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Abstract: A worldsheet approach to the study of non-abelian D-particle dynamics is presented based

on viewing matrix-valued D-brane coordinate fields as coupling constants of a deformed σ-model which

defines a logarithmic conformal field theory. The short-distance structure of spacetime is shown to be

naturally captured by the Zamolodchikov metric on the corresponding moduli space which encodes the

geometry of the string interactions between D-particles. Spacetime quantization is induced directly by

the string genus expansion and leads to new forms of uncertainty relations which imply that general

relativity at very short-distance scales is intrinsically described by a non-commutative geometry. The

indeterminancies exhibit decoherence effects suggesting the natural incorporation of quantum gravity

by short-distance D-particle probes. Some potential experimental tests are briefly described.

1. New Uncertainty Principles in

String Theory

A long-standing problem in string theory is to de-

termine the structure of spacetime at very short

distance scales, typically at lengths smaller than

the finite intrinsic length of the strings. One of

the first analytical approaches to this problem

was to study the effects of high-energy string

scattering amplitudes on the accuracy with which

one can measure position and momentum [1].

This implies the conventional string-modified

Heisenberg uncertainty principle

∆x >∼
h̄

∆p
+O(`2s)∆p+ . . . (1.1)

The modifications to the usual phase space un-

certainty relation in (1.1) come from stringy cor-

rections which are due to the finite minimum

length `s of the string. In fact, minimizing the

right-hand side of (1.1) shows that the string

length scale gives an absolute minimum lower

∗Conference speaker

bound ∆x ≥ O(`s) on the measurability of dis-
tances in spacetime. This result means that, if

one uses only string states as probes of short-

distance structure, the conventional ideas of gen-

eral relativity break down at distances smaller

than `s.

However, until very recently there has been

no systematic derivation of (1.1) based on some

set of fundamental principles. The appearence

of new solitonic structures in string theory, which

incorporate defects in spacetime, suggest the pos-

sibility of using such objects as probes of short-

distance structure. These non-perturbative ob-

jects are known as D-branes and can be analyt-

ically described beyond the conventional string

worldsheet approach. In many instances how-

ever, such as the cases that will be studied in the

following, a perturbative string loop-expansion

approach is still sufficient. As we will discuss in

this paper, such an approach leads to new forms

of uncertainty relations, in addition to (1.1),

which are attributed to the recoil of the space-

time defects in the process of the scattering of
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string matter off the D-brane solitons. In the

case of multi-brane systems, this leads to a non

commutative spacetime structure at very short

distances.

In this paper we will give an exposition of

these results, based mostly on the articles [2]–

[5]. We will begin with a brief review of soli-

ton structures in string theory, emphasizing the

worldsheet σ-model approach to T -duality and

Dirichlet branes. We will then describe how to

view spacetime coordinates and momenta in this

framework as σ-model coupling constants, such

that the genus expansion leads to a canonical

phase space quantization. We then specialize

to the case of a system of multi-D-particles and

show how one passes from Lie algebraic to space-

time non commutativity. In this way the quan-

tum spacetime which follows from the many-body

D-particle dynamics is induced directly by the

quantum string theory itself. The important as-

pects of the construction are a logarithmic con-

formal field theory formalism for the relevant re-

coil operators, an effective target space

Lagrangian for the σ-model couplings which is

described by non-abelian Born-Infeld theory, and

the interpretation of the target space time as the

Liouville mode of the underlying two-dimensional

quantum gravity. We will show how this for-

malism leads to new uncertainty principles in D-

brane quantum gravity. We conclude with some

general remarks and outlook on the nature of

time in D-brane quantum gravity, including pos-

sible experimental tests of spacetime non com-

mutativity from γ-ray burst observations, neu-

tral kaon physics, and atom interferometry mea-

surements.

Quantization of Collective Coordinates:

The Basic Idea

It is worthwhile to give a quick overview of the

formalism which will follow. To use D-branes as

probes of the short distance properties of space-

time, we shall view the collective coordinates and

momenta of D-particles as a set of σ-model cou-

plings {gI} (this includes the case of multi-D0-
brane configurations which inherently contain non-

commutative structures). It follows from the Cole-

man approach to probabilistic couplings via two-

dimensional quantum gravity wormholes [6], that

the genus expansion of the worldsheet theory will

lead to a quantization of the couplings {gI} [7].
The quantum field theory is described by the

fixed-genus Euclidean path integral

ZQFT[{gI}] =
∫
DΦ e−LQFT[Φ;{g

I}],

LQFT[Φ; {gI}] = L∗[Φ] +
∫
Σ

d2z gIOI [Φ]

(1.2)

where Φ denotes a collection of fields defined on
a Riemann surface Σ. The action L∗[Φ] defines a
conformal field theory and OI [Φ] are a set of local
deformation vertex operators. The sum over all
topologies of the two-dimensional quantum field
theory (1.2) can be evaluated exactly in the di-
lute wormhole gas approximation (fig. 1) and
it induces statistical fluctuations ∆gI of the σ-
model couplings,∑

genera

ZQFT[{gI}] '
∫
DαI P [{αI}]∫

DΦ e−LQFT[Φ;{g
I+∆gI(α)}] (1.3)

where the fields αI are wormhole parameters. For

a dilute gas, the wormhole probability distribution

function is given by

P [{αI}] = N exp− 1
2Γ2
αI GIJ αJ (1.4)

where Γ is the width of the distribution and GIJ is an
appropriate metric on the moduli space of coupling

constants {gI}. This promotes the couplings gI to
quantum operators ĝI = gI +∆gI on target space.

~h + ~h
h
+ h~h

h
+ . . .

Figure 1: Resummation of the genus expansion in

the pinched approximation. The solid circles are

worldsheet discs (or spheres) and the thin lines are

strips attached to them with infinitesimal pinching

size δ. Each strip corresponds to an insertion of a

bilocal operator on the worldsheet.

