ (T + T ∗)nα

CαC
∗
α

M2
P

,

fab = S δab . (3.2)

Note from our discussion in (2.17) that< Re S >=

1/g2a and therefore the gauge coupling constants

are unified even in the absence of a grand uni-

fied theory. Thus grand unification groups, as

e.g. SU(5) or SO(10), are not mandatory in or-

der to have unification in the context of super-

strings. Recall that S and T fields are dimension-

less unlike all other scalars which have dimension

1. This implies dimension 1 for the F terms of

S and T whereas the F terms of all other scalars

have dimension 2 as studied in section 2.2.

As we learnt in the previous section, we can

compute with information (3.2) the soft terms

(e.g. gaugino masses Ma are trivially obtained

from (2.74)):

m2α = m23/2 +
nα

(T + T ∗)2
|FT |2 ,

Ma =
FS

(S + S∗)
,

Aαβγ = − FS

(S + S∗)
− FT

(T + T ∗)
(3 + nα + nβ

+nγ − (T + T ∗) 1
Yαβγ

∂Yαβγ

∂T

)
. (3.3)

Note that to obtain this result we did not assume

any specific supersymmetry–breaking mechanism,

i.e. a particular value of WH(S, T ). Due to
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the form of the gauge kinetic function gaugino

masses turn out to be universal. However, due to

the modular weight dependence the scalar masses

(and A parameters) show a lack of universal-

ity. Universality can be obtained in the so–called

dilaton dominated limit, i.e. if we assume that

the mechanism of supersymmetry breaking is in

such a way that only the F term associated with

the dilaton acquires a vacuum expectation value,

FT = 0. Then,

mα = m3/2 ,

Ma =
√
3 m3/2 ,

Aαβγ = −Ma , (3.4)

where to obtain the value ofMa we have assumed

a vanishing cosmological constant, i.e. V = 0 in

(2.38)

|FS |2
(S + S∗)2

+
3|FT |2
(T + T ∗)2

= 3m23/2 . (3.5)

Recall that only the F part of (2.38) contributes

to supersymmetry breaking since the hidden sec-

tor fields, dilaton and modulus, are gauge sin-

glets.

It is worth noticing that the above results

(3.4) are independent of the compactification spa-

ce since the dilaton couples in a universal man-

ner to all particles, i.e. f and the dilaton part

of K are not modified by the particular choice of

compact space. Because of the simplicity of this

scenario, predictions are quite precise. For exam-

ple at high energies the relation between scalar

masses and gaugino masses is Ma =
√
3 mα. Us-

ing the renormalization group equations one ob-

tains at low–energies

Mg̃ ≈ mq̃ >> ml̃ . (3.6)

4. Conclusions

Supergravity cannot be the final theory of ele-

mentary particles since it is non renormalizable.

However, it might be the effective theory of the

final theory (perhaps superstrings). In that case,

supergravity might be subject to experimental

test through the prediction of the soft supersym-

metry breaking terms which determine the super-

symmetric spectrum. The study of supergravity

is therefore worthwhile. Besides, there are still

open problems whose solutions are crucial for the

consistency of the theory. The cosmological con-

stant problem and the mechanism of supersym-

metry breaking are the most important ones.
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A. Appendix

Superspace formalism in supergravity

We sketch in this Appendix the derivation of

the most general D = 4, N = 1 supersymmet-

ric gauge theory coupled to supergravity, using

the superspace formalism. For a review of this

method see [5], where also the references of the

authors who have contributed to the subject can

be found.

