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Abstract: In this talk we examine how one-loop soft and collinear splitting functions occur in the

calculation of next-to-next-to-leading order (NNLO) corrections to production rates, and we present the

one-loop gluon soft and splitting functions, computed to all orders in the dimensional regularization pa-

rameter ε. We apply the one-loop gluon soft function to the calculation of the next-to-leading logarithmic

corrections to the Lipatov vertex to all orders in ε.

The single most important parameter of per-

turbative QCD is the strong coupling constant,

αs, which has been determined in several ways [1].

Some of the most promising ones are due to hadron

production in e+e− collisions; e.g., the hadronic
branching ratio of the Z0 or global event shape

variables in e+e− → 3 jets. The hadronic branch-
ing ratio RZ is known in perturbative QCD to

three loops; however, the usefulness of this observ-

able in the determination of αs is limited by the

sensitivity of RZ to other Standard Model param-

eters [2] (for an overview, see ref. [3]). On the

contrary, e+e− → 3 jets, which is known only to
next-to-leading order (NLO) [4, 5], does not suf-

fer from the above limitations. Thus a next-to-

next-to-leading order (NNLO) calculation of this

process could yield a significant reduction of the

theoretical uncertainty in the determination of αs.

In order to understand the general features of

a calculation at NNLO, we begin by outlining how

a higher-order calculation of a scattering process

is performed. At leading order (LO) in αs the

cross section is obtained by squaring the tree am-
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plitudes. If n particles are produced in the scat-

tering, each of them will be resolved in the final

state. Thus no singularities appear in the LO

cross section. At LO the coupling αs is evaluated

with one-loop running, so that there is an implicit

dependence on an arbitrary renormalization scale

µR. In addition, if one or both of the scattering

particles are strongly interacting, the cross section

will factorize into the convolution of parton density

functions (to be determined experimentally) and

a hard partonic cross section, which is computed

as an expansion in αs. This procedure introduces

into both the parton densities and the partonic

cross section a dependence on a second arbitrary

parameter, the factorization scale µF [6]. Typi-

cally, the dependence on µR and µF is maximal at

LO.

The calculation of the cross section at next-

to-leading order (NLO) in αs is less straightfor-

ward. Two series of amplitudes are required in

the squared matrix elements: a) tree and one-loop

amplitudes for the production of n particles; b)

tree amplitudes for the production of n+ 1 parti-

cles. The one-loop amplitudes typically have vir-

tual ultraviolet and infrared singularities, which

may be regularized using dimensional regulariza-

tion. This involves analytically continuing the loop

momenta into D = 4− 2ε dimensions, so that the
one-loop amplitude is now a function of ε. If this
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is expanded in ε, the ultraviolet singularities ap-

pear as single poles in ε, which can be removed by

renormalizing the amplitude. This introduces an

explicit dependence on the renormalization scale

µR.

At NLO the structure of the infrared singu-

larities has been extensively studied. Virtual in-

frared singularities appear as double poles in ε,

when they are both soft and collinear, and single

poles in ε, when they are either soft or collinear.

Real infrared singularities occur in the phase-space

integral over the n + 1 final-state particles of the

squared tree amplitudes, either when any gluon

becomes soft or when any two massless particles

become collinear, thus yielding single poles in ε. If

one of the two collinear particles is soft, a dou-

ble pole in ε arises. The singularities occur in

a universal way, i.e. independent of the particu-

lar amplitude considered. Accordingly, soft sin-

gularities can be accounted for by universal tree

soft functions [7, 8], and collinear singularities by

universal tree splitting functions [9]. These have

also been combined into a single function [10]. A

detailed discussion of the infrared singularities at

NLO for e+e− → jets may be found, for example,
in ref. [11].

For processes with no strongly interacting scat-

tering particles, all infrared divergences cancel when

real and virtual contributions are put together to

form the NLO coefficient in the expansion of the

cross section [12]. Typically, the dependence on

µR is reduced at NLO. For processes with strongly-

interacting scattering particles, all infrared diver-

gences cancel except for those associated with initial-

state collinear singularities, which manifest them-

selves as single poles in ε; these singularities are

factorized into the parton densities, thus reducing

the dependence of the cross section on µF [6].

