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Abstract: A softly broken SUSY gauge theory is equivalent to a rigid one in external spurion su-

perfield in a sence that the singular part of the effective action in a broken theory equals to that of

the rigid one with redefinition of the couplings. This gives an explicit relation between the soft and

rigid couplings renormalizations. Substituting the modified couplings into renormalization constants,

RG equations, solutions to these equations, fixed points, finiteness conditions, etc., one can get corre-

sponding relations for the soft terms by a simple Taylor expansion over the Grassmannian variables.

This way one can get new solutions of the RG equations. Some examples including the MSSM, finite

SUSY GUTs and the N=2 Seiberg-Witten model are given.

1. Introduction

In a recent paper [1], which is based on the previ-

ous publications [2, 3] we have shown that renor-

malizations in a softly broken SUSY theory fol-

low from those of an unbroken SUSY theory in a

simple way.

The main idea is that a softly broken super-

symmetric gauge theory can be considered as a

rigid SUSY theory imbedded into external space-

time independent superfield, so that all couplings

and masses become external superfields.

The main Statement:

Softly Broken SUSY Theory ≈ Rigid

SUSY Theory in External Field

The Coupling g ⇒ External Superfield Φ0

A crucial point: The singular part of effec-

tive action depends on external superfield, but

not on its derivatives:
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Ssingeff (g) ⇒ Ssingeff (Φ0, D
2Φ0, D̄

2Φ0, D
2D̄2Φ0)

This approach to a softly broken sypersym-

metric theory allows us to use remarkable math-

ematical properties of N = 1 SUSY theories such

as non-renormalization theorems, cancellation of

quadratic divergences, etc. The renormalization

procedure in a softly broken SUSY gauge theory

can be performed in the following way:

One takes renormalization constants of a rigid

theory, calculated in some massless scheme, sub-

stitutes instead of the rigid couplings (gauge and

Yukawa) their modified expressions, which de-

pend on a Grassmannian variable, and expand

over this variable.

This gives renormalization constants for the

soft terms. Differentiating them with respect to a

scale one can find corresponding renormalization

group equations.

Thus the soft term renormalizations are not

independent but can be calculated from the known

renormalizations of a rigid theory with the help of

the differential operators. Explicit form of these

operators has been found in a general case and in

some particular models like SUSY GUTs or the

MSSM [1]. The same expressions were obtained

also in ref. [4].

In fact as it has been shown in [5] this pro-

cedure works at all stages. One can make the

above mentioned substitution on the level of the

renormalization constants, RG equations, solu-

tions to these equations, approximate solutions,

fixed points, finiteness conditions, etc. Expand-

ing then over a Grassmannian variable one ob-

tains corresponding expressions for the soft terms.
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This way one can get new solutions of the RG

equations and explore their asymptotics, or ap-

proximate solutions, or find their stability prop-

erties, starting from the known expressions for a

rigid theory.

Below we give some examples and in partic-

ular consider the MSSM with low tanβ, where

analytical solutions are known and obtain solu-

tions to the RG equations for the soft mass terms.

In a finite SUSY GUT finiteness conditions for

the soft terms appear as a trivial consequence of

a finiteness of a rigid theory. Another example

is the N=2 SUSY model, where the exact (non-

perturbative) Seiberg-Witten solution is known.

Here one can extend the S-W solution to the soft

terms.

2. Soft SUSY Breaking and

Renormalization

Consider an arbitrary N = 1 SUSY gauge theory

with unbroken SUSY. The Lagrangian of a rigid

theory is given by

Lrigid =
∫
d2θ

1

4g2
TrWαWα +

∫
d2θ W

+

∫
d2θ̄

1

4g2
TrW̄αW̄α +

∫
d2θ̄ W̄

+

∫
d2θd2θ̄ Φ̄i(eV )jiΦj , (2.1)

where Wα is the field strength chiral superfield

and the superpotential W has the form

W = 1
6
λijkΦiΦjΦk +

1

2
M ijΦiΦj . (2.2)

To perform the SUSY breaking, which satis-

fies the requirement of ”softness”, one can intro-

duce a gaugino mass term as well as cubic and

quadratic interactions of scalar superpartners of

the matter fields [2]

−Lsoft−breaking =
[
M

2
λλ +

1

6
Aijkφiφjφk

+
1

2
Bijφiφj + h.c.

]
+ (m2)ijφ

∗
i φ
j , (2.3)

where λ is the gaugino field and φi is the lower

component of the chiral matter superfield.

One can rewrite the Lagrangian (2.3) in terms

of N=1 superfields introducing the external spu-

rion superfields [2] η = θ2 and η̄ = θ̄2, where θ

and θ̄ are Grassmannian parameters, as [3]

Lsoft =
∫
d2θ

1

4g2
(1− 2Mθ2)TrWαWα

+

∫
d2θ̄

1

4g2
(1 − 2M̄θ̄2)TrW̄αW̄α.