Let us recall first how this approach works

in the context of global supersymmetry. The su-

perspace is defined as the space created by

xµ, θα, θ̄α̇ , (A.1)

where xµ are the usual four space–time dimen-

sions and the anticommuting parameters θα, θ̄α̇
(α = 1, 2), which are elements of a Grassmann

algebra, are introduced as supersymmetric part-

ners of the x–coordinate. The components of

the chiral supermultiplets (φi, ψi, Fi) with i =

1, ..., n, where φi are complex scalar fields, ψi are

Weyl spinor fields and Fi are auxiliary complex

scalar fields, arise as the coefficients in an expan-

sion in powers of θ and θ̄ of the so called chiral

superfields Φi(x, θ, θ̄), which are functions of the

superspace coordinates. Then, working in the su-

perspace, the most general renormalizable super-

symmetric Lagrangian involving only chiral su-

perfields (barring linear contributions which are

forbidden, unless the superfields are neutral, once
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gauge invariance is included) is given by

Lglobal =
∫
d2θd2θ̄Φ+i Φi +

[∫
d2θ

(
1

2
mijΦiΦj

+
1

3
YijkΦiΦjΦk

)
+ h.c.

]
, (A.2)

where repited indices are summed in our notation

and the couplings mij and Yijk are symmetric in

their indices.

Its generalization to the local–supersymmetry

case parallels the construction of a Lagrangian

including gravity in the non–supersymmetric case

discussed in section 1.1. First, to obtain the su-

persymmetric gravitational action we need su-

persymmetric generalizations of the measure ed4x,

where e = det emµ , and Ricci scalar R. These

are given by the chiral density superfield E and
superspace curvature superfield R. Their com-
ponents, (e, Ψµ,...) and (R, Ψµ,...) respectively,

where Ψµ is the gravitino and the dots denote

auxiliary fields, arise as the coefficients in an ex-

pansion in powers of the superspace parameters

Θ. The latter are generalized θ parameters which

now carry local Lorentz indices. The pure super-

gravity Lagrangian is then

Lsg = − 6
k2

∫
d2ΘER , (A.3)

where k2 = 8πGN is the gravitational coupling.

The Lagrangian (A.2) is now easily extended to

the local case. We first write it in chiral form

Lglobal =
∫
d2θ

[
−1
8
D̄D̄Φ+i Φi +

1

2
mijΦiΦj

+
1

3
YijkΦiΦjΦk

]
+ h.c. , (A.4)

where D and D̄ are the usual supersymmetric

derivatives and we are using the property∫
F
(
x, θ, θ̄

)
d2θd2θ̄ =

−1
4

∫
D̄D̄F

(
x, θ, θ̄

)
d2θ

=
−1
4

∫
DDF

(
x, θ, θ̄

)
d2θ̄ .

(A.5)

We then add the supergravity action (A.3) and

replace θ → Θ, d2θ → d2Θ2E , and − 14D̄D̄ →
− 14 (D̄D − 8R), where D is the covariant deriva-
tive. This gives the Lagrangian (A.2) in local

supersymmetry (setting k equal to one):

Llocal =
∫
d2Θ2E

[
−3R− 1

8

(D̄D̄ − 8R)Φ+i Φi
+
1

2
mijΦiΦj +

1

3
YijkΦiΦjΦk

]
+ h.c.

(A.6)

It is interesting to write this equation as

Llocal =
∫
d2Θ2E

[
−1
8

(D̄D̄ − 8R)Ω(Φi,Φ+i )
+W (Φi)

]
+ h.c. , (A.7)

where

Ω(Φi,Φ
+
i ) = Φ

+
i Φi − 3 (A.8)

is the superspace kinetic energy, and

W (Φi) =
1

2
mijΦiΦj +

1

3
YijkΦiΦjΦk (A.9)

is the superspace potential (also called superpo-

tential).

