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Abstract: We study softly broken N = 1 supersymmetric QCD and its dual. Their vacuum struc-

tures have been investigated. Infrared behavior of soft parameters have also been calculated.

1. Introduction

Recently, nonperturbative aspects of N = 1 su-

persymmetric (SUSY) QCD have been under-

stood [1, 2]. It is very important to extend such

analyses to non-SUSY QCD and study its non-

perturbative aspects, confinement and chiral sym-

metry breaking. To this end, it is an interesting

trial to study softly broken N = 1 SUSY QCD.

Actually in refs.[3]-[9] N = 1 SUSY QCD with

soft scalar masses as well as gaugino masses has

been discussed and interesting results have been

obtained.

In particular, the vacuum structure ofN = 1

SUSY QCD broken by adding soft masses has

been clarified for the theory with SU(Nc) gauge

group andNf flavors of quark pairs in ref.[3]. For

Nf < Nc, there is a nontrivial stable vacuum,

while there is no vacuum in the SUSY limit [1].

For Nf = Nc we can have two nontrivial vacua

and there is no trivial vacuum as in the SUSY

limit. In one vacuum, only the meson fields T

develop their expectation values (VEVs) and in

the other only the baryon fields B and B̄ develop

their VEVs. Which vacuum is realized depends

on the soft mass ratio between T and B (B̄). In

both vacua chiral symmetry is broken and this

situation is the same as the SUSY limit, where

we have chiral symmetry breaking as well as con-

finement. On the other hand, for Nf = Nc + 1

we have only the trivial vacuum and chiral sym-

metry is not broken, while in the SUSY limit

we have confinement without chiral symmetry

breaking, i.e. s-confinement. For Nf > Nc + 1,

we have only the trivial vacuum and the presence

of the Seiberg duality is suggested even in SUSY

QCD broken by soft mass terms.

Here we study these vacuum structures adding

all the allowed soft SUSY breaking terms. Also,

we investigate infrared (IR) behavior of these soft

SUSY breaking terms in the case with a IR fixed

point and its dual.

2. Vacuum structure

2.1 Nf > Nc + 1

At first we study softly broken N = 1 supersym-

metric QCD for Nf > Nc+1 [6]. We concentrate

to the case with Nc ≥ 3. We consider the N = 1
supersymmetric QCD with the gauge symmetry

SU(Nc) and Nf flavors of quark supermultiplets,

Q̂i and Q̂i. This theory has the flavor symmetry

SU(Nf )Q× SU(Nf)Q and no superpotential. In
the case with Nf > Nc + 1, the dual theory is

described by the N = 1 SUSY theory with the

gauge group SU(Nf − Nc), Nf flavors of dual

quark pairs q̂i and q̂
i
, and Nf × Nf singlet me-

son supermultiplets T̂ ij . The dual theory has the

same flavor symmetry as the electric theory and

the dual theory has the superpotential,

W = q̂iT̂
i
j q̂
j
. (2.1)

In the dual theory, all the symmetries ex-

cept R-symmetry allow the following soft SUSY
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breaking terms,

LSB = −m2qtr|q|2 −m2q̄tr|q|2 −m2T tr|T |2
+ (hqiT

i
jq
j + h.c.), (2.2)

where qi, q
i and T ij denote scalar components of

q̂i, q̂
i
and T̂ ij , respectively. Also the gaugino mass

terms are added. For the kinetic term, we assume

the canonical form with normalization factors kq
and kT for q, q̄ and T . Then we write the follow-

ing scalar potential:

V (q, q̄, T ) =
1

kT
(|q|2|q̄|2) + 1

kq
(|qT |2 + |q̄T |2)

+
g̃2

2
(q† t̃aq − q̄t̃aq̄†)2 +m2q |q|2 +m2q̄ |q̄|2

+ m2T |T |2 − (hqiT ij q̄j + h.c.), (2.3)

where the third term is theD-term and g̃ denotes

the gauge coupling constant of the dual theory.

The trilinear coupling terms hqT q play a crucial

role in determining the minimum of the poten-

tial. We assume h is real.

