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Abstract: The recent developments in the soft supersymmetry breaking (SSB) sector of

Gauge-Yukawa and Finite Unified Theories permit the derivation of exact renormalization group

invariant results also in this sector of the theory. Of particular interest is a RGI sum rule for the

soft scalar masses holding to all-orders in perturbation theory. In the case of Finite Unified Theories

the sum rule ensures the all-loop finiteness also in their SSB sector and in this way are promoted to

completely finite ones. Using the sum rule we investigate the minimal supersymmetric Gauge-Yukawa

and two Finite-Gauge-Yukawa SU(5) models. The characteristic features of these models are: a) the

old agreement of the top quark mass prediction remains unchanged, b) the lightest Higgs boson is

predicted to be around 120 GeV, c) the s-spectrum starts above several hundreds of GeV.

1. Introduction

In the recent years the theoretical endeavours

that attempt to achieve a deeper understanding

of Nature have to present a series of successes in

developing frameworks that aim to describe the

fundamental theory at the Planck scale. How-

ever, the essence of all theoretical efforts in El-

ementary Particle Physics is to understand the

present day free parameters of the Standard Mod-

el (SM) in terms of a few fundamental ones, i.e.

to achieve reduction of couplings. It is sad to

recall that all recent celebrated theoretical suc-

cesses did not offer anything in the understand-

ing of the free parameters of the SM, and in the

best case they just manage to accomodate in a

rather poor way earlier ideas for Physics Beyond

the SM, such as Grand Unified Theories (GUTs)

and supersymmetry. In our recent studies [1]-

[8], we have developed a complementary strat-
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egy in searching for a more fundamental theory

possibly at the Planck scale, whose basic ingredi-

ents are GUTs and supersymmetry, but its con-

sequences certainly go beyond the known ones.

Our method consists of hunting for renormaliza-

tion group invariant (RGI) relations holding be-

low the Planck scale, which in turn are preserved

down to the GUT scale. This programme, called

Gauge–Yukawa unification scheme, applied in the

dimensionless couplings of supersymmetric GUTs,

such as gauge and Yukawa couplings, had al-

ready noticable successes by predicting correctly,

among others, the top quark mass in the finite

and in the minimal N=1 supersymmetric SU(5)

GUTs. An impressive aspect of the RGI rela-

tions is that one can guarantee their validity to

all-orders in perturbation theory by studying the

uniqueness of the resulting relations at one-loop,

as was proven in the early days of the programme

of reduction of couplings [9]. Even more remark-

able is the fact that it is possible to find RGI

relations among couplings that guarantee finite-

ness to all-orders in perturbation theory [10, 11].

Although supersymmetry seems to be an es-

sential feature for a successful realization of the

above programme, its breaking has to be under-
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stood too, since it has the ambition to supply

the SM with predictions for several of its free

parameters. Indeed, the search for RGI rela-

tions has been extended to the soft supersym-

metry breaking sector (SSB) of these theories

[5, 12], which involves parameters of dimension

one and two. More recently a very interesting

progress has been made [13]-[18] concerning the

renormalization properties of the SSB parame-

ters based conceptually and technically on the

work of ref. [19]. In ref. [19] the powerful su-

pergraph method [20] for studying supersymmet-

ric theories has been applied to the softly bro-

ken ones by using the “spurion” external space-

time independent superfields [21]. In the latter

method a softly broken supersymmetric gauge

theory is considered as a supersymmetric one in

which the various parameters such as couplings

and masses have been promoted to external su-

perfields that acquire “vacuum expectation val-

ues”. Based on this method the relations among

the soft term renormalization and that of an un-

broken supersymmetric theory have been derived.

In particular the β-functions of the parameters of

the softly broken theory are expressed in terms

of partial differential operators involving the di-

mensionless parameters of the unbroken theory.

The key point in the strategy of refs. [16]-[18] in

solving the set of coupled differential equations

so as to be able to express all parameters in a

RGI way, was to transform the partial differen-

tial operators involved to total derivative opera-

tors. This is indeed possible to be done on the

RGI surface which is defined by the solution of

the reduction equations.