After eliminating the auxiliary fields by their

Euler equations, and rescaling and redefining the

other fields, one arrives at the component La-

grangian in terms of the physical fields, φ, ψ, emµ
and Ψµ. Remarkably, its expression is written in

terms of the real function

K(φi, φ
∗
i ) = −3 ln

(
−Ω
3

)
, (A.10)

with

Ω(φi, φ
∗
i ) = φ

+
i φi − 3 . (A.11)

For example, the kinetic terms of the scalars are

proportional to

∂2K

∂φi∂φ
∗
j

∂µφi∂
µφ∗j . (A.12)

They have properly normalized kinetic energies

since ∂2K
∂φi∂φ∗j

= δij + . . .. The Lagrangian also

has higher–order interaction terms, such as non–

renormalizable four–fermion couplings, which are

suppressed by powers of Newton’s constant. Be-

low we shall see thatK is the so called Kähler po-

tential and that the component Lagrangian has a

natural interpretation in the language of Kähler

geometry.
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Since supergravity is a non–renormalizable

theory, we are in fact interested in the most gen-

eral Lagrangian that can be built from chiral su-

perfields. This is

Lglobal =
∫
d2θd2θ̄ K

(
Φ+i ,Φj

)
+

[∫
d2θ W (Φi) + h.c.

]
. (A.13)

Here K and W are vector and chiral superfields

respectively, with power series expansion in terms

of the chiral superfields Φi,

K(Φi,Φ
+
j ) =

∑
ai1...iN ,j1...jMΦi1 . . .ΦiN

×Φ+j1 . . .Φ+jM ,

W (Φi) =
∑

bi1...iNΦi1 . . .ΦiN . (A.14)

The component expansion of K implies that ki-

netic terms are obviously non renormalizable. On

the other hand, only kinetic terms with two space–

time derivatives are present. A higher–derivative

theory might be obtained if supersymmetric deriva-

tives of superfields were allowed in K. We ex-

clude this problematic possibility in what follows.

To study the matter couplings of chiral multiplets

it is convenient to use the language of Kähler ge-

ometry.

A Kähler manifold is a special type of ana-

lytic Riemann manifold, subject to certain con-

ditions. These conditions imply that the metric

and the connection are determined by the deriva-

tives of a scalar function K called the Kähler po-

tential. E.g. the metric gij∗ is given by gij∗ =
∂2K(c,c∗)
∂ci∂c∗j

≡ Kij∗ , where ci and c
∗
i are the com-

plex coordinates parameterizing the Kähler man-

ifold. Under an analytic coordinate transforma-

tion, ci → c′i(c) and c
∗
i → c∗i

′(c∗). Note that
the metric is invariant under analytic shifts of

K, K(c, c∗) → K(c, c∗) + F (c) + F ∗(c∗). They
are called Kähler transformations of the Kähler

potential.

Then, using the Kähler notation, it is possi-

ble to see that the component Lagrangian from

(A.13) can be written in terms of the real func-

tion K(φ, φ∗). For example, the scalar potential
is given by

V = Kij∗
∂W

∂φi
∂W ∗

∂φ∗j
. (A.15)

The Lagrangian is invariant under coordinate tra-

nsformations, where the scalar fields should be

thought of as the coordinates of the Kähler man-

ifold and the fermions as tensors in the tangent

space. From the superspace viewpoint, the source

of this Kähler geometry is the invariance of (A.13)

under the superfield Kähler transformation:

K(Φ,Φ+)→ K(Φ,Φ+) + F (Φ) + F ∗(Φ+) .
(A.16)

Now, following the same steps as in the case

of the renormalizable chiral Lagrangian (A.2),

we generalize (A.13) to the local–supersymmetry

case

Llocal = 1

k2

∫
d2Θ 2E

[
3

8

(D̄D̄ − 8R)
× e−

k2

3 K(Φi,Φ
+
j ) + k2W (Φi)

]
+ h.c. , (A.17)

where K(Φ,Φ+) is a general hermitian function

andW (Φ) is the superpotential. The exponential

form is suggested by the relation (A.10). Note

that expanding in k2,

Llocal = − 6
k2

∫
d2Θ ER+

∫
d2Θ2E

×
[
−1
8
(D̄D̄ − 8R)K (Φ+i ,Φj)+W (Φi)