The minimum of potential can be obtained

along the following diagonal direction ,

q = diag(q(1), q(2), · · · , q(Ñc)), (2.4)

q̄ = diag(q̄(1), q̄(2), · · · , q̄(Ñc)), (2.5)

T = diag(T(1), T(2), · · · , T(Ñc)), (2.6)

where all the entries, q(i), q̄(i) and T(i), can be

made real. Along the D-flat direction, q(i) =

q̄(i) = Xi, the potential is written as

V (X,T ) =

Ñc∑
i=1

[
1

kT
X4i + (m

2
q +m

2
q̄)X

2
i +m

2
TT
2
(i)

+
2

kq
T 2(i)X

2
i − 2hT(i)X2i ]. (2.7)

This potential always has the nontrivial vac-

uum with Xi 6= 0 and T(i) 6= 0 if

h� m2q +m
2
q

2kq
. (2.8)

In addition, we have the nontrivial vacuum with

Xi 6= 0 and T(i) 6= 0 for a certain region of inter-
mediate values of h, if m2T /kT is sufficiently large

compared with (m2q +m
2
q)/2kq [8]. Otherwise, in

particular for a sufficiently small value of h we

have the trivial vacuum with T = 0 and q = 0.

Now we compare between softly broken N =

1 supersymmetric QCD and its dual. In the orig-

inal theory the soft scalar mass terms as well as

gaugino mass terms are all we can add as soft

SUSY breaking terms, i.e.

LSB = −m2Q|Q|2 −m2Q̄|Q̄|2. (2.9)

Let us discuss the unbroken phase q = q̄ =

T = 0. In this case the structure of massless

fermions and global symmetries except gauginos

and R-symmetry is not changed compared with

the SUSY limit. Thus, this case leads to the same

anomaly structure for the unbroken global sym-

metry SU(Nf )q×SU(Nf)q̄×U(1)B as the SUSY
limit. On the other hand, we have the unbroken

phase Q = Q̄ = 0 for m2Q > 0 and m2
Q̄
> 0.

In this case no local or global symmetry is bro-

ken except the R-symmetry, which is broken by

gaugino mass terms. Moreover, all the quarks

remain massless. Thus the anomaly structure is

the same as for the SUSY limit, e.g. SU(Nf)
3

and SU(Nf)
2U(1)B. Therefore, this dual pair

has the same anomaly structure in the unbroken

phase even in the presence of soft SUSY break-

ing terms. That seems to imply the presence of

Seiberg’s duality in this phase even after SUSY

breaking with the A-terms. This observation has

been already made in ref. [3], although the A-

terms were not included in the discussions.

Let us extend the above consideration to the

broken phase and notice that large symmetry

breaking takes place in the broken phase. Here

we simplify the issue and consider the following

model. When adding the soft SUSY breaking

terms, we break the flavor symmetry SU(Ñc)q ×
SU(Ñc)q̄ into SU(Ñc − 1)q × U(1)q × SU(Ñc −
1)q̄ × U(1)q̄. Then we assume the first flavor

has soft scalar masses, mq1 and mq̄1, different

from the others, mq and mq̄ [4]. Recall that

the i-th flavor is decoupled from the other fla-

vors in all the conditions and equations to re-

alize the broken phase. Here we assume that

only the soft scalar masses of the first flavor,

mq1 and mq̄1, satisfy the breaking conditions. In

this case only the vacuum expectation values X1
and T(1) are developed. That leads to the gauge

symmetry breaking, SU(Ñc) → SU(Ñc − 1) (=
SU(Nf − 1 − Nc)). Furthermore, (Nf − 1) fla-
vors of dual quarks and (Nf − 1)× (Nf − 1) sin-
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glet fermions χT remain massless. These mass-

less fermions have the global symmetry SU(Nf−
1)q×SU(Nf−1)q̄×U(1)B′ . Massless dual quarks,
ψq and ψq̄, and singlet fermions χT transform as

(N̄f , 0, Nc/(Ñc − 1)), (0, Nf ,−Nc/(Ñc − 1)) and
(Nf , N̄f , 0) under this global symmetry, respec-

tively. All the scalar fields become massive. This

structure of massless fermions obviously corre-

sponds to the SUSY model with SU(Nf − 1 −
Nc) gauge group and (Nf − 1) flavors of quarks.
This SUSY model is dual to SUSY QCD theory

with SU(Nc) gauge group and (Nf − 1) flavors
of quarks.