On the phenomenological side there exist se-

rious developments too. Previously an appeal-

ing “universal” set of soft scalar masses was as-

sumed in the SSB sector of supersymmetric the-

ories, given that apart from economy and sim-

plicity (1) they are part of the constraints that

preserve finiteness up to two-loops [22][23], (2)

they are RGI up to two-loops in more general su-

persymmetric gauge theories, subject to the con-

dition known as P = 1/3 Q [12] and (3) they

appear in the attractive dilaton dominated su-

persymmetry breaking superstring scenarios [24].

However, further studies have exhibited a num-

ber of problems all due to the restrictive na-

ture of the “universality” assumption for the soft

scalar masses. For instance (a) in finite unified

theories the universality predicts that the light-

est supersymmetric particle is a charged parti-

cle, namely the superpartner of the τ lepton τ̃

(b) the MSSM with universal soft scalar masses

is inconsistent with the attractive radiative elec-

troweak symmetry breaking [25] and (c) which is

the worst of all, the universal soft scalar masses

lead to charge and/or colour breaking minima

deeper than the standard vacuum [26]. There-

fore, there have been attempts to relax this con-

straint without loosing any of its attractive fea-

tures. First an interesting observation was made

that in N = 1 Gauge–Yukawa unified theories

there exists a RGI sum rule for the soft scalar

masses at lower orders; at one-loop for the non-

finite case [6] and at two-loops for the finite case

[7]. The sum rule manages to overcome the above

unpleasant phenomenological consequences. Fur-

thermore it was proven [18] that the sum rule for

the soft scalar massses is RGI to all-orders for

both the general as well as for the finite case.

Finally the exact β-function for the soft scalar

masses in the Novikov-Shifman-Vainstein-Zakha-

rov (NSVZ) scheme [27] for the softly broken su-

persymmetric QCD has been obtained. Armed

with the above tools and results we are in a posi-

tion to study the spectrum of the full finite and

minimal supersymmetric SU(5) models in terms

of few free parameters with emphasis on the pre-

dictions for the masses of the lightest Higgs and

LSP and on the constraints imposed by having a

large tanβ.

2. Reduction of Couplings and Finite-

ness in N = 1 SUSY Gauge The-

ories

A RGI relation among couplings,

Φ(g1, · · · , gN) = 0, (2.1)

has to satisfy the partial differential equation

µdΦ/dµ =

N∑
i=1

βi ∂Φ/∂gi = 0, (2.2)

where βi is the β-function of gi. There exist (N−
1) independent Φ’s, and finding the complete set
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of these solutions is equivalent to solve the so-

called reduction equations (REs),

βg (dgi/dg) = βi , i = 1, · · · , N, (2.3)

where g and βg are the primary coupling and

its β-function. Using all the (N − 1)Φ’s to im-
pose RGI relations, one can in principle express

all the couplings in terms of a single coupling

g. The complete reduction, which formally pre-

serves perturbative renormalizability, can be a-

chieved by demanding a power series solution,

whose uniqueness can be investigated at the one-

loop level. The completely reduced theory con-

tains only one independent coupling with the cor-

responding β-function. This possibility of cou-

pling unification is attractive, but it can be too

restrictive and hence unrealistic. In practice one

may use fewer Φ’s as RGI constraints.

It is clear by examining specific examples,

that the various couplings in supersymmetric the-

ories have easily the same asymptotic behaviour.

Therefore searching for a power series solution

to the REs is justified. This is not the case in

non-supersymmetric theories.

Let us then consider a chiral, anomaly free,

N = 1 globally supersymmetric gauge theory

based on a group G with gauge coupling constant

g. The superpotential of the theory is given by

W =
1

2
mij ΦiΦj +

1

6
Cijk Φi Φj Φk , (2.4)

where mij and Cijk are gauge invariant tensors

and the matter field Φi transforms according to

the irreducible representation Ri of the gauge

group G.