Let us now specialize to the case of a system of

N non-relativistic heavy D-particles. In this case, the
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couplings {gI} are given by the set {Y iab(X0), P cdj (X0)},
where Y are the collective coordinates of the D-particles

and P are their collective momenta. The indices

i, j label the directions in spacetime while a, b, c, d =

1, . . . , N label the U(N) isospin gauge symmetry

present in any multi-brane system. The field X0 is

the worldsheet temporal embedding coordinate and

the momenta are given by P abi =MsU
ab
i , where

Ms =
1

gs`s
(1.5)

is the mass of a D-particle, with gs the string coupling

constant. According to the above general prescrip-

tion, the multi-brane dynamics will induce position-

momentum (or phase space), space-space, and space–

time indeterminancies as follows. From the associ-

ated wormhole distribution (1.4) there follows a set of

position uncertainties ∆Y iab corresponding to the ef-

fective widths Γ2/GIJ , where Γ is proportional to the

string coupling gs and GIJ = 〈VIVJ〉 is the Zamolod-
chikov metric [8] with {VI} the set of local vertex
operators associated with the D-particle couplings

{gI}. The momentum uncertainties ∆P abj arise upon
canonical quantization in the moduli space M of σ-

model couplings {gI} which leads to the quantum
commutator[[
Ŷ iab, P̂

cd
j

]]
= i h̄M δ

i
j δ
c
a δ
d
b , P̂

i
ab = −i h̄M

δ

δY iab
(1.6)

where the effective Planck constant h̄M of M is of

order gs. Furthermore, the target space time T in

the “physical” frame depends on the positions and

momenta of the D-particles and therefore becomes

a target space operator T̂ upon summation over all

worldsheet topologies. From this we will derive a

space–time uncertainty relation of the form [9]

∆Y iab∆T >∼ O(gs`2s) which will imply, in particu-
lar, that extremely heavy D-particles can probe very

small distances.

2. String Solitons and Non-abelian

D-particle Dynamics

Short-distance Spacetime Structure

The discovery [10, 11] of new solitonic structures

in superstring theory have dramatically changed our

understanding of target space structure. These new

non-perturbative objects are known as Dirichlet-branes

and they can be seen to arise from the implementa-

tion of T -duality as a canonical transformation in the

path integral [12, 13] for the usual open superstring

with free endpoints. The latter object is described

by imposing Neumann boundary conditions on the

embedding fields XM , M = 0, 1, . . . , 9, of the string

worldsheet Σ, which we assume has the topology of a

disc. At the circular boundary of Σ the fields are con-

stant along the normal directions, ∂nX
M = 0, and

are allowed to vary as arbitrary functions XM (s) on

∂Σ. Here ∂n is the normal derivative to the boundary

∂Σ in Σ. A T -duality transformation X → X̃, de-
fined on the worldsheet by ∂αX

M = εαβ∂βX̃
M , maps

the Neumann boundary conditions into the Dirich-

let boundary conditions ∂tX̃
M = 0, or equivalently

X̃M |∂Σ = Y M , where ∂t is the derivative tangent to
∂Σ. Now the fields are fixed at the specified values

YM on ∂Σ but can vary in the normal directions.

If the T -duality mapping is applied to 9 − p spatial
directions, then the Dirichlet conditions define a hy-

persurface in 10-dimensional spacetime. The hyper-

surface is embedded into target space from an effec-

tive p+1 dimensional worldvolume in which the em-

bedding fields XM are allowed to vary freely. These

objects are known as Dp-branes. They are solitons

of the open superstring theory and supersymmetry

guarantees their stability. They have a BPS mass

given by (1.5) and are characterized as being topo-

logical defects which are fixed in the 9− p spacetime
directions. Open string excitations can attach them-

selves to the D-brane domain walls.

In this paper we shall specialize to the case of

D0-branes, or D-particles. In this case the set of

string embedding fields can be written as XM =

(X0,Xi), where X0 is the worldline time coordinate,

which satisfies Neumann boundary conditions, and

Xi, i = 1, . . . , 9, are the coordinates of the D-particle

which obey Dirichlet boundary conditions. The dy-

namics of these excitations can be described by de-

forming the usual free string σ-model action S0[X]

by a worldsheet boundary vertex operator [10]

SC = S0[X]− 1
`2s

∮
∂Σ

ds Yi(X
0)∂nX

i(s)“;

S0[X] =
1

2`2s

∫
Σ

d2z ∂XM ∂̄XN ηMN (2.1)

where ηMN is a (critical) flat Minkowski spacetime

metric. The non-relativistic motion of heavy

D-particles can be described by the Galilean-boosted

configurations Y i(X0) = Y i+U iX0 where U i is the

non-relativistic velocity of the branes.

The interesting situation arises when one consid-

ers a configuration of N D-branes (fig. 2). The mul-

tiple D-brane assembly leads to a non-commutative

structure at very short distances in the spacetime.

The situation is actually quite simple. Consider a
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system of N parallel D-branes. When the separa-

tion between branes is of a sub-Planckian distance

scale, the solitons can interact with each other via

the exchange of open strings. It is this property

of D-brane dynamics that makes them good probes

of the short-distance structure of spacetime and it

implies that spacetime at very small distance scales

is described by some sort of non-commutative ge-

ometry. A tractable limit of this situation is the

case of overlapping branes or infinitesimal separa-

tions. More complicated situations can also arise, for

instance when the branes interact via the exchange

of other D-branes, in addition to their string interac-

tions. One would then need to employ a formalism

for intersecting D-brane configurations. In the fol-

lowing we will concentrate on the simpler situation

of only open string excitations between the D-branes.

D1 D2

Figure 2: Emergence of the enhanced U(N) gauge

symmetry for bound states of N parallel D-branes

(planes). An oriented fundamental string (wavy

lines) can start and end either at the same or dif-

ferent D-brane, giving N2 massless vector states in

the limit of coinciding branes. These states form a

representation of U(N).