Let us consider now the corresponding orig-

inal theory. If at the SUSY breaking scale, the

flavor symmetry is broken in the same way as the

one of the dual theory, SU(Nf − 1)q × SU(Nf −
1)q̄, nothing would prevent the appearance of the

following superpotential:

W =M1Q̂
1 ̂̄Q1. (2.10)

Note that in this case the B-term, −M2
BQ

1Q̄1,

can also appear as the soft terms in the lagrangian

LSB. Thus, the (mass)2 matrix of the first flavor
of squarks, M2

11 is written as

M2
11 =

(
m2Q1 +M

2
1 −M2

B

−M2
B m2

Q̄1
+M2

1

)
. (2.11)

If det(M2
11) > 0, the potential minimum corre-

sponds to Q1 = Q̄1 = 0 and the gauge sym-

metry SU(Nc) remains unbroken. In this case

(Nf − 1) flavors of quarks remain massless and
these massless fermions have the global symme-

try SU(Nf − 1)q × SU(Nf − 1)q̄ × U(1)B. All
scalar fields become massive. This model has the

same anomaly structure as the softly broken dual

theory in the broken phase, e.g. for SU(Nf −1)3
and SU(Nf − 1)2U(1)B, where U(1)B should be
replaced by U(1)B′ in the dual theory. That

seems to suggest the presence of Seiberg’s duality

after SUSY breaking even in the broken phase.

Similarly the case with det(M2
11) < 0 and

m2Q1 +m
2
Q̄1
+ 2M2

1 > 2|M2
B| corresponds to the

dual theory for the unbounded-from-below direc-

tion.

We have considered the case where only one

flavor of squarks develop their vacuum expecta-

tion values. We can easily extend the above dis-

cussion to the case when more flavors of squarks

develop their vacuum expectation values. Then

we can obtain similar relations between softly

broken original and dual theories in the broken

phase.

2.2 Nf = Nc + 1

For Nf = Nc + 1, the N = 1 supersymmetric

QCD is described in terms of (Nc+1)× (Nc+1)
meson fields T̂ ij and (Nc+1) baryon fields B̂i and

B̂
i

. They have the superpotential,

W =
1

Λ2Nc−1
(B̂iT̂

i
j B̂
j

− det T̂ ). (2.12)

The flavor symmetry allows the SUSY break-

ing trilinear coupling

h′BiT ijB
j
. (2.13)

Thus we consider here the following SUSY break-

ing terms,

LSB = −m2Btr|B|2 −m2Btr|B|2 −m2T tr|T |2

+ (h′BiT ijB
j
+ h.c.). (2.14)

The trilinear SUSY breaking term h′BiT ijB
j
cor-

responds to hqiT
i
j q
j in the dual theory withNf >

Nc + 1.

The minimum of the potential can be ob-

tained along the diagonal direction. Here we con-

sider the following direction,

BiB
j − ∂det T/∂T ji = 0. (2.15)

For simplicity, we consider the case where

Bi = B
i
= B, T(i) = T, for all i’s, (2.16)

and B and T are real. In this case we have the

potential,

V

Nc + 1
= 2λ2BT

Nc+2 − 2h′TNc+1

+ (m2B +m
2
B
)TNc +m2TT

2,(2.17)

where λB = 1/(kBΛ
2Nc−1). Here the direction

(2.15) means T ≥ 0. The flavor symmetry allows
the possibility of the further SUSY breaking term

h′T detT, corresponding to the nonperturbative
superpotential. If we add the SUSY breaking
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term h′T det T corresponding to the nonpertur-
bative superpotential, we have the extra term

h′TT
Nc+1. That corresponds to only the shift,

h′ → h′ + h′T , (2.18)

in the scalar potential (2.17).