+

∫
d2θd2θ̄ Φ̄i(δki − (m2)ki ηη̄)(eV )jkΦj

+

∫
d2θ

[
1

6
(λijk −Aijkη)ΦiΦjΦk

+
1

2
(M ij −Bijη)ΦiΦj

]
+ h.c. (2.4)

Comparing eqs.(2.1) and (2.4) one can see

that eq.(2.4) is equivalent to (2.1) with modifi-

cation of the rigid couplings g2, λijk and M ij , so

that they become external superfields dependent

on Grassmannian parameters θ2 and θ̄2. The

scalar mass term m2ηη̄ modifies fields Φ and Φ̄.

These modifications of the couplings and fields

are valid not only for the classical Lagrangian but

also for the quantum one.1 As has been shown

in Ref. [1] the following statement is valid:

If a rigid theory (2.1, 2.2) is renormalized

via introduction of renormalization constants Zi,

defined within some minimal subtraction mass-

less scheme, then a softly broken theory (2.4) is

renormalized via introduction of renormalization

superfields Z̃i which are related to Zi by the cou-

pling constants redefinition

Z̃i(g
2, λ, λ̄) = Zi(g̃

2, λ̃, ˜̄λ), (2.5)

where the redefined couplings are (η = θ2, η̄ =

θ̄2)

g̃2 = g2(1 +Mη + M̄ η̄ + 2MM̄ηη̄), (2.6)

λ̃ijk = λijk −Aijkη + 1
2

(
λnjk(m2)in

+λink(m2)jn + λ
ijn(m2)kn

)
ηη̄, (2.7)

˜̄λijk = λ̄ijk − Āijk η̄ + 1
2

(
λ̄njk(m

2)ni

+λ̄ink(m
2)nj + λ̄ijn(m

2)nk
)
ηη̄. (2.8)

Thus a softly broken SUSY gauge theory is

equivalent to an unbroken one in external spurion
1Throughout the paper we use a supergraph tecnique

and assume the existence of some SUSY invariant regu-

larization. Thus we ignore the subtleties which may ap-

pear in component approach due to possible use of non-

invariant schemes[4].
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superfield as far as the renormalization proper-

ties are concerned. Substitutions (2.6-2.8) can be

made not only in the renormalization constants,

but at every stage of the renormalization proce-

dure, since the RG functions and RG equations

are derived from renormalization constants ap-

plying the differential operators. The key point

is that one can consider an unbroken theory in ex-

ternal superfield which is equivalent to replacing

of the couplings by external superfields accord-

ing to eqs.(2.6-2.8). Then one can expand over

Grassmannian parameters.

In what follows we would like to simplify

the notations and consider numerical rather than

tensorial couplings. When group structure and

field content of the model are fixed, one has a set

of gauge {gi} and Yukawa {yk} couplings. It is
useful to consider the following rigid parameters

αi ≡ g2i
16π2

, Yk ≡ y2k
16π2

.

Then eqs.(2.6-2.8) look like

α̃i = αi(1 +Miη + M̄iη̄ + 2MiM̄iηη̄), (2.9)

Ỹk = Yk(1 +Akη + Ākη̄ + (AkĀk +Σk)ηη̄),

where to standardize the notations we have rede-

fined parameter A: A → Ay in a usual way and
have changed the sign of A to match it with the

gauge soft terms. Here Σk stands for a sum of

m2 soft terms, one for each leg in the Yukawa

vertex.

Now the RG equation for a rigid theory can

be written in a universal form

ȧi = aiγi(a), ai = {αi, Yk}, (2.10)

where γi(a) stands for a sum of corresponding

anomalous dimensions. In the same notation the

soft terms (2.9) take the form

ãi = ai(1 +miη + m̄iη̄ + Siηη̄), (2.11)

wheremi = {Mi, Ak} and Si = {2MiM̄i, AkĀk+
Σk}.

3. Grassmannian Taylor Expansion

We demonstrate now how the RG equations for

the soft terms appear via Grassmannian Tay-

lor expansion from those for the rigid couplings

(2.10). Indeed, let us substitute eq.(2.11) into

eq.(2.10) and expand over η and η̄. One has to be

careful, however, since as it follows from the soft

Lagrangian (2.4) gauge couplings are involved in

chiral Grassmann integrals and expansion over η

or η̄ makes sense up to F-terms only. On the con-

trary, the Yukawa couplings Y , being a product

of y and ȳ, are general superfields, so the expan-

sion is valid for D-terms as well. Having this in

mind one gets

˙̃ai = ãiγi(ã), (3.1)