The one-loop β-function of the gauge cou-

pling g is given by

β(1)g =
dg

dt
=
g3

16π2
[
∑
i

l(Ri)− 3C2(G) ] , (2.5)

where l(Ri) is the Dynkin index of Ri and C2(G)

is the quadratic Casimir of the adjoint represen-

tation of the gauge group G. The β-functions of

Cijk, by virtue of the non-renormalization the-

orem, are related to the anomalous dimension

matrix γji of the matter fields Φi as

βijkC =
d

dt
Cijk (2.6)

= Cijp
∑
n=1

1

(16π2)n
γk(n)p

+(k ↔ i) + (k ↔ j) (2.7)

At one-loop level the γji are given by

γ
j(1)
i =

1

2
Cipq C

jpq − 2 g2C2(Ri)δji , (2.8)

where C2(Ri) is the quadratic Casimir of the rep-

resentation Ri, and C
ijk = C∗ijk.

As one can see from Eqs. (2.5) and (2.8) all

the one-loop β-functions of the theory vanish if

β
(1)
g and γ

j(1)
i vanish, i.e.

∑
i

`(Ri) = 3C2(G) ,
1

2
CipqC

jpq = 2δji g
2C2(Ri) .

(2.9)

A very interesting result is that the condi-

tions (2.9) are necessary and sufficient for finite-

ness at the two-loop level.

The one- and two-loop finiteness conditions

(2.9) restrict considerably the possible choices of

the irreps. Ri for a given group G as well as

the Yukawa couplings in the superpotential (2.4).

Note in particular that the finiteness conditions

cannot be applied to the supersymmetric stan-

dard model (SSM), since the presence of a U(1)

gauge group is incompatible with the condition

(2.9), due to C2[U(1)] = 0. This naturally leads

to the expectation that finiteness should be at-

tained at the grand unified level only, the SSM

being just the corresponding, low-energy, effec-

tive theory.

A natural question to ask is what happens at

higher loop orders. There exists a very interest-

ing theorem [10] which guarantees the vanishing

of the β-functions to all orders in perturbation

theory, if we demand reduction of couplings, and

that all the one-loop anomalous dimensions of

the matter field in the completely and uniquely

reduced theory vanish identically.

3. Soft Supersymmetry Breaking -

Sum Rule of soft scalar masses

The above described method of reducing the di-

mensionless couplings has been extended [5] to

the soft supersymmetry breaking (SSB) dimen-

sionful parameters ofN = 1 supersymmetric the-

ories. In addition it was found [6] that RGI SSB
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scalar masses in Gauge-Yukawa unified models

satisfy a universal sum rule. Here we will de-

scribe first how the use of the available two-loop

RG functions and the requirement of finiteness

of the SSB parameters up to this order leads to

the soft scalar-mass sum rule [7].

Consider the superpotential given by (2.4)

along with the Lagrangian for SSB terms

−LSB = 1
6
hijk φiφjφk +

1

2
bij φiφj (3.1)

+
1

2
(m2)ji φ

∗ iφj +
1

2
M λλ+H.c.,

where the φi are the scalar parts of the chiral su-

perfields Φi , λ are the gauginos andM their uni-

fied mass. Since we would like to consider only

finite theories here, we assume that the gauge

group is a simple group and the one-loop β func-

tion of the gauge coupling g vanishes. We also

assume that the reduction equations admit power

series solutions of the form

Cijk = g
∑
n=0

ρijk(n)g
2n , (3.2)

According to the finiteness theorem of ref. [10],

the theory is then finite to all orders in per-

turbation theory, if, among others, the one-loop

anomalous dimensions γ
j(1)
i vanish. The one-

and two-loop finiteness for hijk can be achieved

by

hijk = −MCijk + . . . = −Mρijk(0) g +O(g5) .
(3.3)

Now, to obtain the two-loop sum rule for soft

scalar masses, we assume that the lowest order

coefficients ρijk(0) and also (m
2)ij satisfy the diag-

onality relations

ρipq(0)ρ
jpq
(0) ∝ δji for all p and q

and (m2)ij = m
2
jδ
i
j , (3.4)

respectively. Then we find the following soft scalar-

mass sum rule

( m2i +m
2
j +m

2
k )

MM †
= 1 +

g2

16π2
∆(1) +O(g4)

(3.5)

for i, j, k with ρijk(0) 6= 0, where ∆(1) is the two-
loop correction

∆(1) = −2
∑
l

[(m2l /MM
†)−(1/3)] T (Rl), (3.6)

which vanishes for the universal choice in accor-

dance with the previous findings of ref. [23].