Low-energy Effective Field Theories

To understand why a non-commutative structure is

implied at very short distance scales, one needs to

examine the effective field theory description for N

parallel D-branes. In the multi-D-particle case, the

assembly is described by a set of N × N Hermitian
matrices Y iab, i = 1, . . . , 9, in the adjoint representa-

tion of the unitary group U(N) which are obtained

as the remnant fields from the dimensional reduction

of 10-dimensional maximally supersymmetric U(N)

Yang-Mills theory to the worldlines of the D-particles

[14]. The reduced Yang-Mills potential

V0[Y ] =
1

`4s

1

4gs

9∑
i,j=1

tr
[
Y i, Y j

]2
(2.2)

then governs the dynamics of the branes, where tr

denotes the trace in the fundamental representation

of U(N). There are two limiting regimes of this the-

ory. In the weak-coupling limit gs → 0, the branes
are very far apart and do not interact with each

other. The potential (2.2) is minimized by those

matrix-valued configurations which satisfy [Y i, Y j ] =

0, ∀i, j. These solutions correspond to states of max-
imal supersymmetry. In this case the generic U(N)

gauge symmetry of the Yang-Mills theory is broken

down to U(1)N , i.e. there is one U(1) gauge field

on each D-brane. Moreover, the matrix fields can

be simultaneously diagonalized by a gauge transfor-

mation to give Y i = diag{yi(a)}a=1,...,N , where the
eigenvalues yi(a) represent the coordinates of each D-

particle. Now consider the opposite case where the

branes are almost on top of each other. Since the en-

ergy of a fundamental string which stretches between

two different branes is 1
2`s
|~y(a)− ~y(b)|, it follows that

in this case more massless vector states appear in the

spectrum of the U(N) gauge theory. Now the con-

figurations of the Yang-Mills potential (2.2) satisfy

[Y i, Y j ] 6= 0 for i 6= j and correspond to states of
broken supersymmetry which must be incorporated

into the quantum gauge theory. Thus the limit of co-

inciding branes restores the full U(N) gauge symme-

try and leads to a Lie algebraic non-commutativity

in the spacetime coordinates Y iab. The components

with a 6= b are to be interpreted as the coordinates of
the short open string degrees of freedom stretched be-

tween the branes, so that the D-brane coordinates are

viewed as adjoint Higgs fields in this picture. These

ideas are depicted schematically in fig. 2.

In the following we shall be interested in estab-

lishing the manner in which this Lie algebraic non-

commutativity implies a genuine quantum spacetime

non-commutativity. For this, we consider an alterna-

tive description to the Yang-Mills matrix quantum

mechanics which is given by a non-local deforma-

tion of a free worldsheet σ-model. In the simplest

case of non-relativistic motion, it follows from the

BPS mass formula (1.5) that the limit of heavy D-

particles is equivalent to taking gs � 1. This is pre-
cisely the regime in which worldsheet perturbation

theory can be trusted. The partition function for

the uniform motion of the multi-D0-brane system in

the T -dual Neumann picture is defined as the expec-

tation value of a path-ordered Wilson loop operator

4
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along the worldsheet boundary in the free σ-model,

ZN [Y ] =

∫
DX e−S0[X] ×

tr P exp

(
igs

∮
∂Σ

AM (X
0(s)) dXM (s)

)
(2.3)

where the field A is an N × N Hermitian matrix
in the adjoint representation of U(N) with AM =

(A0,− 1
`2s
Y i) the components of the U(N) gauge po-

tential dimensionally reduced to the worldline of the

D-particles.

However, the model (2.3) on its own is a bit

too naive and needs to be supplemented with some

auxilliary prescriptions. There are problems with

summing over worldsheet genera in the Dirichlet pic-

ture, which could be related to the breaking of the

T -duality symmetry from an anomaly in the non-

abelian case [15, 16]. Modular logarithmic diver-

gences appear in matter field amplitudes when the

string propagator L0 is computed with Dirichlet bound-

ary conditions. Consider a string matter field polar-

ization tensor V in the D-brane background at the

level of an annular topology (fig. 3). Corresponding

to a string state of conformal weight ∆, the string

propagator contains a modular parameter integra-

tion of the form
∫
dq
q
q∆. In the pinched annulus

limit, with infinitesimal pinching size δ, the states

of zero conformal dimension ∆ = 0 therefore yield

logarithmic divergences of the form log δ.

These modular divergences are cancelled by

adding logarithmic recoil operators [17] to the matrix

σ-model action (2.3). If one is to use low-energy

probes to observe short-distance spacetime structure,

such as a generalized Heisenberg microscope, then

one needs to consider the scattering of string matter

off the D-particles. The worldsheet perspective of

this physical situation is represented by fig. 3. The

target space picture is the following. At time t < 0 a

closed string state propagates towards the spacetime

string defect which is fixed in space. At t = 0 it

interacts with the defect by splitting and attaching

itself to the D-particle. Then at time t > 0, the

instantaneous interaction causes a transfer of energy

from the string state to the defect such that the D-

particle recoils with some non-zero velocity. For the

Galilean-boosted multi-D-particle system, the recoil

is described by taking the deformation of the σ-model

action in (2.3) to be of the form [5]

Y iab(X
0) = lim

ε→0+
(
`sY

i
abCε(X

0) + U iabDε(X
0)
)
(2.4)

D

D

D

D

D D

(a)

(b)

Figure 3: (a) World-sheet annulus diagram for the

leading quantum correction to the propagation of a

string state V (wavy lines) in a D-brane background,

and (b) the pinched annulus configuration which is

the dominant divergent contribution to the quantum

recoil.

where

Cε(X
0) = ε θε(X

0) , Dε(X
0) = X0 θε(X

0)

(2.5)

and

θε(X
0) =

1

2πi

∫ +∞
−∞

dq

q − iε e
iqX0 (2.6)

is the regulated step function whose ε → 0+ limit

is the usual step function. The operators (2.5) have

non-vanishing matrix elements between different string

states and therefore describe the appropriate change

of state of the D-brane background. They can be

thought of as describing the recoil of the assembly

of D-particles in an impulse approximation, in which

it starts moving as a whole only at time X0 = 0.