We have the nontrivial vacuum with nonva-

nishing B, B and T , i.e. the flavor symmetry

breaking, if h′ is sufficiently large compared with
the soft scalar masses. Thus, the trilinear cou-

pling term h′BTB plays an important role in
the chiral symmetry breaking for the case with

Nf = Nc+1 like the term hqT q̄ for the case with

Nf > Nc+1. In both cases with Nf = Nc+1 and

Nf > Nc + 1, the same trilinear term appears to

be important.

2.3 Nf ≤ Nc
In ref.[3] the Nf = Nc and Nf < Nc super-

symmetric QCD are broken softly by adding soft

scalar masses. It has been shown that in both

cases with Nf = Nc and Nf < Nc we have only

the nontrivial vacua leading to the chiral symme-

try breaking.

The Nf = Nc supersymmetric QCD can be

described in terms of the baryon pair B̂ and B̂

and Nc×Nc meson fields T̂ ji . We have the quan-
tum constraint [1, 2],

B̂B̂ − det T̂ = Λ2Nc . (2.19)

The flavor symmetry allows the SUSY breaking

term hBBB. Thus we can add hBBB as well as

soft mass terms. However, the vacuum structure

is same as the case where we do not add it. We

always have two nontrivial vacua.

For Nf < Nc the N = 1 supersymmetric

QCD has the nonperturbative superpotential,

W = (Nc −Nf )
(
Λ3Nc−Nf

det T

)1/(Nc−Nf )
. (2.20)

This potential has no stable point for a finite

value of T . However, if we add the soft SUSY

breaking scalar mass term,

LSB = −m2T tr|T |2, (2.21)

we have a stable vacuum for a finite value of T

as already shown in ref.[3]. The soft mass terms

are all the SUSY breaking terms allowed by the

symmetries.

Thus, in the case with Nf = Nc and Nf <

Nc we always have the nontrivial vacua, i.e. T 6=
0 or B 6= 0 for Nf = Nc and T 6= 0 for Nf < Nc.

Because the vacuum with Nf ≤ Nc corresponds

to nontrivial vacuum of the theory with Nf =

Nc + 1.

3. Infrared behavior of soft parame-

ters

Here we investigate IR behavior of soft param-

eters in the conformal window. There is a con-

jecture that supersymmetric QCD has nontrivial

IR fixed point

βg = 0 for g 6= 0, (3.1)

for (3/2)Nc < Nf < 3Nc.

Recently, all-order β-functions soft parame-

ters have been obtained in terms of β-functions

and anomalous dimensions γij of the rigid SUSY

theory [10, 11],

βM = 2O
(
βg

g

)
, (3.2)

βijkh = γilh
ljk + γj lh

ilk + γklh
ijl

− 2γi1lY ljk − 2γj1lY ilk
− 2γk1 lY ijl , (3.3)

(βm2)
i
j =

[
∆+X

∂

∂g

]
γij , (3.4)

O =
(
Mg2

∂

∂g2
− hlmn ∂

∂Y lmn

)
,(3.5)

∆ = 2OO∗ + 2|M |2g2 ∂

∂g2

+ Ỹlmn
∂

∂Ylmn
+ Ỹ lmn

∂

∂Y lmn
, (3.6)

where Y ijk is the Yukawa coupling, M is the

gaugino mass, (γ1)
i
j = Oγij , Ylmn = (Y lmn)∗,

and

Ỹ ijk = (m2)ilY
ljk + (m2)j lY

ilk

+ (m2)klY
ijl . (3.7)

If the following equations,

βg
dY ijk(g)

dg
= βijk

= Y ijk(g)[γi(g) + γj(g) + γk(g)] .