Consider first the F-terms. Expanding over η one

has

ȧimi + aiṁi = aimiγi(a) + aiγi(ã)|F , (3.2)

or

ṁi = γi(ã)|F =
∑
j

aj
∂γi

∂aj
mj . (3.3)

This is just the RG equation for the soft terms

Mi and Ak which was written in Ref. [1] in the

form

ṁi = D1γi(a). (3.4)

Proceeding the same way for the D-terms one

gets after some algebra

Ṡi = 2mi
∑
j

aj
∂γi

∂aj
mj +

∑
j

aj
∂γi

∂aj
Sj

+
∑
j,k

ajak
∂2γi

∂aj∂ak
mjmk. (3.5)

Substituting Si = mim̄i + Σi one has the RG

equation for the mass terms

Σ̇i = γi(ã)|D =
∑
j

aj
∂γi

∂aj
(mjmj +Σj)

+
∑
j,k

ajak
∂2γi

∂aj∂ak
mjmk. (3.6)

As mentioned above one can make the same

expansion not only in equations, but also in solu-

tions. Let us start with the simplest case of pure

gauge theory with one gauge coupling. Then one

has in a rigid theory

∫ α dα′
β(α′)

= log

(
Q2

Λ2

)
. (3.7)
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Making a substitution α → α̃ and Λ̃ = Λ(1 +
cθ2 + ...) one has

∫ α̃ dα′
β(α′)

= log

(
Q2

Λ̃2

)
. (3.8)

Expansion over η gives [6]

M = cγ(α), γ(α) =
β(α)

α
, (3.9)

which reproduces the result obtained in Ref.[7]

using different arguments.

One can make the same expansion for any

analytic solution in a rigid theory. Below we

consider three particular examples, namely the

MSSM, the finite SUSY GUT and the Seiberg-

Witten N=2 SUSY model.

4. Examples

The MSSM

Consider the MSSM in low tanβ regime. One

has three gauge and one Yukawa coupling. The

one-loop RG equations are [8]

α̇i = −biα2i , bi = (
33

5
, 1,−3), i = 1, 2, 3,

Ẏt = Yt(
16

3
α3 + 3α2 +

13

15
α1 − 6Yt),

with the initial conditions: αi(0) = α0, Yt(0) =

Y0 and t = ln(M
2
X/Q

2). Their solutions are given

by [8]

αi(t) =
α0

1 + biα0t
, Yt(t) =

Y0E(t)

1 + 6Y0F (t)
, (4.1)

where

E(t) =
∏
i

(1 + biα0t)
ci/bi , ci = (

13

15
, 3,
16

3
),

F (t) =

∫ t
0

E(t′)dt′.

To get the solutions for the soft terms it is

enough to perform substitution α→ α̃ and Y →
Ỹ and expand over η and η̄. Expanding the gauge

coupling in (4.1) up to η one has

αiMi =
α0M0i

1 + biα0t
− α0biα0M0it
(1 + biα0t)2

=
α0

1 + biα0t

M0i

1 + biα0t
,

or

Mi(t) =
M0i

1 + biα0t
. (4.2)

Performing the same expansion for the Yukawa

coupling and using the relations

dẼ

dη

∣∣∣∣∣
η

= tE

3∑
i−1
ciαiM0i,

dF̃

dη

∣∣∣∣∣
η

=

∫ t
0

dẼ

dη

∣∣∣∣∣∣
η

,

one finds

At(t) =
A0

1 + 6Y0F
− 1
E

dE

dη
+

6Y0
1 + 6Y0F

dF

dη
,

(4.3)

which for universal boundary conditions M0i =

M0 leads to a well known expression [8]. To get

the solution for the Σ term one has to make ex-

pansion over η and η̄.

With analytic solutions one can analyze asymp-

totics and, in particular, find the infrared quasi

fixed points [9] which correspond to Y0 →∞

Y FP =
E

6F
, (4.4)

AFP = − 1
E

dE

dη
+
1

F

dF

dη
. (4.5)

One can see in particular how the dependence of

the initial conditions Y0 and A0 drops from the

equations (4.4,4.5). The FP solution (4.5) can be

directly obtained from a fixed point for the rigid

Yukawa coupling (4.4) by Grassmannian expan-

sion. This explains, in particular, why fixed point

solutions for the soft couplings exist if they ex-

ist for the rigid ones and with the same stability

properties [10].

What is essential, the same procedure works

for the approximate solutions [11, 12]. Once one

gets an approximate solution for the Yukawa cou-

plings, one immediately has those for the soft

terms as well [11].

SUSY GUTs

One can consider not only fixed points, but

also more complicated configurations like renor-

malization invariant trajectories which lead to re-

duction of the couplings [13] or fixed lines or sur-

faces [14], or finiteness relations [15]. The same

procedure is valid here as well.

