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Abstract: Feynman-diagrammatic calculations are presented for the masses of the neutral CP-even
Higgs bosons in the Minimal Supersymmetric Standard Model (MSSM), complete at the one-loop

level and including the two-loop leading QCD corrections. The results are valid for arbitrary val-

ues of the parameters of the MSSM and represent the currently most precise predictions within the

Feynman-graph approach. The impact on the mass of the lightest Higgs boson is discussed and a

comparison with the results obtained by the renormalization group method is performed.

1. Introduction

The search for the lightest Higgs boson provides

a direct and very stringent test of SUSY. A pre-

cise prediction for the mass of the lightest Higgs

boson in terms of the relevant SUSY parameters

hence is crucial in order to determine the discov-

ery and exclusion potential of LEP2 and the up-

graded Tevatron and also for physics at the LHC,

where a high-precision measurement of the mass

of this particle might be possible.

In the MSSM the mass of the lightest Higgs

boson, mh, is restricted at the tree level to be

smaller than the Z-boson mass. This bound,

however, is strongly affected by the inclusion of

radiative corrections. The dominant one-loop

corrections arise from the top and scalar-top sec-

tor via terms of the form GFm
4
t ln(mt̃1mt̃2/m

2
t )

[1]. They increase the predicted values ofmh and

yield an upper bound of about 150 GeV. These

results have been improved by performing a com-

plete one-loop calculation in the on-shell scheme,

which takes into account the contributions of all

sectors of the MSSM [2, 3, 5]. Beyond one-loop

order renormalization group (RG) methods have

been applied in order to obtain leading logarith-

mic higher-order contributions [6, 7, 8, 9], and a

∗work done in collaboration with Sven Heinemeyer and
Georg Weiglein.

diagrammatic calculation of the dominant two-

loop contributions in the limiting case of vanish-

ing t̃-mixing and infinitely large MA and tanβ

has been carried out [10].

Recently a Feynman-diagrammatic calcula-

tion of the leading two-loop corrections of O(ααs)
to the masses of the neutral CP-even Higgs bosons
has been performed [11]. They have been com-

bined with the complete one-loop diagrammatic

calculation [12] to obtain in this way the cur-

rently most precise prediction for mh within the

Feynman-diagrammatic approach, for arbitrary

values of the parameters of the Higgs and scalar

top sector of the MSSM. Further refinements con-

cerning the leading two-loop Yukawa corrections

of O(G2Fm6t ) [7, 15] and of leading QCD correc-
tions beyond two-loop order are also included.

2. Outline of the calculation

The Higgs sector of the MSSM contains two dou-

blets Hi =

(
H2i
H1i

)
, with the components

H1 =

(
v1 + (φ

0
1 + iχ

0
1)/
√
2

φ−1

)
,

H2 =

(
φ+2

v2 + (φ
0
2 + iχ

0
2)/
√
2

)
. (2.1)
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The tree level Higgs potential can be written as

follows:

V = m21H
2
1 +m

2
2H
2
2 + εij(m

2
12H

i
1H
j
2 + h.c.)

+
g2 + g′2

8
(H21 −H22 )2 +

g2

4
(H1H2)

2 .

(2.2)

Diagonalization of the mass matrices for the CP-
even and the CP-odd scalars, following from the
potential (2.2), leads to three physical particles:

two CP-even Higgs bosons H0, h0 and one CP-
odd Higgs boson A0. The tree-level masses of

h0, H0 follow from the coefficients m2φ1 ,m
2
φ2
and

m2φ1φ2 of the quadratic terms of (2.2) in the φ1,2
basis. They are determined by the values of

two input parameters, conventionally chosen as

tanβ = v2/v1 and M
2
A = −m212(tanβ + cotβ ),

where MA is the mass of the CP-odd A boson,
and by the Z boson mass MZ .

In the Feynman-diagrammatic approach the

one-loop corrected Higgs masses are derived by

finding the poles of the h,H-propagator matrix

whose inverse is given by(
q2 −m2H,tree + Σ̂H(q2) Σ̂hH(q

2)

Σ̂hH(q
2) q2 −m2h,tree + Σ̂h(q2)

)
,

(2.3)

where the Σ̂ denote the full one-loop contribu-

tions to the renormalized Higgs-boson self-ener-

gies, i.e. including the counterterms. For these

self-energies we take the result of the complete

one-loop on-shell calculation of [3]. The agree-

ment with the result obtained in [2] is better than

1 GeV for almost the whole MSSM parameter

space.

As mentioned above the dominant contribu-

tion arises from the t, t̃-sector. The current eigen-

states of the scalar quarks, q̃L and q̃R, mix to give

the mass eigenstates q̃1 and q̃2. The non-diagonal

entry in the scalar quark mass matrix is propor-

tional to the mass of the quark and reads for the

t̃-mass matrix

mtM
LR
t = mt(At − µ cotβ ), (2.4)

where we have adopted the conventions used in [4].