The collection of constant matrices {Y iab, U jcd} now
form the set of coupling constants for the worldsheet

σ-model (2.3).

Galilean Invariance and Worldsheet Loga-

rithmic Conformal Algebra

The recoil operators (2.5) possess a very important

property. They lead to a deformation of the free

σ-model action in (2.3) which is not conformally-

invariant, but rather defines a logarithmic conformal

5
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field theory [18]. Logarithmic conformal field theo-

ries lie on the border between conformal field theo-

ries and generic two-dimensional renormalizable field

theories. They contain logarithmic scaling violations

in their correlation functions on the worldsheet. In

the present case, this can be seen by computing the

pair correlators of the fields (2.5) which give [17]〈
Cε(z)Cε(0)

〉
= 0 ,

〈
Cε(z)Dε(0)

〉
=
b

z∆ε
,〈

Dε(z)Dε(0)
〉
=
b `2s
z∆ε

log z (2.7)

where

∆ε = −|ε|
2 `2s
2

(2.8)

is the conformal dimension of the recoil operators.

The constant b is fixed by the leading logarithmic di-

vergence of the conformal blocks of the theory. Note

that (2.8) vanishes as ε→ 0, so that the logarithmic
worldsheet divergences in (2.7) cancel the modular

annulus divergences discussed above. An essential

ingredient for this cancellation is the identification

[17]

ε−2 = −2`2s log Λ (2.9)

which relates the target space regularization parame-

ter ε to the worldsheet ultraviolet cutoff scale Λ (the

minus sign in (2.9) is due to the Minkowski signature

of X0).

Logarithmic conformal field theories are charac-

terized by the fact that their Virasoro generator L0
is not diagonalizable, but rather admits a Jordan cell

structure. Here the operators (2.5) form the basis of

a 2 × 2 Jordan block and they appear in the spec-
trum of the two-dimensional quantum field theory

as a consequence of the zero modes that arise from

the breaking of the target space translational symme-

try by the topological defects. The mixing between

C and D under a conformal transformation of the

worldsheet can be seen explicitly by considering a

finite-size scale transformation

Λ→ Λ′ = Λe−t/`s (2.10)

Using (2.9) it follows that the operators (2.5) are

changed according to Dε → Dε + t`sCε and Cε →
Cε. Thus in order to maintain scale-invariance of the

theory (2.3) the coupling constants must transform

under (2.10) as [3, 17] Y i → Y i + U it and U i → U i,
which are just the Galilean transformation laws for

the positions Y i and velocities U i. Thus a finite-size

scale transformation of the worldsheet is equivalent

to a Galilean transformation of the moduli space of

σ-model couplings, with the parameter ε−2 identified

with time t. The corresponding β-functions for the

worldsheet renormalization group flow are

βYi ≡
dYi

dt
= ∆ε Yi + `s Ui , βUi ≡

dUi

dt
= ∆ε Ui

(2.11)

3. Quantization of Moduli Space

We shall now begin describing the basic steps towards

the quantization of the σ-model couplings represent-

ing the collective degrees of freedom of the assembly

of D-particles.

Liouville-dressed Renormalization Group

Flows

We shall first need to identify the time variable of our

system. Note that for finite ε, (2.8) shows that the

operators (2.5) lead to a relevant deformation of the

free σ-model. The deformation becomes marginal in

the limit ε→ 0. When the field theory lies away from
criticality we must dress the model by Liouville the-

ory [19] in order to restore conformal invariance at

the quantum level. The worldsheet zero mode of the

Liouville field can then be identified with the local

worldsheet regularization scale. Thus the Liouville

field is interpreted as the target space time [20], and

from the discussion of the previous section, it coin-

cides with the temporal embedding field X0. This

means that the incorporation of the regulated oper-

ators (2.5, 2.6) can be thought of as the appropriate

dressing of the bare coupling constants {Y iab, U jcd} of
the σ-model [4, 5].

In general, the Liouville dynamics ensures the

possibility of canonical quantization in the moduli

space of σ-model couplings through a set of proper-

ties known as Helmholtz conditions [5, 7]. The Li-

ouville field φ is defined by identifying the conformal

equivalence class of the metric γαβ of Σ,

γαβ = e
(2/`sQ)φ γ̂αβ (3.1)

where γ̂αβ is a fixed fiducial worldsheet metric and Q

is related to the central charge of the corresponding

two-dimensional quantum gravity. Then the Liou-

ville dressing of the deformation of a free σ-model ac-

tion S0, which is characterized by a set of vertex op-

erators {VI} with corresponding coupling constants
{gI}, is described by the action

S(L)σ = S0 +

∫
Σ

d2z gI(φ)VI +

1

2`2s

∫
Σ

d2z ∂φ ∂̄φ− Q
2`2s

∫
Σ

d2z φR(2) −

6
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Q

2`2s

∮
∂Σ

dŝ φK (3.2)

where R(2) is the scalar curvature of Σ and K is the

extrinsic curvature at the boundary ∂Σ (K = 2 for

a disc). From (3.1) it follows that the Liouville zero

mode is φ0 = −`sQ log Λ. Microscopically, quan-
tum fluctuations in the dressed variables gI(φ) are

induced by summing over all worldsheettopologies, in

analogy with the Coleman approach [6] to wormhole

calculus and the quantization of coupling constants

in quantum gravity [7].