In order to compute a cross section at NNLO,

three series of amplitudes are required: a) tree,

one-loop, and two-loop amplitudes for the produc-

tion of n particles; b) tree and one-loop ampli-

tudes for the production of n+1 particles; c) tree

amplitudes for the production of n + 2 particles.

For the case of NNLO e+e− → 3 jets the five-

parton final-state tree [13] amplitudes, as well as

the four-parton final-state one-loop amplitudes ex-

ist in both helicity [14] and squared matrix-element

forms [15]. However, as we discuss below, in order

to be used in NNLO computations higher-order

terms in ε must be included. For the required two-

loop three-parton final-state amplitudes no com-

putations exist, as yet. For single- and double-

jet production at hadron colliders the six-parton

tree [16, 17] amplitudes, as well as the five-parton

one-loop amplitudes [18, 19, 20] exist in helicity

matrix-element form, but no four-parton two-loop

amplitude computations exist, as yet. Indeed, no

two-loop amplitude computations exist for cases

containing more than a single kinematic variable,

except in the special cases of maximal supersym-

metry [21].

In the calculation of a production rate at NNLO

the structure of the infrared singularities is the fol-

lowing:

i) In the squared tree amplitudes, any two of

the n + 2 final-state particles can be unre-

solved. Accordingly the ensuing soft singu-

larities, collinear singularities, and mixed

collinear/soft singularities have been accounted

for by double-soft functions [8], double-splitting

functions and soft-splitting functions [22], re-

spectively.

ii) In the interference term between a two-loop

amplitude for the production of n particles

and its tree-level counterpart, all the pro-

duced particles are resolved in the final state

and no new singularities appear through the

phase-space integration. Thus, the expan-

sion of the two-loop amplitude in ε, which

starts with a 1/ε4 pole, can be truncated at

O(ε0). The universal structure of the coef-

ficients of the 1/ε4, 1/ε3 and 1/ε2 poles has

been determined [23].

iii) In the interference term between a one-loop

amplitude for the production of n + 1 par-

ticles and its tree-level counterpart any one

of the produced particles can be unresolved

in the final state; hence, the phase-space in-

tegration gives at most an additional dou-

ble pole in ε. Therefore, the expansion in ε

of the interference term starts with a 1/ε4

pole, from mixed virtual/real infrared singu-

larities, and in order to evaluate it to O(ε0),
the (n+1)-parton one-loop amplitude needs

to be evaluated to O(ε2). (A similar need to
evaluate one-loop amplitudes to higher or-
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ders in ε has been previously noted in NNLO

deep inelastic scattering [24] and in the next-

to-leading-logarithmic (NLL) corrections to

the BFKL equation [25].)

iv) In the square of the one-loop amplitude for

the production of n particles, the expansion

in ε of the amplitude, which starts with a

1/ε2 pole, must be known to O(ε2) in order
to evaluate the squared amplitude to O(ε0).

Here we focus on the singularities in iii), which

require that the (n+1)-parton one-loop amplitudes

be evaluated to O(ε2). For the case of NNLO
corrections to e+e− → 3 jets and to single- and
double-jet production at hadron colliders, this would

be a rather formidable task given the already non-

trivial analytic structure of the one-loop e+e− → 4
partons amplitudes [14, 15] and of the one-loop

five-parton amplitudes [18, 19, 20], both presented

through O(ε0) only. However, a simplification can
be made if one uses the fact that the additional

double poles in ε of the interference term arise

from the infrared-divergent regions of the phase-

space integration. This implies that the one-loop

(n+ 1)-parton final-state amplitude needs be cal-

culated to O(ε2) only in the regions where two
partons become collinear or one parton becomes

soft. Therefore, one can use this amplitude calcu-

lated to O(ε0) and then supplement it in the soft
or collinear regions by appropriateO(ε2) terms. In
these regions the amplitude factorizes into sums of