Due to the large value of mt mixing effects have

to be taken into account. Diagonalizing the t̃-

mass matrix one obtains the eigenvalues mt̃1 and

mt̃2 and the t̃ mixing angle θt̃.

At one-loop, the dominant contributions pro-

portional to GFm
4
t can be obtained by evaluat-

ing the contribution of the t, t̃-sector to the φ1,2
self-energies at zero external momentum from the

Yukawa part of the theory (neglecting the gauge

couplings). Accordingly, the one-loop corrected

Higgs masses are derived by diagonalizing the

mass matrix, given in the φ1, φ2 basis as

M2H =

(
m2φ1 − Σ̂φ1(0) m2φ1φ2 − Σ̂φ1φ2(0)
m2φ1φ2 − Σ̂φ1φ2(0) m2φ2 − Σ̂φ2(0)

)
.

(2.5)

Therein, the Σ̂ are restricted to the Yukawa con-

tributions of the t, t̃-sector to the renormalized

one-loop φ1,2 self-energies. In this approxima-

tion one obtains the compact expressions

M2H,h =
M2A +M

2
Z + εt + σt
2

(2.6)

±
[
(M2A +M

2
Z)
2 + (εt − σt)2
4

−M2AM2Z cos2 2β
+
(εt − σt) cos 2β

2
(M2A −M2Z)

−λt sin 2β(M2A +M2Z) + λ2t
]1/2

with

εt =
NCGFm

4
t√

2π2 sin2 β

[
log (

mt̃1mt̃2
m2t

)

+
At(At − µ cotβ)
m2
t̃1
−m2

t̃2

log
m2
t̃1

m2
t̃2

+
A2t (At − µ cotβ)2
(m2
t̃1
−m2

t̃2
)2

×

×
(
1−
m2
t̃1
+m2

t̃2

m2
t̃1
−m2

t̃2

log
mt̃1
mt̃2

) ]
,

λt =
NCGFm

4
t

2
√
2π2 sin2 β

[
µ(At − µ cotβ)
m2
t̃1
−m2

t̃2

log
m2
t̃1

m2
t̃2

+
2µAt(At − µ cotβ)2
(m2
t̃1
−m2

t̃2
)2

×

×
(
1− m

2
t̃1
+m2

t̃2

m2
t̃1
−m2

t̃2

log
mt̃1
mt̃2

) ]
,

σt =
NCGFm

4
t√

2π2 sin2 β

µ2(At − µ cotβ)2
(m2
t̃1
−m2

t̃2
)2

×

×
[
1−
m2
t̃1
+m2

t̃2

m2
t̃1
−m2

t̃2

log
mt̃1
mt̃2

]
. (2.7)
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These formulae contain the masses mt̃1,2 of the

top squarks, the Higgs mass parameter µ of the

superpotential, and the non-diagonal entry At in

the stop mass matrix. By comparison with the

full one-loop result [3] it has been shown that

these contributions indeed contain the bulk of

the one-loop corrections. Typical differences to

the full one-loop result are of the order of 5 GeV.

The leading two-loop corrections have been

obtained in [11] by calculating the O(ααs) con-
tribution of the t, t̃-sector to the renormalized

Higgs-boson self-energies at zero external momen-

tum from the Yukawa part of the theory. At

the two-loop level the matrix (2.3) consists of the

renormalized Higgs-boson self-energies

Σ̂s(q
2) = Σ̂(1)s (q

2) + Σ̂(2)s (0), s = h,H, hH,

(2.8)

where the momentum dependence is neglected

only in the two-loop contribution. The Higgs-

boson masses at the two-loop level are obtained

by determining the poles of the matrix ∆Higgs in

Eq. (2.3).

The renormalization is performed in the on-

shell scheme. The counterterms in the Higgs sec-

tor are derived from the Higgs potential (2.2),

analogously to the 1-loop calculation. The renor-

malization conditions for the tadpole countert-

erms are chosen in such a way that they cancel

the tadpole contributions in one- and two-loop

order. On-shell mass renormalization is imposed

for the A0 boson. The renormalization in the t-

t̃-sector is performed in the same way as in [4].

The one-loop counterterms δmt, δmt̃1 , δmt̃2 for

the top-quark and top-squark masses and δθt̃ for

the mixing angle contribute, which enter via the

subloop renormalization. The appearance of the

t̃-mixing angle θt̃ reflects the fact that the cur-

rent eigenstates, t̃L and t̃R, mix to give the mass

eigenstates t̃1 and t̃2. Since the non-diagonal en-

try in the scalar quark mass matrix is propor-

tional to the quark mass the mixing is particu-

larly important in the case of the third generation

scalar quarks. The mixing angle counterterm δθt̃
is chosen in such a way that there is no transi-

tion between t̃1 and t̃2 when t̃1 is on-shell. The

numerical result, however, is insensitive to the

choice of the renormalization point. Countert-

erms for µ and tanβ do not appear in O(αs).