D-particle Dynamics on Moduli Space

We are now ready to present the formalism for multi-

D-particle dynamics. In the following we shall, for

simplicity, concentrate only on the case of the con-

stituent motion of the particles, i.e. we will subtract

out their center of mass degree of freedom Y cmi =
1
N
trYi. This means that the effective gauge sym-

metry of the D-particle system is now SU(N). To

write the partition function (2.3) in the form of a

local deformation of the free σ-model action S0[X],

we need to disentangle the path-ordering in the Wil-

son loop operator. This is done by considering a set

of corresponding abelianized vertex operators which

are defined using an auxilliary field formalism for the

SU(N)-invariant theory [5, 12, 15, 21]. We introduce

a set of complex auxilliary fields ξ̄a(s), ξb(s) which

live on the boundary ∂Σ of the worldsheet and whose

propagator is 〈ξ̄a(s)ξb(s′)〉 = δabθ(s′− s). The parti-
tion function (2.3) can then be written as

ZN [Y ] =

∫
DX e−S0[X]

1

N

∫
Dξ̄ Dξ ξ̄c(0) ξc(1)

× exp
(
−
∫ 1
0

ds
[
ξ̄a(s)

d

ds
ξa(s)−

igs

`2s
ξ̄a(s)Y

ab
i (X

0(s))
dXi(s)

ds
ξb(s)

])
(3.3)

in the static gauge A0 = 0. If we leave the integration

over auxilliary fields in (3.3) until the very end, then

the partition function is expressed as a functional

integral involving the local action

S = S0[X] +
∮
∂Σ

ds Y abi (X
0(s))V iab(X; s) (3.4)

where the deformation is described by the set of ver-

tex operators

V iab(X; s) = − igs
`2s

(
dXi(s)

ds

)
ξ̄a(s)ξb(s) (3.5)

The action (3.4) is the appropriate non-abelian ver-

sion of (the T -dual of) the worldsheet action (2.1)

describing the dynamics of a single D-brane, and

as such it represents the abelianization of the non-

abelian D-particle dynamics.

The Zamolodchikov metric

Gijab;cd = 2NΛ
2〈V iab(X; 0)V jcd(X; 0)〉

on the moduli space M controls the dynamics of the

D-particles, where the vacuum expectation value is

taken with respect to the partition function (3.3).

This two-point function can be evaluated to leading

orders in σ-model perturbation theory using the log-

arithmic conformal algebra (2.7) and the propagator

of the auxilliary fields to give [5]

Gijab;cd =
4ḡ2s
`2s
[ηij IN ⊗ IN +

ḡ2s
36
[IN ⊗ (Ū iŪ j + Ū jŪ i) +

Ū i ⊗ Ū j + Ū j ⊗ Ū i +
(Ū iŪ j + Ū jŪ i)⊗ IN ]]db;ca +O(ḡ6s) (3.6)

where IN is the identity operator of SU(N) and we

have introduced the renormalized coupling constants

ḡs = gs/`sε and Ū
i = U i/`sε. From the renormaliza-

tion group equations (2.11) it follows that the renor-

malized velocity operator in target space is truly

marginal, dŪ
i

dt
= 0, which ensures uniform motion of

the D-branes. It can also be shown that the renor-

malized string coupling ḡs is time-independent [5]. If

we further define the position renormalization Ȳ i =

Y i/`sε, then the β-function equations (2.11) coin-

cide with the equations of motion of the D-particles,

i.e. dȲ i

dt
= Ū i. Note that the Zamolodchikov met-

ric (3.6) is a complicated function of the D-brane

dynamical parameters. It therefore represents the

appropriate effective target space geometry of the D-

particles and, as we will see, it naturally encodes the

short-distance properties of the D-particle spacetime.

The canonical momentum P iab for the D-particle dy-

namics on moduli space can also be determined per-

turbatively in the σ-model (3.3) by noting that the

Schrödinger representation of the Heisenberg alge-

bra (1.6) implies that it is the one-point function of

the deformation vertex operators, P iab =
〈
V iab(X; 0)

〉
.

A long and tedious calculation using the three-point

correlation functions of the logarithmic pair [5] gives

P iab =
8ḡ2s
`s
[Ū i +

ḡ2s
6
(Ū2j Ū

i +

ŪjŪ
iŪ j + Ū iŪ2j )]ba +O

(
ḡ6s
)
= `sG

ij
ab;cd

˙̄Y
cd

j

(3.7)

7
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which, as expected for the uniform D-particle motion

here, coincides with the contravariantized velocity on

M.

We can now write down an associated effective

target space Lagrangian which is defined in terms of

the standard non-linear σ-model on M,

LM = − `s2 ˙̄Y
ab

i G
ij
ab;cd

˙̄Y
cd

j + . . . (3.8)

where the dots denote potential terms involving the

Zamolodchikov C-function [8] plus additional terms

which depend on the choice of renormalization scheme.

The Lagrangian (3.8) is readily seen to coincide with

the expansion to O(ḡ4s) of the symmetrized form of
the non-abelian Born-Infeld action for the D-brane

dynamics [16, 22],

LNBI = 1

`sḡs
tr Sym

√
det
M,N
[ηMN IN + `2sḡ2s FMN ]

(3.9)

where Sym(M1, . . . ,Mn) =
1
n!

∑
π∈SnMπ1 · · ·Mπn

is the symmetrized matrix product and the compo-

nents of the dimensionally reduced field strength ten-

sor are given by F0i =
1
`2s

˙̄Yi and Fij =
ḡs
`4s
[Ȳi, Ȳj ].

In the abelian reduction to the case of a single D-

particle, the Lagrangian (3.9) reduces to the usual

one describing the free relativistic motion of a mas-

sive particle. The leading order F 2 term in the ex-

pansion of (3.9) is just the usual Yang-Mills Lagrangian.

The formalism described here thereby represents a

highly non-trivial application of the theory of loga-

rithmic operators.