products of n-parton final-state amplitudes multi-

plied by soft or collinear splitting functions. It is

these soft or collinear splitting functions and the

one-loop n-parton final-state amplitudes that must

be evaluated to O(ε2). This is a much simpler task
than evaluating the full one-loop (n + 1)-parton

final-state amplitudes beyond O(ε0).
Below, we provide the one-loop gluon split-

ting and soft functions to all orders in ε [29]∗.
A complete listing of the one-loop splitting and

soft functions, including fermions, is given else-

where [30]. Then we apply the framework out-

lined above to one of the effective vertices of the

NLL corrections [31] to the BFKL equation [32],

namely to the one-loop amplitude for three-parton

∗The one-loop splitting functions through O(ε0) can be
found in [26, 20], and the one-loop soft functions through

O(ε0) may be extracted from the known four- [27] and five-
parton [18, 28, 20] one-loop amplitudes.

production in multi-Regge kinematics [33, 25, 34],

for which the produced partons are strongly or-

dered in rapidity. In NNLO and in NLL correc-

tions to two-jet scattering, this amplitude appears

in an interference term multiplied by its tree-level

counterpart. Because of the rapidity ordering in

the multi-Regge kinematics, the phase-space inte-

gration does not yield any collinear singularities;

however, the gluon which is intermediate in ra-

pidity can become soft. Accordingly the one-loop

amplitude must be determined to O(ε0) plus the

contribution with the soft intermediate gluon eval-

uated to O(ε) [25, 34]. To determine the soft gluon

contribution we use our all orders in ε determina-

tion of the soft functions together with previous all

orders in ε determinations of the four-gluon ampli-

tudes [35, 26, 36].

We first briefly review properties of n-gluon

scattering amplitudes. The tree-level color decom-

position is (see e.g. ref.[37] for details and normal-

izations)

M tree
n (1, 2, . . . n)

= g(n−2)
∑

σ∈Sn/Zn
Tr (T aσ(1)T aσ(2) · · ·T aσ(n))

× mtreen (σ(1), σ(2), . . . , σ(n)) , (1)

where Sn/Zn is the set of all permutations, but

with cyclic rotations removed. We have suppressed

the dependence on the particle polarizations εi and

momenta ki, but label each leg with the index i.

The T ai are fundamental representation matrices

for the Yang-Mills gauge group SU(Nc), normal-

ized so that Tr(T aT b) = δab. The behavior of

color-ordered tree amplitudes as the momenta of

two color adjacent legs becomes collinear, is [37]

mtreen
a‖b−→
∑
λ=±
Splittree−λ (a

λa , bλb)mtreen−1(. . .K
λ . . .) ,

(2)

where λ represents the helicity, mtreen are color-

decomposed tree sub-amplitudes with a fixed or-

dering of legs and a and b are consecutive in the

ordering, with ka = zK and kb = (1 − z)K. For
the case of only gluons, the tree splitting func-

tions splitting into a positive helicity gluon (with

the convention that all particles are outgoing) is

Splittree+ (a
+, b+) = 0 ,

Splittree+ (a
−, b−) =

−1√
z(1− z) [a b] ,
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Splittree+ (a
−, b+) =

z2√
z(1− z) 〈a b〉 ,

Splittree+ (a
+, b−) =

(1− z)2√
z(1− z) 〈a b〉 , (3)

where the remaining ones may be obtained by par-

ity. The spinor inner products [38, 17, 37] are

〈i j〉 = 〈i−|j+〉 and [i j] = 〈i+|j−〉, where |i±〉 are
massless Weyl spinors of momentum ki, labeled

with the sign of the helicity. They are antisym-

metric, with norm | 〈i j〉 | = | [i j] | = √sij , where
sij = 2ki · kj .
The behavior of color-ordered tree amplitudes

in the soft limit is very similar to the above. As

the momentum k of an external leg becomes soft

the color-ordered amplitudes become

mtreen (..., a, k
±, b, ...)|k→0

= Softtree(a, k±, b)mtreen−1(..., a, b, ...) , (4)

with the tree-level soft functions

Softtree(a, k+, b) =
〈a b〉

〈a k〉 〈k b〉 ,

Softtree(a, k−, b) =
−[a b]
[a k][k b]

. (5)

The factorization of the collinear (2) and of

the soft (4) limits are similar. However, due to

the locality of the collinear emission, the factoriza-

tion property (2) extends to the full amplitude (1).