The results are analytical expressions for the

two-loop self-energies in terms of the SUSY pa-

rameters tanβ , MA, µ, mt̃1 , mt̃2 , θt̃, and the

gluino mass mg̃, to be inserted together with the

one-loop self-energies into the propagator matrix

(2.3).

Two further steps of refinement have been

implemented into the prediction for mh, which

are shown separately in the plots below. The

leading two-loop Yukawa correction of O(G2Fm6t )
is taken over from the result obtained by renor-

malization group methods [7, 15]. The second

step of refinement concerns leading QCD correc-

tions beyond two-loop order, taken into account

by using the MS top mass, mt = mt(mt) ≈
166.5 GeV, for the two-loop contributions instead

of the pole mass, mt = 175 GeV. In the t̃ mass

matrix, however, we continue to use the pole

mass as an input parameter. Only when per-

forming the comparison with the RG results we

use mt in the t̃ mass matrix for the two-loop re-

sult, since in the RG results the running masses

appear everywhere. This three-loop effect gives

rise to a shift up to 1.5 GeV in the prediction for

mh.

The complete one-loop calculation together

with the leading two-loop corrections and the

other corrections beyond O(ααs) have been im-
plemented into the FORTRAN code FeynHiggs [13].

This code can be linked to existing programs as

a subroutine, thus providing an accurate calcula-

tion ofmh andmH , which can be used for further

phenomenological analyses. For a detailed study

of the MSSM Higgs masses see [14].

3. Discussion

For the numerical evaluation we have chosen two

values for tanβ which are favored by SUSY-

GUT scenarios [16]: tanβ = 1.6 for the SU(5)

scenario and tanβ = 40 for the SO(10) scenario.

Other parameters are MZ = 91.187 GeV,MW =

80.375 GeV, GF = 1.16639 10
−5 GeV−2, αs(mt)

= 0.1095, andmt = 175 GeV. For the figures be-

low we have furthermore chosen M = 400 GeV

(M is the soft SUSY breaking parameter in the

chargino and neutralino sector),MA = 500 GeV,

and mg̃ = 500 GeV as typical values (if not in-

dicated differently). The scalar top masses and

3
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the mixing angle are derived from the parame-

ters Mt̃L , Mt̃R and M
LR
t of the t̃ mass matrix

(our conventions are the same as in [4]). In the

figures below we have chosen mq̃ ≡Mt̃L =Mt̃R .
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Figure 1: One- and two-loop results for mh as a

function of MLR
t /mq̃ for two values of tan β .

The plot in Fig. 1 shows the result formh ob-

tained from the diagrammatic calculation of the

full one-loop and leading two-loop contributions.

The two steps of refinement discussed above are

shown in separate curves. For comparison the

pure one-loop result is also given. The results

are plotted as a function of MLRt /mq̃, where mq̃
is fixed to 500 GeV. The qualitative behavior is

the same as in [11], where the result containing

only the leading one-loop contribution (and with-

out further refinements) was shown. The two-

loop contributions give rise to a large reduction

of the one-loop result of 10–20 GeV. The two

steps of refinement both increase mh by up to

2 GeV. A minimum occurs for MLRt = 0 GeV

which we refer to as ‘no mixing’ (different from

section 1). A maximum in the two-loop result

for mh is reached for about M
LR
t /mq̃ ≈ 2 in the

tanβ = 1.6 scenario as well as in the tan β = 40

scenario. This case we refer to as ‘maximal mix-

ing’ (differently from section 1). The maximum is

shifted compared to its one-loop value of about

MLRt /mq̃ ≈ 2.4. The two steps of refinement
have only a negligible effect on the location of

the maximum.

We now turn to the comparison of our dia-

grammatic results with the predictions obtained
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Figure 2: Comparison between the Feynman-

diagrammatic calculations and the results obtained

by renormalization group methods [8]. The mass of

the lightest Higgs boson is shown for the two scenar-

ios with tanβ = 1.6 and tan β = 40 for increasing

mixing in the t̃-sector and mq̃ =MA.