If we know higher-loop β-functions explic-

itly, we can follow the same procedure and find

higher-loop RGI relations among SSB terms. How-

ever, the β-functions of the soft scalar masses are

explicitly known only up to two loops. In order

to obtain higher-loop results, we need something

else instead of knowledge of explicit β-functions,

e.g. some relations among β-functions.

The recent progress made using the spurion

technique [20][21] leads to the following all-loop

relations among SSB β-functions, [13]-[17]

βM = 2O
(
βg

g

)
, (3.7)

βijkh = γilh
ljk + γjlh

ilk + γklh
ijl (3.8)

−2γi1lCljk − 2γj1lCilk − 2γk1 lCijl ,
(βm2)

i
j =

[
∆+X

∂

∂g

]
γij , (3.9)

O =
(
Mg2

∂

∂g2
− hlmn ∂

∂Clmn

)
, (3.10)

∆ = 2OO∗ + 2|M |2g2 ∂
∂g2

(3.11)

+C̃lmn
∂

∂Clmn
+ C̃lmn

∂

∂Clmn
,

where (γ1)
i
j = Oγij , Clmn = (Clmn)∗, and

C̃ijk = (m2)ilC
ljk + (m2)j lC

ilk + (m2)klC
ijl .

(3.12)

It was also found [17] that the relation

hijk = −M(Cijk)′ ≡ −MdC
ijk(g)

d ln g
, (3.13)

among couplings is all-loop RGI. Furthermore,

using the all-loop gauge β-function of Novikov et

al. [27] given by

βNSVZg =
g3

16π2

[∑
l T (Rl)(1 − γl/2)− 3C(G)
1− g2C(G)/8π2

]
,

(3.14)

it was found the all-loop RGI sum rule [18],

m2i +m
2
j +m

2
k = |M |2·

{ 1
1−g2C(G)/(8π2)

d lnCijk

d ln g +
1
2
d2 lnCijk

d(ln g)2 }
+
∑
l

m2l T (Rl)
C(G)−8π2/g2

d lnCijk

d ln g . (3.15)

In addition the exact-β function for m2 in the

NSVZ scheme has been obtained [18] for the first
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time and is given by

βNSVZm2
i
=[

|M |2{ 1

1− g2C(G)/(8π2)
d

d ln g
+
1

2

d2

d(ln g)2
}

+
∑
l

m2l T (Rl)

C(G) − 8π2/g2
d

d ln g

]
γNSVZi . (3.16)

Surprisingly enough, the all-loop result (3.15) co-

incides with the superstring result for the finite

case in a certain class of orbifold models [7] if

d lnCijk/d ln g = 1.

4. Gauge-Yukawa-Unified Theories

In this section we will look at concrete SU(5)

models, where the reduction of couplings in the

dimensionless and dimensionful sector has been

achieved.

4.1 Finite Unified Models

A predictive Gauge-Yukawa unified SU(5) model

which is finite to all orders, in addition to the re-

quirements mentioned already, should also have

the following properties:

1. One-loop anomalous dimensions are diag-

onal, i.e., γ
(1) j
i ∝ δji , according to the as-

sumption (3.4).

2. Three fermion generations, 5i (i = 1, 2, 3),

obviously should not couple to 24. This

can be achieved for instance by imposing

B − L conservation.
3. The two Higgs doublets of the MSSM should

mostly be made out of a pair of Higgs quin-

tet and anti-quintet, which couple to the

third generation.

In the following we discuss two versions of

the all-order finite model.

A: The model of ref. [1].

B: A slight variation of the model A, whose dif-

ferences from A will become clear in the follow-

ing.

The superpotential which describes the two

models takes the form [1, 7]

W =

3∑
i=1

[
1

2
gui 10i10iHi + g

d
i 10i5iHi ]

+gu23 102103H4 + g
d
23 10253H4 + g

d
32 10352H4

+

4∑
a=1

gfa Ha 24Ha +
gλ

3
(24)3 , (4.1)

where Ha and Ha (a = 1, . . . , 4) stand for the

Higgs quintets and anti-quintets.