Conversely, because of the non-locality of the soft

emission and of the self-interactive nature of the

gluon interaction, the factorization (4) is true only

at the color-ordered amplitude level.

The color decomposition of one-loop multigluon

amplitudes with adjoint states circulating in the

loop is [39]

M1-loop
n (1, 2, . . . n) (6)

= gn
bn/2c+1∑
j=1

∑
σ∈Sn/Sn;j

Grn;j(σ)

× m1-loopn;j (σ(1), . . . , σ(n)) ,

where bxc denotes the greatest integer less than or
equal to x, Grn;1(1) ≡ NcTr

(
T a1 · · ·T an),

Grn;j(1) = Tr
(
T a1 · · ·T aj−1)Tr(T aj · · ·T an) for

j > 1, and Sn;j is the subset of permutations

Sn that leaves the trace structure Grn;j invariant,

and where m1-loopn;j are color-decomposed one-loop

sub-amplitudes. It turns out that at one-loop the

mn;j>1 can be expressed in terms of m
1-loop
n;1 [40],

so we need only discuss this case here. The am-

plitudes with fundamental fermions in the loop

contain only the m1-loopn;1 color structures and are

scaled by a relative factor of 1/Nc.

The behavior of color-ordered one-loop ampli-

tudes as the momenta of two color adjacent legs

becomes collinear, is [26, 20]

m1-loopn;1

a‖b−→ (7)

∑
λ=±

{
Splittree−λ (a

λa , bλb)m1-loopn−1;1 (. . .K
λ . . .)

+ Split1-loop−λ (aλa , bλb)mtreen−1(. . .K
λ . . .)

}
.

The one-loop splitting functions are,

Split1-loop+ (a−, b−) = (Gf +Gn) Splittree+ (a
−, b−) ,

Split1-loop+ (a±, b∓) = Gn Splittree+ (a
±, b∓) , (8)

Split1-loop+ (a+, b+) = −Gf 1√
z(1− z)

[a b]

〈a b〉2 .

The function Gf arises from the ‘factorizing’ con-

tributions and the function Gn arises from the

‘non-factorizing’ ones described in ref. [41] and are

given through O(ε0) by [26, 20]

Gf =
1

48π2

(
1− Nf

Nc

)
z(1− z) +O(ε) , (9)

Gn = cΓ

[
− 1
ε2

( µ2

z(1− z)(−sab)
)ε

+ 2 ln(z) ln(1− z)− π2

6

]
+O(ε) ,

with Nf the number of quark flavors and

cΓ =
1

(4π)2−ε
Γ(1 + ε) Γ2(1− ε)
Γ(1− 2ε) . (10)

As at tree-level, the remaining splitting functions

can be obtained by parity. The explicit values were

obtained by taking the limit of five-point ampli-

tudes; the universality of these functions for an

arbitrary number of legs was proven in ref. [41].

The functions (9) have been extended to all

orders in ε in ref. [29]

Gf =
2cΓ

(3− 2ε)(2− 2ε)(1− 2ε)
( µ2

−sab
)ε

×
(
1− εδR − Nf

Nc

)
z(1− z) , (11)

Gn = cΓ

(
µ2

−sab

)ε
1

ε2

[
−
(
1− z
z

)ε
πε

sin(πε)
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+ 2
∑

k=1,3,5,...

εk Lik

( −z
1− z

)]
,

where the polylogarithms are defined as [42]

Li1(z) = − ln(1 − z)
Lik(z) =

∫ z
0

dt

t
Lik−1(t)


 =

∞∑
n=1

zn

nk
, (12)

with k = 2, 3, . . ., and the regularization scheme

parameter is,

δR =

{
1 HV or CDR scheme,

0 FDH or DR scheme,
(13)

where CDR denotes the conventional dimensional

regularization scheme, HV the ’t Hooft-Veltman

scheme, DR the dimensional reduction scheme, and

FDH the ‘four-dimensional helicity scheme. (For

further discussions on scheme choices see refs. [27,

43].)