via renormalization group methods. We begin

with the case of vanishing mixing in the t̃ sector

and large values of MA, for which the RG ap-

proach is most easily applicable and is expected

to work most accurately. In order to study differ-

ent contributions separately, we have first com-

pared the diagrammatic one-loop on-shell result

[3] with the one-loop leading log result (with-

out renormalization group improvement) given

in [9] and found very good agreement, typically

within 1 GeV. We then performed a leading log

expansion of our diagrammatic result (which cor-

responds to the two-loop contribution in the RG

approach) and also found agreement with the full
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two-loop result within about 1 GeV. Finally, we

have compared our diagrammatic result for the

no-mixing case including the refinement terms

with the RG results 1 obtained in [8]. After the

inclusion of the refinement terms the diagram-

matic result for the no-mixing case agrees very

well with the RG result. The deviation between

the results exceeds 2 GeV only for tanβ = 1.6

and mq̃ < 150 GeV. For smaller values of MA
the comparison for the no-mixing case looks qual-

itatively the same. For tanβ = 1.6 and values

of MA below 100 GeV slightly larger deviations

are possible. Since the RG results do not con-

tain the gluino mass as a parameter, varying mg̃
gives rise to an extra deviation, which in the no-

mixing case does not exceed 1 GeV. Varying the

other parameters µ and M in general does not

lead to a sizable effect in the comparison with

the corresponding RG results.

We now consider the situation when mixing

in the t̃ sector is taken into account. We have

again compared the full one-loop result with the

one-loop leading log result used within the RG

approach [9] and found good agreement. Only

for values of MA below 100 GeV and large mix-

ing deviations of about 5 GeV occur. In Fig. 2

our diagrammatic result including the refinement

terms is compared with the RG results [8] as a

function ofMLRt /mq̃ for tanβ = 1.6 and tanβ =

40. For larger t̃-mixing sizable deviations be-

tween the diagrammatic and the RG results oc-

cur, which can exceed 5 GeV for moderate mix-

ing and become very large for large values of

MLRt /mq̃. As already stressed above, the maxi-

mal value for mh in the diagrammatic approach

is reached for MLRt /mq̃ ≈ 2, whereas the RG re-
sults have a maximum atMLRt /mq̃ ≈ 2.4, i.e. at
the one-loop value. Varying the value of mg̃ in

our result leads to a larger effect than in the no-

mixing case and shifts the diagrammatic result

relative to the RG result within ±2 GeV.
So far, the results of our diagrammatic on-

shell calculation and the RG methods have been

compared in terms of the parameters Mt̃L , Mt̃R
andMLRt of the t̃ mixing matrix, since the avail-

able numerical codes for the RG results [8, 9] are

1The RG results of [8] and [9] agree within about

2 GeV with each other.
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Figure 3: Comparison between the Feynman-

diagrammatic calculations and the results obtained

by renormalization group methods [8]. The mass of

the lightest Higgs boson is shown for the two scenar-

ios with tanβ = 1.6 and tanβ = 40 as a function of

the heavier physical t̃ mass mt̃2 . For the curves with

θt̃ = 0 a mass difference ∆mt̃ = 0 GeV is assumed

whereas for θt̃ = −π/4 we chose ∆mt̃ = 350 GeV,
for which the maximal Higgs masses are achieved.

given in terms of these parameters. However,

since the two approaches rely on different renor-

malization schemes, the meaning of these (non-

observable) parameters is not precisely the same

in the two approaches starting from two-loop or-

der. Indeed we have checked that assuming fixed

values for the physical parameters mt̃1 , mt̃2 , and

θt̃ and deriving the corresponding values of the

parameters Mt̃L , Mt̃R and M
LR
t in the on-shell

scheme as well as in the MS scheme, sizable dif-

ferences occur between the values of the mixing

5
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parameter MLRt in the two schemes, while the

parameters Mt̃L , Mt̃R are approximately equal

in the two schemes. Thus, part of the different

shape of the curves in Fig. 2 may be attributed

to a different meaning of the parameter MLRt in

the on-shell scheme and in the RG calculation.

For the purpose of comparing results obtained

in different renormalization schemes it is very de-

sirable to express the prediction for the Higgs-

boson masses in terms of physical observables,

i.e. the physical masses and mixing angles of the

model instead of unphysical parameters. As a

step into this direction we compare in Fig. 3 the

diagrammatic results and the RG results as a

function of the physical mass mt̃2 and with the

mass difference ∆mt̃ = mt̃2−mt̃1 and the mixing
angle θt̃ as parameters. In the context of the RG

approach the running t̃ masses, derived from the

t̃ mass matrix, are considered as an approxima-

tion for the physical masses. The range of the t̃

masses appearing in Fig. 3 has been constrained

by requiring that the contribution of the third

generation of scalar quarks to the ρ-parameter [4]

does not exceed the value of 1.3 · 10−3. As in
the comparison performed above, in Fig. 3 very

good agreement is found between the results of

the two approaches in the case of vanishing t̃mix-

ing. For the maximal mixing angle θt̃ = −π/4,
however, the diagrammatic result yields values

for mh which are higher by about 5 GeV.
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