Finally, we come to the definition of the target

space time. The flat worldsheet Zamolodchikov C-

theorem [8] can be expressed as

∂C
∂t
= − e−Ct/`s βabi Gijab;cd βcdj (3.10)

where the running central charge C[Y ] ∼ Q2 is the
Zamolodchikov C-function and the exponential fac-

tor in (3.10) comes from the extrinsic curvature term

in the Liouville-dressed action (3.2). The non-linear

differential equation (3.10) can be solved for small

velocities (extreme non-relativistic motion) to give

the physical target space time coordinate [5]

T ≡
√
C t ' 2ḡst√

`s

√
U(Ū)

∫ t
0

dτ e2(τ2−t2)ḡ2sU(Ū)/`2s

(3.11)

where we have introduced the velocity-dependent in-

variant function

U(Ū) = tr Ū2i + ḡ
2
s

36
tr
(
2Ū2i Ū

2
j + ŪiŪjŪ

iŪ j
)
+O (ḡ4s)
(3.12)

The definition (3.11) comes from the normalization

of the Liouville field kinetic term in (3.2) appropri-

ate to a Robertson-Walker spacetime geometry [20].

Its expression in (3.11) holds near any fixed point in

moduli space and is valid in the usual regime of appli-

cability of worldsheet σ-model perturbation theory.

The Genus Expansion

We shall now describe the process of coupling con-

stant quantization via the sum over worldsheet topolo-

gies for the model (2.3). The key point in the non-

abelian case is that the sum over genera and the aux-

illiary field representation of the Wilson loop opera-

tor in (3.3) commute, allowing one to write

∑
genera

ZN [Y ] =

∞∑
h=0

∫
DX e−S

(h)
0
[X] ×

trP exp

(
igs

`2s

∮
∂Σh

AM (X
0) dXM

)
=

1

N

∫
Dξ̄ Dξ ξ̄c(0) ξc(1)×

∞∑
h=0

∫
DX ×

exp

(
−S(h)0 [X]−

∮
∂Σh

ds Y abi (X
0)V iab(X; s)

)
(3.13)

where S
(h)
0 [X] is the free σ-model action defined on

a genus h Riemann surface Σh with h + 1 bound-

aries (so that ∂Σh is a disjoint union of h+1 circles).

Therefore, if we again leave the auxilliary field inte-

grations until the very end, then we can exploit the

abelianization of the non-abelian dynamics in (3.13)

to study the topological expansion.

The latter quantity can be described precisely

in the pinched approximation (fig. 1). There are

two sorts of modular divergences which dominate

this truncation of the string genus expansion. The

leading ones are of the form (log δ)2 and arise from

the logarithmic nature of the deformation. It can be

shown [5] that these divergences are cancelled by re-

quiring that the velocities of the D-particles in the

scattering of string matter off them change accord-

ing to ∆Ūabi = − 1
Ms
(ki+kf)iδ

ab, whereMs = 1/ḡs`s
is the BPS mass of the string solitons and ki,f de-

note the initial and final momenta in the scatter-

ing process. Thus the leading divergences of the

genus expansion are cancelled by imposing momen-

tum conservation in scattering processes involving

string matter. Note that this result only controls the

dynamics of the constituent D-branes themselves and

not the open string excitations connecting them. It

8
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therefore tells us nothing about short-distance (non-

commutative) spacetime structure.

This latter property of the moduli space comes

from examining the sub-leading divergences, which

are of the form log δ and are associated with the van-

ishing conformal dimension of the logarithmic opera-

tors. The regularization of these singularities induces

quantum fluctuations of the D-particle collective co-

ordinates and leads to short-distance uncertainties.

In the pinched approximation represented by fig. 1,

the effect of the dilute gas of wormholes is to expo-

nentiate the bilocal operator inserted on the bound-

ary of the disc Σ = Σ0. This leads to a change of the

action (3.4) given by

∆S ' g
2
s

2
log δ

∮ ∮
∂Σ

ds ds′ V iab(X; s)G
ab;cd
ij V jcd(X; s

′)

(3.14)

This bilocal interaction term can be written as a local

worldsheet effective action by using standard tricks of

wormhole calculus [6] and introducing wormhole pa-

rameters ρabi on the moduli space M which linearize

(3.14) via a functional Gaussian integral transforma-

tion. The net result of the summation over genera in

the pinched approximation is therefore∑
genera

ZN [Y ] '
∫
M

Dρ exp
(
− 1
2Γ2
ρabi G

ij
ab;cd ρ

cd
j

)
×
∫
DX e−S0[X] ×

tr P exp

(
igs

`2s

∮
∂Σ

(
Yi(X

0) + ρi(X
0)
)
dXi
)
(3.15)

where the width of the Gaussian wormhole distri-

bution function in (3.15) is given by Γ = gs
√
log δ.

Eq. (3.15) shows that the genus expansion induces

statistical fluctuations ∆Y abi = gs
√
log δ ρabi of the

coordinates Y abi of the assembly of D-particles. As

discussed in section 1, it is this property that will al-

low us to probe short-distance spacetime structure in

terms of the geometry and the dynamics on moduli

space.

Diagonalization of Moduli Space

To be able to write down a set of position uncer-

tainties for each direction of target space and of the

SU(N) group manifold, we shall need to diagonalize

the bilinear form of the wormhole parameter distri-

bution in (3.15). This requires the diagonalization of

the inverse of the Zamolodchikov metric. The diago-

nalization of the moduli space M reveals the precise

manner in which the string interactions between D-

particles induce short-distance non-commutativity.

This leads to a very nice dynamical and geometrical

picture of short distance spacetime structure.

For this, we employ a Born-Oppenheimer ap-

proximation to the D-particle interactions to sep-

arate the diagonal D-particle coordinates from the

off-diagonal parts of the adjoint Higgs fields repre-

senting the short open string excitations connecting

them. This approximation is valid in the limit of

small velocities [9] which corresponds to a configu-

ration of well-separated branes. In the free string

limit gs � 1, we may diagonalize the configuration
fields simultaneously in the static gauge by a time-

independent gauge transformation,

Ȳ i = Ω diag
(
yi(1), . . . , y

i
(N)

)
Ω−1 , Ω ∈ SU(N)