(3.8)

4
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hijk = −M(Y ijk)′ ≡ −MdY ijk(g)

d ln g
, (3.9)

m2i = |M |2{(1 + X̃(g))(g/βg)(γi(g))
+
1

2
[(g/βg)γi(g)]

′ }, (3.10)

are satisfied, then the differential operators O
and ∆ can be written as

O = M

2

d

d ln g
, (3.11)

∆ +X
∂

∂g
= |M |2[ 1

2

d2

d(ln g)2

+ (1 + X̃(g))
d

d ln g
] , (3.12)

where gX̃(g) = X/|M |2 and X is a function of g,
Y (g), Y ∗(g), h(M, g), h∗(M, g) and m2(|M |2, g).
It has been further shown in ref. [11] that

the unknown term X̃ has to have the form

X̃ =
1

2
(ln(βg/g))

′ − 1 , (3.13)

in order that the expression (3.10) is RG invari-

ant. Therefore, eq.(3.10) becomes [11],

m2i =
1

2
|M |2(g/βg)(γi(g))′ . (3.14)

In ref. [12], with the use of the Novikov-Shifman-

Vainstein-Zakharov (NSVZ) β-function [13] for

the gauge coupling

βNSVZg =
g3

16π2

[∑
` T (R`)(1 − 2γ`)− 3C(G)
1− g2C(G)/8π2

]
,

(3.15)

it has been shown that the sum rule∑
`=i,j,k

m2` = |M |2{
1

1− g2C(G)/(8π2)
d lnY ijk

d ln g

+
1

2

d2 lnY ijk

d(ln g)2
}

+
∑
`

m2`T (R`)

C(G)− 8π2/g2
d lnY ijk

d ln g
,(3.16)

is RG invariant, if the X̃ on the subspace defined

by Y = Y (g) and eq. (3.9) takes the form [12]

X̃ =
−|M |2C(G) +∑`m2`T (R`)

C(G) − 8π2/g2 . (3.17)

Eq. (3.17) is consistent with (3.13). For SQCD

(without Yukawa couplings), the βm2 in the NSVZ

scheme becomes [12]

βNSVZm2
i
=

|M |2
1− g2C(G)/(8π2)

dγNSVZi

d ln g

+
|M |2
2

d2γNSVZi

d(ln g)2

+
∑
`

m2`T (R`)

C(G)− 8π2/g2
dγNSVZi

d ln g
.(3.18)

Seiberg [1] has conjectured on the existence

of an IR fixed point in the β-function of SQCD.

To recall his proposal, consider the NSVZ β-

function (3.15) for SQCD:

β(g) = − g3

16π2
3Nc −Nf + 2Nfγ(g2)
1−Ncg2/8π2 ,

γ(g2) = − g2

16π2
N2c − 1
Nc

+O(g4) . (3.19)

There is a non-trivial zero of the β-function for

Nf = (3 − ε)Nc, Nf , Nc >> 1. In this regime,
the β-function becomes

β(g) = − g3

16π2
Ncε− g2NcNf/8π2
1−Ncg2/8π2 . (3.20)

Therefore, at order ε the fixed point g2∗ is given
by

Ncg
2
∗ =
8π2

3
ε. (3.21)

In fact it was argued in [1] that such a fixed point

exists in the range 32Nc ≤ Nf ≤ 3Nc in SQCD.
Also such a behavior was already conjectured to

hold in ordinary QCD [14].

We will show that the RG invariant relations

(3.9) and (3.14) are IR attractive, and they play

a crucial role in investigating the behavior of the

soft SUSY breaking parameters near an IR fixed

point. The sum rule (3.16) will be used in the

dual theory to derive from the behavior of the

soft scalar masses near the fixed point (which

is obtained by linearizing the problem) a con-

dition which should be satisfied away from the

fixed point in order to restore supersymmetry at

the fixed point. We will discuss the IR stabil-

ity of the RG invariant relations (3.9) and (3.14)

in the conformal window for which an IR stable

fixed point in the space of the gauge coupling for

5
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SQCD, and in the space of the gauge and Yukawa

couplings for the dual theory is supposed to ex-

ist. Our analysis does not relay on the explicit

form of the β-functions for the soft SUSY break-

ing parameters. However, we assume that the

perturbative relations (3.2)–(3.4) among the RG

functions of the soft SUSY breaking parameters

and those of the corresponding supersymmetric

theory can be used to discuss IR physics.