]
+ ...+ h.c. , (A.18)

we may recover the global–supersymmetry La-

grangian. After a straightforward computation,

the component form of (A.17) turns out to be the

same as that of (A.7), where now K is an arbi-

trary real function of the scalar fields, the lowest

component of the superfield K(Φ,Φ+). Using a

super–Weyl transformation one can simplify the

component expression in such a way that it de-

pends only on the real function

G(φ∗, φ) = K(φ∗, φ) + ln |W (φ)|2 . (A.19)

For example, the scalar potential is given by

V = eG


 ∂G
∂φi

(
∂2G

∂φiφ
∗
j

)−1
∂G

∂φ∗j
− 3

 . (A.20)

This is different from the global–supersymmetry

Lagrangian, whereK andW enter in an indepen-

dent way (see e.g. (A.15)). The final Lagrangian

can be found in the text in eq. (2.4).
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To obtain the complete supergravity Lagrang-

ian which couples pure supergravity to supersym-

metric chiral matter and Yang–Mills we need now

the complete gauge–invariant global supersym-

metry Lagrangian in superspace. Let us recall

first how to obtain the renormalizable gauge–

invariant Lagrangian. One imposes gauge in-

variance to the renormalizable chiral Lagrangian

(A.2) with the result that a vector superfield must

be introduced:

Lglobal =
∫
d2θd2θ̄ Φ+eVΦ

+

[∫
d2θ

(
1

2
mijΦiΦj +

1

3
YijkΦiΦjΦk

)
+ h.c.] , (A.21)

where now the chiral superfields Φ transforms as

a representation of a gauge group G and V ≡
2gT aV a with T a the group generators in that

representation, V a the vector superfields and g

the gauge coupling constant. The components of

V a are the vector bosons belonging to the ad-

joint representation of G, their Majorana spinor

partners λa and the auxiliary real scalar fields

Da. Adding the (gauge–invariant) kinetic term

for the vector supermultiplet,

1

16

∫
d2θ W aαW a

α + h.c. , (A.22)

we obtain the complete Lagrangian. Here W a
α

is the gauge field strength (chiral spinor) super-

field with spinor index α. In particular, Wα =

− 14D̄D̄e−VDαeV . We follow the same procedure
to obtain the most general gauge–invariant La-

grangian. From (A.13) we deduce

Lglobal =
∫
d2θd2θ̄

[
K(Φ+i ,Φj) + Γ(Φ

+
i ,Φj , V )

]
+

[∫
d2θ W (Φi) + h.c.

]
, (A.23)

where Γ is a counterterm which is necessary for

gauge invariance. As above we have to add the

kinetic term for the vector supermultiplet:

1

16

∫
d2θfab(Φi)W

aW b , (A.24)

but now an arbitrary analytic function of the

chiral superfields fab(Φi), which would be just

δab. in the renormalizable case, may be included.

Under supersymmetry it transforms as chiral su-

perfield. Under a gauge transformation, it must

transform as a symmetric product of adjoint rep-

resentations of the gauge group.

Then, from (A.23) and (A.24), we deduce the

local–supersymmetry Lagrangian:

Llocal =
∫
d2Θ2E

[
3

8
(D̄D̄ − 8R)

× exp

{
−1
3

[
K(Φ+i ,Φj) + Γ(Φ

+
i ,Φj , V )

]}

+
1

16
fab(Φi)W

aW b +W (Φi)

]
+ h.c. , (A.25)

whereWα = − 14 (D̄D̄−8R)e−VDαeV is the curved–
space generalization of the Yang–Mills field stren-

gth superfield. After eliminating the auxiliary

fields, and rescaling and redefining the other fields

as in the case of chiral models, one arrives at the

component Lagrangian in terms of the physical

fields, φ, ψ, V a, λa, emµ ,Ψµ. It depends on the two

arbitrary functions

G(φ∗, φ) = K(φ∗, φ) + ln |W (φ)|2 ,
fab(φi) , (A.26)

and can be found in the text in eq. (2.14).
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