(3.16)

where the eigenvalues yi(a) ∈ R are the positions
of the D-particles which move at constant velocities

ui(a) = dy
i
(a)/dt. The unitary transformation (3.16)

diagonalizes the Zamolodchikov metric (3.6) in its

su(N) ⊗ su(N) indices and we have

Gij =
4ḡ2s
`2s
(Ω⊗ Ω)[ηij IN ⊗ IN + ḡ

2
s

36
U ij +

O (ḡ4s)](Ω⊗ Ω)−1 (3.17)

where

U ijab;cd = (2ui(a)uj(a) + 2ui(b)uj(b) + ui(a)uj(b) +
uj(a)u

i
(b)) δad δbc (3.18)

It now remains to diagonalize the operator (3.18)

in its 9 × 9 spacetime indices i, j. The situation is
very simple when a = b, as then the eigenvalues of

(3.18) are given by

λ1aa = 6~u
2
(a) , λ

2
aa = . . . = λ

9
aa = 0 (3.19)

The orthogonal matrix Oaa which diagonalizes the

Zamolodchikov metric in this case is simply the 9×
9 identity matrix upon rotation to the coordinate

system in which the first direction is spanned by the

normalized velocity vector ui(a)/|~u(a)|. We shall refer
to this frame as the “string frame” as it represents

the one-dimensional coordinate system relative to the

single open string excitation that starts and ends on

the same D-particle a (fig. 4). The situation is far

more complicated for a 6= b because now the string
interactions between a given pair of D-particles a, b

also play a role. In this case the eigenvalues are

λ1,2ab = ~u
2
(a) + ~u

2
(b) + ~u(a) · ~u(b)

± [(~u 2(a) + ~u 2(b) + ~u(a) · ~u(b))2 +
[(~u(a) · ~u(b))2 + ~u 2(a)~u 2(b) + 2~u(a) · ~u(b)(~u 2(a) + ~u 2(b))]2

~u 2
(a)
~u 2
(b)
− (~u(a) · ~u(b))2 ]1/2

λ3ab = . . . = λ
9
ab = 0 (3.20)

9
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If we assume that the velocity vectors ~u(a) and ~u(b)
are linearly independent, then they span a two di-

mensional space which we refer to as the string plane.

The increase in dimension of this frame owes to the

increase in degrees of freedom of the open string

which now stretches between two different branes

(fig. 4). In this coordinate system, the 9×9 orthogo-
nal diagonalization matrix Oab is of a block diagonal

form consisting of the 7× 7 identity matrix I7×7 and
a 2× 2 matrix ∆2×2

Oab =
1∣∣~u(a) +B(u)~u(b)∣∣2/9 ×

(
∆2×2 0

0 I7×7

)
(3.21)

with ∆2×2 =

(
A B

C D

)
, where

A =
∣∣~u(a)∣∣+B(u) ∣∣~u(b)∣∣ cos θab,

B = −B(u)
∣∣~u(b)∣∣ sin θab,

C = B(u)
∣∣~u(b)∣∣ sin θab, and

D =
∣∣~u(a)∣∣ + B(u) ∣∣~u(b)∣∣ cos θab, θab is the angle be-

tween the velocity vectors and

B(u) = [
(
~u(a) · ~u(b)

)2
+ ~u 2(a)~u

2
(b) +

2~u(a) · ~u(b)
(
~u 2(a) + ~u

2
(b)

)− λ1ab ~u(a) · ~u(b)]×
[2~u 2(a)

(
~u(a) · ~u(b)

)
+ 2
(
~u(a) · ~u(b)

)2
+

2~u 4(a) − λ1ab ~u 2(a)]−1 (3.22)

It is in this way that the Zamolodchikov metric onM

naturally captures the geometry of the string inter-

actions among the D-branes and illustrates the com-

plexity change between the dynamics of a single D-

particle on its own (a = b) and the interactions of a

multi-brane system (a 6= b).

b
a

u a

u b

Figure 4: The string frame representation of D-

particles a and b moving at velocities ~u(a) and ~u(b)
in target space.

4. Quantum Uncertainty Relations

The desired position coordinates in which the bilin-

ear form of (3.15) is diagonal are given by Ỹ iab =

Ojiab[Ω
∗−1ȲjΩ]ba ≡ OjiabYabj (Ȳ ), where the complex

configuration fields Yiab encode the information about
the string interactions between D-particles. Using

the results of the previous section they lead to the

statistical variances(
∆Ỹ iab

) (
∆Ỹ iab

)†
=

OjiabO
ki
ab

((
Yabj
∣∣∣∣ [Yabk ]†))

conn

=

`s Γ
2

2ḡ2s

(
1− ḡ

2
s

36
λiab(u) +O

(
ḡ4s
))

(4.1)

where the average denotes the connected correlation

function with respect to the probability distribution

function P [ρ] in (3.15). Note that ḡ2s < 0 owing to the
Minkowski signature of the target space time which

is proportional to ε−2 < 0.

The variances (4.1) can now be used to deter-

mine a set of uncertainty relations for the D-particle

spacetime coordinates. From (3.19)–(3.22) it follows

that the resulting uncertainties will depend non triv-

ially on the kinematical invariants of the D-brane

motion. This energy dependence is a quantum deco-

herence effect which can be understood from a gen-

eralization of the Heisenberg microscope whereby we

scatter a low-energy closed string state off the assem-

bly of D-particles. At time t < 0 we send a closed

string towards the spacetime defects which are fixed

in space. As the closed string hits D0-brane a at

t = 0, it can split into two open strings, according

to the closed-to-open string amplitude formalism of

[23], whose other ends can then either attach back to

particle a or to D-particle b. Due to this scattering

kinetic energy is transfered from the string state to

the D-particles thereby setting them in motion, as

depicted in fig. 4.

Minimum Length Uncertainty

For a single D-particle, from (3.19) and (4.1) we find

the coordinate smearings∣∣∣∆Yaai ∣∣∣ = |ḡs|χ/2 `s (1 + 1
12
|ḡs|2 ~u 2(a) δi,1 + . . .