To begin with, using the formulae (3.2)–(3.4)

and the RG invariant solutions (3.9) and (3.14),

we show that there always exists at least a tra-

jectory in the space of the soft SUSY breaking

parameters that approach the origin if the gauge

and Yukawa couplings approach a non-trivial fixed

point. To this end, we note that if eq. (3.9)

is satisfied, then the differential operator O be-
comes a total derivative operator as we see from

eq. (3.11). Then eq. (3.2) becomes nothing but

the Hisano-Shifman relation [15]

M = M0(βg/g) , (3.22)

whereM0 is a RG invariant quantity. Since βg →
0 as g → g∗ 6= 0 by assumption, we find that
M → 0 as g → g∗. Similarly, eqs. (3.9) and
(3.14) imply that

hijk = −M0(βg/g)(Y ijk)′ → 0, (3.23)

m2i = (1/2)|M0|2(βg/g)(γi)′ → 0, (3.24)

as g → g∗. In what follows, we will investigate
carefully whether the origin of the soft SUSY

breaking parameters is a stable IR fixed point.

First we consider softly broken SQCD and

examine the IR behavior of the gaugino mass M

and soft scalar squared masses m2Q, m
2
Q
. Since

there is no Yukawa coupling in SQCD, the differ-

ential operator (3.5) becomes a total derivative

operator, and we have

βM =Mg
d

dg
(βg/g) =M(βg/g)

′ . (3.25)

The conjecture that g∗ is a stable IR fixed point
for SQCD implies that

ΓM ≡ dβg

dg
|∗ > 0 , (3.26)

where |∗ means an evaluation at the fixed point.
We may assume that

|βg| and |dβg
dg
| < ∞ , (3.27)

for the range of g we are considering. Eq. (3.25)

implies the Hisano-Shifman relation [15], and so

if M0 in the r.h. side of (3.22) is a non-vanishing

constant, then the gaugino massM has to vanish

at the fixed point, as we have seen above. More-

over, one sees from eqs. (3.25) and (3.26) that

the fixed point M∗ = 0 is a stable one, because

M ∼ eΓM t → 0 as t→ −∞ , (3.28)

where in the lowest order approximation in the ε

expansion we have ΓM = ε
2/3.

To discuss the IR behavior of m2
Q,Q
, on the

same level asM , we have to go the NSVZ scheme,

and use the β-function (3.18). First we would like

to show that the RG invariant relation (3.14) is

IR attractive. To this end, we note that for the

βNSVZg given in eq. (3.20), the conditions (3.26)

and (3.27) are satisfied if

Γγ ≡ 1
2

d

dg
(γQ + γQ)|∗

=
d

dg
γQ|∗ < 0, (3.29)

Nc − 8π2/g2 < 0 (3.30)

are satisfied, where we have used γQ = γQ. Then

we consider the behavior of m2Q andm
2
Q
near the

RG invariant relation (3.14),

m2
Q,Q
= m2

(0)Q,Q
+ δm2

Q,Q
, (3.31)

m2
(0)Q,Q

≡ |M |
2

2
(g/βNSVZg )(γNSVZQ )′ .(3.32)

Linearizing the evolution equation near the RG

invariant relation (3.14), we find that

d

dt
δm2Q '

d

dt
δm2
Q

' 1
2
Γm2

Q
(δm2Q + δm

2
Q
) , (3.33)

Γm2
Q
≡ g∗NfΓγ
Nc − 8π2/g2∗

. (3.34)

Since Γm2
Q
is positive (see eq. (3.29)), we find

δm2Q − δm2
Q
= const. ,

δm2Q + δm2
Q
∼ eΓm2Q t → 0, (3.35)

as t→ −∞. In the lowest order approximation in
the ε expansion we have Γm2

Q
= ε2/3. Therefore,

6
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if the difference δm2Q − δm2Q is non-zero at some
point, then we obtain

δm2Q = −δm2Q, (3.36)

in the IR limit. Since, however, m2
(0),Q,Q

vanish

at the fixed point, which can be concluded from

eqs. (3.22) (3.28), we see that

m2Q = m2
Q
, (3.37)

should be satisfied in order not to break the color

symmetry in the IR limit. Then from eq. (3.35)

we may conclude that

m2Q = m2
Q
∼ eΓm2Q t → 0, (3.38)

as t → −∞. To conclude, we have shown that
superconformal symmetry revives at the IR fixed

point ifm2Q = m
2
Q
. Otherwise, the SU(Nc) gauge

symmetry and supersymmetry is broken.