The behavior of one-loop amplitudes in the

soft limit, as the momentum k of an external leg

becomes soft, is given by

m1-loopn;1 (..., a, k±, b, ...)|k→0 (14)

= Softtree(a, k±, b)m1-loopn−1;1(..., a, b, ...)

+ Soft1-loop(a, k±, b)mtreen−1(..., a, b, ...) ,

where the one-loop gluon soft function may be

extracted through O(ε0) from four- [27] and five-
parton [18, 28, 20] one-loop amplitudes, and it is

Soft1-loop(a, k±, b) = −Softtree(a, k±, b) (15)

× cΓ

(
µ2(−sab)
(−sak)(−skb)

)ε (
1

ε2
+
π2

6

)
+O(ε) .

Eq. (15) does not depend on Nf or δR. In ref. [29]

we have extended it to all orders of ε, with the

result,

Soft1-loop(a, k±, b) = −Softtree(a, k±, b)
× cΓ

1

ε2

(
µ2(−sab)
(−sak)(−skb)

)ε
πε

sin(πε)
. (16)

We now apply the results for the soft function

(16) to the case of three-gluon production in multi-

Regge kinematics. To do so, we also need the four-

gluon one-loop amplitude through O(ε). In fact,
this is known exactly to all orders of ε. In the

high-energy limit, s� t, its dispersive part, which

is all that contributes to the NLL BFKL kernel,

is [29]

DispM1-loop
4 (A−, A′+, B′+, B−) (17)

= M tree
4 (A−, A′+, B′+, B−) g2 cΓ

(
µ2

−t
)ε

× 1

ε(1− 2ε)

{
Nc

[
2(1− 2ε)

×
(
ψ(1 + ε)− 2ψ(−ε) + ψ(1) + ln s

−t
)

+
1− δRε
3− 2ε − 4

]
+
2(1− ε)
3− 2ε Nf

}
,

where A, B and A′, B′ are respectively the in-
coming and outgoing gluons. The unrenormalized

five-gluon one-loop amplitude in the multi-Regge

kinematics, and in the soft limit for the interme-

diate gluon and to all orders in ε, is obtained by

using eq. (14), with the four-gluon one-loop am-

plitude (17), and the dispersive part of the soft

function (16), yielding [29]

DispM1-loop
5 (A−, A′+, k±, B′+, B−)

∣∣
k→0 (18)

= g2 cΓM
tree
5 (A−, A′+, k±, B′+, B−)

∣∣
k→0

×
[(

µ2

−t
)ε{

Nc

[
− 4
ε2

+
2

ε

(
ψ(1 + ε)− 2ψ(1− ε) + ψ(1) + ln s

−t
)

+
1

ε(1− 2ε)
(
1− δRε
3− 2ε − 4

)]

+
2(1− ε)

ε(1− 2ε)(3− 2ε)Nf
}

− Nc

(
µ2

|k⊥|2
)ε
1

ε2
[1 + εψ(1− ε)− εψ(1 + ε)]

]
,

which agrees through O(ε0) with the five-gluon
one-loop amplitude, with strong rapidity ordering

and in the soft limit for the intermediate gluon

[18, 34]. Eq. (18) can than be matched to the full

five-gluon one-loop amplitude, with strong rapid-

ity ordering, computed through O(ε0). The re-
sult [34] agrees with the NLL corrections to the

Lipatov vertex computed in ref. [25] in the CDR

scheme, through O(ε).
In conclusion, in this talk we have examined

how one-loop soft and collinear splitting functions

occur in the calculation of NNLO corrections to

5



production rates, and we have presented the one-

loop gluon soft and splitting functions, computed

to all orders in ε. We have then applied the one-

loop gluon soft function to the calculation of the

NLL corrections to the Lipatov vertex to all orders

in ε[29]. A systematic discussion of the soft and

collinear splitting functions, including the case of

external fermions, is presented elsewhere [30].
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