The non-degenerate and isolated solutions to

γ
(1)
i = 0 for the models {A , B} are:

(gu1 )
2 = {8

5
,
8

5
}g2 , (gd1)2 = {

6

5
,
6

5
}g2 ,

(gu2 )
2 = (gu3 )

2 = {8
5
,
4

5
}g2 ,

(gd2)
2 = (gd3)

2 = {6
5
,
3

5
}g2 ,

(gu23)
2 = {0, 4

5
}g2, (gd23)2 = (gd32)2 = {0,

3

5
}g2,

(gλ)2 =
15

7
g2 , (gf1 )

2 = 0 , (4.2)

(gf2 )
2 = (gf3 )

2 = {0, 1
2
}g2 , (gf4 )2 = {1, 0}g2 .

According to the theorem of ref. [10] these models

are finite to all orders. After the reduction of

couplings the symmetry of W is enhanced [1, 7].

The main difference of the models A and B

is that three pairs of Higgs quintets and anti-

quintets couple to the 24 for B so that it is not

necessary to mix them with H4 and H4 in order

to achieve the triplet-doublet splitting after the

symmetry breaking of SU(5).

In the dimensionful sector, the sum rule gives

us the following boundary conditions at the GUT

scale [7]:

m2Hu + 2m
2
10 = m

2
Hd
+m2

5
+m210

= M2 for A, (4.3)

m2Hu + 2m
2
10 = M

2,m2Hd − 2m210 = −
M2

3
,

m2
5
+ 3m210 =

4M2

3
for B, (4.4)

where we use as free parameters m5 ≡ m53 and
m10 ≡ m103 for the model A, and m10 for B, in
addition to M .

4.2 The minimal supersymmetric SU(5)

model

Next let us consider the minimal supersymmet-

ric SU(5) model. The field content is minimal.

Neglecting the CKM mixing, one starts with six

5
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Yukawa and two Higgs couplings. We then re-

quire GYU to occur among the Yukawa couplings

of the third generation and the gauge coupling.

We also require the theory to be completely asymp-

totically free. In the one-loop approximation, the

GYU yields g2t,b =
∑∞
m,n=1 κ

(m,n)
t,b hm fn g2 (h

and f are related to the Higgs couplings), where

h is allowed to vary from 0 to 15/7, while f may

vary from 0 to a maximum which depends on h

and vanishes at h = 15/7. As a result, it was

obtained [2]: 0.97 g2 <∼ g2t <∼ 1.37 g2 , 0.57 g2 <∼
g2b = g

2
τ
<∼ 0.97 g2. It was found [4, 8] that con-

sistency with proton decay requires g2t , g
2
b to be

very close to the left hand side values in the in-

equalities.

In this model, the reduction of parameters

implies that at the GUT scale the SSB terms

are proportional to the gaugino mass, which thus

characterizes the scale of supersymmetry break-

ing [5].

5. Predictions of Low Energy Param-

eters

Since the gauge symmetry is spontaneously bro-

ken belowMGUT, the finiteness and gauge-Yuka-

wa unification conditions do not restrict the renor-

malization property at low energies, and all it

remains are boundary conditions on the gauge

and Yukawa couplings (4.2), the h = −MC rela-
tion (3.3) and the soft scalar-mass sum rule (3.5)

at MGUT, as applied in the various models. So

we examine the evolution of these parameters ac-

cording to their renormalization group equations

at two-loop for dimensionless parameters and at

one-loop for dimensionful ones with the relevant

boundary conditions. Below MGUT their evolu-

tion is assumed to be governed by the MSSM. We

further assume a unique supersymmetry break-

ing scale Ms so that below Ms the SM is the

correct effective theory.

The predictions for the top quark mass Mt
are ∼ 183 and ∼ 174 GeV in models A and
B respectively, and ∼ 181 GeV for the mini-
mal SU(5) model. Comparing these predictions

with the most recent experimental value Mt =

(173.8 ± 5.2) GeV, and recalling that the theo-
retical values forMt may suffer from a correction

of less than ∼ 4% [8], we see that they are consis-
tent with the experimental data. In addition the

value of tanβ is obtained as tanβ = 54 and 48

for models A and B respectively, and tanβ = 48

for the minimal SU(5) model.