Note that to show the stability of the IR fixed

point (M∗ = mQ∗ = mQ∗ = 0), we have used
only the sign of ΓM and Γγ , which changes de-

pending on whether the fixed point is UV or IR

stable. Therefore, in both type of fixed points,

M∗ = mQ∗ = mQ∗ = 0 is a stable fixed point if
m2Q = m

2
Q
is satisfied.

The basic idea for treating the IR behavior

of the soft SUSY breaking parameters of the dual

theory is the same as the case of SQCD, where we

assume that the kinetic term in the dual theory

takes the canonical form. A slight difference is

that in this case there is a Yukawa coupling Y

in the theory, and hence a trilinear coupling h in

the softly broken case.

Following Seiberg, we assume that there ex-

ists an IR fixed point in the space of g̃ and Y ,

the gauge coupling for the dual theory is denoted

by g̃, and the gaugino mass by M̃ . The non-

triviality of the fixed point of βY implies

(γq + γq + γT )|∗ = 0 . (3.39)

Further, the stability of the IR fixed point re-

quires, among other things, that

ΓM̃ ≡
dβg̃

dg̃
|∗ > 0 . (3.40)

We in addition assume that

2Γh ≡ ∂βY

∂Y
|∗ = ∂

∂Y
[Y (γq + γq + γT )]|∗

= Y∗
∂

∂Y
(γq + γq + γT )|∗ > 0 . (3.41)

As in the case of SQCD, we assume that βg̃, βY
together with their derivatives with respect to g̃

and Y in the space of g̃ and Y we are interested

in exist. For the NSVZ scheme, eq. (3.40) means

that

d

dg̃
(γq + γq)|∗ < 0 , (3.42)

where Ñc−8π2/g̃2 < 0 is assumed as in the case
of SQCD (3.30).

Now we consider the RG invariant relation

(3.9) and show that it is IR attractive. Defining

h = h0 + δh ,

h0 = −M̃Y ′ = −M̃g̃
dY

dg̃
, (3.43)

and linearizing the evolution equations, we find

dM̃

dt
' M̃(βg̃/g̃)

′ − 2δh ∂

∂Y
(βg̃/g̃) , (3.44)

dδh

dt
' (1 + 2Y ∂

∂Y
)[γq + γq + γT ] δh .(3.45)

Near the fixed point, δh behaves like

δh ∼ eΓht → 0 as t→ −∞ . (3.46)

Consequently, the gaugino mass behaves like

M̃ ∼ C1e
ΓM̃ t + C2e

Γht → 0, (3.47)

as t → −∞, where C1 and C2 are integration
constants. Therefore, we find that

M̃∗ = h∗ = 0, (3.48)

is a stable fixed point. In the lowest order ap-

proximation in the ε̃ expansion we have ΓM̃ =

ε̃2/3 and Γh = ε̃/3, where ε̃ = 3−Nf/Ñc.
Next we consider m2q,q,T . Since near the IR

fixed point the RG invariant relation (3.9) (or h0
given in eq. (3.43)) is attractive, we may use h =

h0 in the linearization procedure. We then go to

the NSVZ scheme, consider a deviation from the

RG invariant relation (3.14), and define

m2i = m2(0)i + δm
2
i ,

m2(0)i ≡
1

2
|M̃ |2(g̃/βNSVZg̃ )(γNSVZi )′ , (3.49)

where i = q, q, T . We find

d

dt
δm2q '

d

dt
δm2q '

1

2
Γm2q (δm

2
q + δm

2
q) ,

d

dt
δm2T '