Let us consider, for example, construction of

a finite theory (free from ultraviolet divergences)
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in the framework of SUSY GUTs. It is achieved

in a rigid theory by a proper choice of the field

content and of the Yukawa couplings being the

functions of the gauge one [17]

Yk = Yk(α) = c
(k)
0 α+ c

(k)
1 α

2 + ..., (4.6)

where coefficients c
(k)
i are calculated within per-

turbation theory.

To achieve complete finiteness, including the

soft terms, one has to choose the latter in a proper

way [17]. To find it one just have to modify the

finiteness relation for the Yukawa coupling (4.6)

as

Ỹk = Yk(α̃), (4.7)

and expand over η and η̄. This gives:

Ak =M
d lnYk
d lnα

, (4.8)

and after the rearrangement of terms

Σk =M
2 d

dα
α2
d lnYk
dα

, (4.9)

which coincides with the relations found in Ref. [17].

Eqs. (4.8,4.9) look even simplier if being

written in terms of bare rather than renormal-

izaed couplings. Indeed, eq.(4.6) in dimensional

reduction scheme looks like[17]

Y Barek = αBarefk(ε), (4.10)

where fk(ε) is a power series over ε calculated in

PT.

The modification of eq.(4.10) looks like

Ỹ Barek = α̃Barefk(ε), (4.11)

with the same function fk(ε). Thus, expanding

(4.11) over η and η̄ and cancelling fk(ε) on the

both sides, one has

ABarek = MBare, (4.12)

ΣBarek = M2Bare, (4.13)

which is valid in all orders of PT. Hence, one gets

the universality of the soft terms.

N=2 SUSY

Consider now the N=2 supersymmetric gauge

theory. The Lagrangian written in terms of N=2

superfields is [18]:

L = 1
4π
ImTr

∫
d2θd2θ̃

1

2
τΨ2, (4.14)

where N=2 chiral superfield Ψ(y, θ, θ̃) is defined

by constraints D̄α̇Ψ = 0 and
¯̃Dα̇Ψ = 0 and

τ = i
4π

g2
+
θ

2π

topological

. (4.15)

The expansion of Ψ in terms of θ̃ can be writ-

ten as

Ψ(y, θ, θ̃) = Ψ(1)(y, θ)+
√
2θ̃αΨ(2)α (y, θ)+θ̃

αθ̃αΨ
(3)(y, θ),

where yµ = xµ+iθσµθ̄+iθ̃σµ
¯̃
θ and Ψ(k)(y, θ) are

N=1 chiral superfields.

The soft breaking of N=2 SUSY down to

N=1 can be achieved by shifting the imaginary

part of τ :

τ → τ̃ = τ + i4π
g2
θ̃2M. (4.16)

This leads to

∆L = 1
g2
Tr

∫
d2θ
M

2
(Ψ(1))2, (4.17)

which is the usual mass term for N=1 chiral su-

perfield Ψ(1) normalized to 1/g2.

Now one can use the power of duality in N=2

SUSY theory and take the Seiberg-Witten solu-

tion [19]

τ =
daD

du
/
da

du
, (4.18)

where

aD(u) =
i

2
(u − 1)F (1/2, 1/2, 2; 1− u

2
),

a(u) =
√
2(1 + u)F (−1/2, 1/2, 1; 2

1 + u
).

Assuming that renormalizations in N=2 SUSY

theory follow the properties of those in N=1 one

can try to apply the same expansion procedure

for a non-perturbative solution. Substituting eq.(4.16)

into (4.18) with u → ũ = u(1 +M0θ̃2) and ex-
panding over θ̃2, one gets an analog of S-W solu-

tion for the mass term:

M =M0

Im
[
u

(
a′′D
a′D
− a

′′

a′

)
τ

]

Im τ . (4.19)

In perturbative regime (u ∼ Q2/Λ2 → ∞) one
has [18] a =

√
2u, aD =

i
π a(2 ln a + 1), which

leads to

4π

g2
=
1

π

[
lnQ2/Λ2 + 3

]
,

M = M0/
[
lnQ2/Λ2 + 3

]
.

5
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This procedure can be continued introduc-

ing soft N=1 SUSY breaking via θ dependent

τ superfield. Thus one can achieve soft SUSY

breaking along the chain

N = 2 ⇒ N = 1 ⇒ N = 0

preserving the properties of the exact solution.

This will lead to a sequence of new solutions for

the soft terms like eq.(4.19).

5. Conclusion

We conclude that the Grassmannian expansion

in softly broken SUSY theories happens to be

a very efficient and powerful method which can

be applied in various cases where the renormal-

ization procedure in concerned. It demonstrates

once more that softly broken SUSY theories are

contained in rigid ones and inherit their renor-

malization properties.
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