In the SSB sector, besides the constraints

imposed by the reduction of couplings and finite-

ness, we also look for solutions which are compat-

ible with radiative electroweak symmetry break-

ing. As it has been mentioned, in the mini-

mal SU(5) model the SSB sector contains only

one independent parameter, the gaugino mass

M , which characterizes the scale of supersymme-

try breaking. The lightest supersymmetric parti-

cle is found to be a neutralino of ∼ 220 GeV for
M(MGUT ) ∼ 0.5 TeV. In fig. 1 we present the
dependence of the lightest Higgs mass mh on the

gaugino mass M .

0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0
M[GeV]

115.0

120.0

125.0

130.0

135.0

m
hi

gg
s[G

eV
]

Figure 1: TheM dependence ofmh for the minimal

SU(5) model.

Concerning the SSB sector of the finite the-

ories A and B, besides the gaugino mass we

have two and one more free parameters respec-

tively, as previously mentioned. Thus, we look

for the parameter space in which the lighter τ̃

mass squared m2τ̃ is larger than the lightest neu-

tralino mass squared m2χ (which is the LSP). In

the case where all the soft scalar masses are uni-

versal at the unfication scale, there is no region of

Ms = M below O(few) TeV in which m
2
τ̃ > m

2
χ

is satisfied. But once the universality condition

is relaxed this problem can be solved naturally

(provided the sum rule). More specifically, us-

ing the sum rule (3.5) and imposing the condi-

tions a) successful radiative electroweak symme-

try breaking b) mτ̃2 > 0 and c) mτ̃2 > mχ2 ,

6



VI Hellenic School on Elementary Particle Physics M. Mondragón

we find a comfortable parameter space for both

models (although model B requires large M ∼ 1
TeV).

In fig. 2 we present the m10 dependence of

mh for for M = 0.8 (dashed) 1.0 (solid) TeV for

the finite Model B, which shows that the value

of mh is rather stable. Similar results hold also

for Model A.

0.4 0.8 1.2 1.6
m10 [TeV]

0.116

0.117

0.118

m
h 

[T
eV

]

Figure 2: mh as function of m10 for M = 0.8

(dashed) 1.0 (solid) TeV for the finite model B.

In Tables 1, 2, and 3 we present representa-

tive examples of the values obtained for the spar-

ticle spectra in each of the models. The value

of the lightest Higgs physical mass Mh has al-

ready the two-loop radiative corrections included

[28, 29].

The prediction of the Higgs mass for the three

models is

mh = 120± 5± 2 GeV (5.1)

where the first uncertainty comes from variations

of the gaugino massM and the soft scalar masses,

and is smaller than above in the case of the FUTB

and minimal model, due to the more restricted

parameter space. The second uncertainty comes

from the finite (i.e. not logarithmically divergent)

corrections in going from the D̄R scheme to the

pole scheme [30]. Our results are generally a few

GeV smaller (≤ 3 GeV ) than the ones obtained
with the diagrammatic approach in the most re-

fined approximation [31].

Finally, we calculate BR(b→ sγ) [32], whose
experimental value is 1× 10−4 < BR(b→ sγ) <
4× 10−4. The SM predicts BR(b→ sγ) = 3.1×
10−4. This imposes a further restriction in our
parameter space, namelyM ∼ 1 TeV if µ < 0 for
all three models. This restriction is less strong in

the case that µ > 0. For example, the minimal

model with M = 1 TeV leads to BR(b → sγ) =
3.8× 10−4 for µ < 0.