1

2
Γm2

T
(δm2q + δm

2
q) , (3.50)
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where

Γm2q ≡
g̃∗NfΓγq

Ñc − 8π2/g̃2∗
,

Γm2
T
≡ g̃∗ΓγT
Ñc − 8π2/g̃2∗

,

Γγq,T ≡ (dγNSVZq,T /dg̃)|∗ , (3.51)

and we have used γNSVZq = γNSVZq . As one can

easily find, there are two zero eigenvalues and one

positive one (= Γm2q) in the linearized problem

(3.50). One of the two zero eigenvalues corre-

sponds to the solution that the difference δm2q −
δm2q is constant independent of t. Thus, as in the

case of SQCD, we see that the dual color sym-

metry is broken unless

m2q = m2q, (3.52)

is satisfied. The other zero eigenvalue expresses

the fact that m2T may contain a piece which is

constant independent of t in the IR limit. The

presence of the constant part breaks supersym-

metry at the IR fixed point. If the relation (3.37)

in the softly broken SQCD is satisfied (so that su-

persymmetry is recovered at the IR fixed point),

we have to demand the dual theory, too, to be

supersymmetric at the IR fixed point. There-

fore, we have the unique solution to (3.50) which

preserve supersymmetry at the fixed point:

δm2q = δm2q , δm
2
T ∼ e

Γ
m2q
t → 0, (3.53)

as t→ −∞, with
δm2q

δm2T
' Γm

2
q

Γm2
T

=
Γγq
ΓγT

, (3.54)

where Γ’s are defined in eq. (3.51), and Γm2q > 0

because Γγq < 0 if γq = γq (see eq. (3.42)). In

the lowest order approximation in the ε̃ expan-

sion we have Γm2q = ε̃/3.

Eq. (3.54) being constant independent of t

suggests the existence of a RG invariant relation.

In fact eq. (3.54) is the consequence of the RG

invariant sum rule (3.16). To see this, we insert

m2i (i = q, q, T ) (3.49) with m2q = m2q into the

sum rule (3.16), and find that the sum rule re-

duces to

2δm2q + δm2T

=
g̃(2Nfγ

NSVZ
q + γNSVZT )δm2q

βNSVZg̃ (C(G̃)− 8π2/g̃2) . (3.55)

In the IR limit, the quantity on the r.h. side

contains an expression 0/0. To obtain the correct

limit, we compute

(d/dg̃)(2Nfγ
NSVZ
q + γNSVZT )

(d/dg̃)(βNSVZg̃ /g̃)
, (3.56)

at the fixed point. We find that the expression

(3.56) at the fixed point can be written as

(C(G̃)− 8π2/g̃2) ( 2 + ΓγT
Γγq

) , (3.57)

implying that the sum rule (3.55) exactly be-

comes (3.54). Therefore, the soft scalar masses

away from the IR fixed point have to satisfy the

sum rule

m2q +m
2
q + m2T =

|M̃ |2
1− g̃2C(G̃)/(8π2)

d lnY

d ln g̃

+
|M̃ |2
2

d2 lnY

d(ln g̃)2

+
(Nf/2)(m

2
q +m

2
q)

C(G̃)− 8π2/g̃2 (
d lnY

d ln g̃
) ,(3.58)

and also (3.52) so that all the soft scalar masses

asymptotically vanish in the IR limit. As a re-

sult, superconformal symmetry in the dual the-

ory, too, revives at the IR fixed point. If eq.

(3.37) for SQCD, and eqs. (3.52) and (3.58) for

the dual theory are not satisfied, there will be

marginal operators that break supersymmetry as

well as the local gauge symmetries in the IR limit.

4. Conclusions

We have studied vacuum structure of softly bro-

ken supersymmetric QCD. ForNf > Nc, we have

trial and nontrivial vacua. The trilinear SUSY

breaking terms are important to determine the

potential minima. For Nf ≤ Nc, we always have
nontrivial vacua. We have a suggestion of duality

in several phases even after SUSY breaking.

We have also investigated infrared behavior

of soft SUSY breaking terms in the case with

a nontrivial infrared fixed point. In this case

the gaugino masses and the A-terms vanish in

the infrared region of both sides of duals. Soft

scalar masses also vanish if they are symmetric.

Thus, in this case supersymmetry revives in the

infrared region.
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