6. Conclusions

The programme of searching for exact RGI re-

lations among dimensionless couplings in super-

symmetric GUTs, started few years ago, has now

supplemented with the derivation of similar rela-

tions involving dimensionful parameters in the

SSB sector of these theories. In the earlier at-

tempts it was possible to derive RGI relations

among gauge and Yukawa couplings of supersym-

metric GUTs, which could lead even to all-loop

finiteness under certain conditions. These theo-

retically attractive theories have been shown not

only to be realistic but also to lead to a success-

ful prediction of the top quark mass. The new

theoretical developments include the existence of

a RGI sum rule for the soft scalar masses in the

SSB sector of N = 1 supersymmetric gauge the-

ories exhibiting gauge-Yukawa unification. The

all-loop sum rule substitutes now the universal

soft scalar masses and overcomes its phenomeno-

logical problems. Of particular theoretical in-

terest is the fact that the finite unified theo-

ries, which could be made all-loop finite in the

supersymmetric sector can now be made com-

pletely finite. In addition it is interesting to note

that the sum rule coincides with that of a cer-

tain class of string models in which the massive

string modes are organized into N = 4 super-

multiplets. Last but not least, in ref. [18] the

exact β-function for the soft scalar masses in the

NSVZ scheme was obtained for the first time.

On the other hand the above theories have a

remarkable predictive power leading to testable

predictions of their spectrum in terms of very

few parameters. In addition to the prediction

of the top quark mass, which holds unchanged,

the characteristic features that will judge the vi-

ability of these models in the future are: 1) the

7
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mχ = mχ1 (TeV) 0.45 mb̃2 (TeV) 1.76

mχ2 (TeV) 0.84 mτ̃ = mτ̃1 (TeV) 0.63

mχ3 (TeV) 1.49 mτ̃2 (TeV) 0.85

mχ4 (TeV) 1.49 mν̃1 (TeV) 0.88

mχ±1
(TeV) 0.84 mA (TeV) 0.64

mχ±2
(TeV) 1.49 mH± (TeV) 0.65

mt̃1 (TeV) 1.57 mH (TeV) 0.65

mt̃2 (TeV) 1.77 mh (TeV) 0.122

mb̃1 (TeV) 1.54

Table 1: A representative example of the predictions for the s-spectrum for the finite model A with M = 1.0

TeV, m5 = 0.8 TeV and m10 = 0.6 TeV.

mχ = mχ1 (TeV) 0.45 mb̃2 (TeV) 1.70

mχ2 (TeV) 0.84 mτ̃ = mτ̃1 (TeV) 0.47

mχ3 (TeV) 1.30 mτ̃2 (TeV) 0.67

mχ4 (TeV) 1.31 mν̃1 (TeV) 0.88

mχ±1
(TeV) 0.84 mA (TeV) 0.73

mχ±2
(TeV) 1.31 mH± (TeV) 0.73

mt̃1 (TeV) 1.51 mH (TeV) 0.73

mt̃2 (TeV) 1.73 mh (TeV) 0.118

mb̃1 (TeV) 1.56

Table 2: A representative example of the predictions of the s-spectrum for the finite model B with M = 1

TeV and m10 = 0.65 TeV.

lightest Higgs mass is found to be around 120

GeV and 2) the s-spectrum starts beyond several

hundreds of GeV. Therefore the next important

test of Gauge-Yukawa and Finite Unified theo-

ries will be given with the measurement of the

Higgs mass, for which these models show an ap-

preciable stability, which is alarmingly close to

the IR quasi fixed point prediction of the MSSM

for large tan β [33].
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Lett. B 380 (1996) 59.

[27] V. Novikov, M. Shifman, A. Vainstein and V.

Zakharov, Nucl. Phys. 2291983381; Phys. Lett.

B 166 (1986) 329; M. Shifman, Int. J. Mod.

Phys. A 11 (1996) 5761 and references therein.

[28] A.V. Gladyshev, D.I. Kazakov, W. de Boer,

G. Burkart, R. Ehret, Nucl. Phys. B 498

(1997) 3.

[29] M. Carena, J.R. Espinosa, M. Quirós,

C.E.M. Wagner, Phys. Lett. B 355 (1995) 209.

[30] W. Hollik, M.Quirós, M. Carena and

C.E.M. Wagner, private communication.

[31] By S. Heinemeyer, W. Hollik, G. Weiglein,

Phys. Lett. B 440 (1998) 296; S. Heinemeyer,

W. Hollik, G. Weiglein, Phys. Rev. D 58

(1998) 091701.

[32] S. Bertolini, F. Borzumati, A. Masiero and

G. Ridolfi, Nucl. Phys. B 353 (1991) 591.
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