) ≥
|ḡs|χ/2 `s (4.2)

where the exponent χ ≥ 0 is defined through the re-
lation which cancels the modular divergences of the

genus expansion with the tree-level ultraviolet diver-

gences according to the Fischler-Susskind mechanism

[24] log δ = 2|ḡs|χε−2. It may be fixed upon consid-
eration of more complicated processes, such as brane

exchanges between the D-particles. It is natural to

have χ > 0 since the modular divergences are induced

by string interactions. We can use this freedom to

10
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fix χ by the requirement that the minimum bound

in (4.2) coincides with the 11-dimensional Planck

length `P, i.e. χ =
2
3
. Then the smearings (4.2)

coincide with standard predictions [9] based on the

non-relativistic scattering of two D-particles of mass

Ms with impact parameter of order |∆Y|. Note that
in the string frame (i = 1), the quantum fluctuations

exhibit the decoherence effects discussed above.

Non-commutative Spacetime Algebra of

Observables

The feature unique to the multi-D-particle system

comes from examining (4.1) for a 6= b which demon-
strates explictly the non-commutativity of the D-

particle spacetime. Using (3.20) and (3.21), we ob-

tain from this expression two equations in two un-

knowns. Outside of the string frame (i > 2) one

finds the same minimal lengths for ∆Yabi as in (4.2).
Adding these two equations gives smearings ∆Yabi ,
i = 1, 2, in the string frame analogous to (4.2) that

depend on the center of mass kinetic energy and mo-

mentum transfer of the scattering of D-particles a

and b [5]. Subtracting the two equations gives an ex-

pression for the connected correlation function of the

two coordinate fields of the string plane. This can in

turn be written as an uncertainty relation using the

Schwarz inequality

∆Yab1 ∆Yab2 ≥
∣∣∣((Yab1 ∣∣∣ Yab2 ))

conn

∣∣∣ ≥
Re
((
Yab1
∣∣∣ Yab2 ))

conn
(4.3)

where the right-hand side of (4.3) is found to be

Re
((
Yab1
∣∣∣ Yab2 ))

conn
=

|ḡs|χ+2 `2s
∣∣~u(a) +B(u)~u(b)∣∣2 Xab(u)

144B(u)
∣∣~u(a)∣∣ sin θab (∣∣~u(a)∣∣+B(u) ∣∣~u(b)∣∣ cos θab) ,

for a 6= b (4.4)

Here Xab(u) is a complicated function of the D-particle
velocities ~u(a) and ~u(b) and their scattering angle θab
(see [5] for details). The right-hand side of (4.4) van-

ishes for zero recoil velocities.

The relation (4.4) gives a non-trivial correlation

among different spatial directions of the target space

and represents a new form of non-commutative space-

time uncertainty relation. It yields the desired tran-

sition from Lie algebraic non-commutativity to a gen-

uine spacetime non-commutativity, in which the spa-

tial coordinates are no longer independent random

variables due to their string interactions. This is pre-

cisely the form of the description of short-distance

spacetime structure based on non-commutative ge-

ometry [25] which utilizes the algebra of observables

of the quantum string theory. According to (4.3) the

indeterminancies (4.4) probe much deeper into the

exotic short-distance structure than the usual quan-

tum fluctuation relations. Its energy dependence sig-

nifies the fact that when the D-particles recoil upon

impact with a closed string probe they store infor-

mation, through the open string degrees of freedom

stretched between them, which prevents independent

position measurements for the D-particles. This leads

to correlated spatial uncertainties which depend on

the scattering content, i.e. on the kinetic energies of

the non-relativistic particles. Only when there is no

recoil (~u(a) = ~u(b) = ~0) can one measure simultane-

ously the positions of two D-particles.

Non-commutative Heisenberg Algebra

We will now describe the quantization of the phase

space of the multi-D-particle system. The canonical

quantization condition (1.6) on moduli space leads

to the Heisenberg uncertainty principle

∆Ȳ abi ∆P
j
cd ≥ 1

2
h̄M δ

j
i δ
a
c δ
b
d (4.5)

The Planck constant h̄M can be determined by inter-

preting (3.15) as a minimal uncertainty wavepacket

on moduli space [4] and thereby saturating the lower

bound in (4.5). Since the canonical momentum P iab
is implicitly represented as an operator on M (see

(1.6)), the effects of the genus expansion on it are

already taken into account and we may therefore

compute its variance directly from the worldsheet σ-

model on a tree-level disc topology. Using the two-

point function (3.6) and the one-point function (3.7),

we find(
∆P iab

)2
= Giiab;ab −

(
P iab
)2
=
4ḡ2s
`2s
δab +

2ḡ2s
9`2s

(
2δab

[(
Ū i
)2]

ba
− 287 (Ū iba)2)+ . . .(4.6)

Performing a Galilean boost to a comoving target

space frame, i.e. setting Ū i = 0 in (4.6), and using

the minimum length (4.2) in (4.5) then determines

the Planck constant as

h̄M = 4 |ḡs|1+χ/2 (4.7)

Thus, the Planck constant in the present formalism

is proportional to the string coupling constant, which

owes to the fact that the quantization of M here is

induced by string interactions.

Note that to leading order the operator (3.7) co-

incides with the spacetime momentum pi = MsŪ
i.
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However, stringy effects give corrections to this op-

erator of the form P i = pi + O(ḡ2s)(pi)3. Iterating
the Heisenberg algebra (1.6) using this identification

along with (3.7) gives the string modified phase space

commutation relations [5][[
Ŷ abi , p̂

j
cd

]]
= i h̄M(δ

j
i δ
a
c δ
b
d +

1
96
|ḡs|2 ¯̀2s [δji (δac [p̂ 2k ]bd + δbd [p̂ 2k ]ac + [p̂k]ac [p̂ k]bd) +

δac
{
p̂i, p̂

j
}b
d
+ δbd
{
p̂i, p̂

j
}a
c
+ [p̂i]

b
d[p̂

j ]ac +

[p̂i]
a
c [p̂

j ]bd] + . . .) (4.8)

to leading orders, where ¯̀s = `s/|ḡs|2 is the (time
independent) 0-brane scale. For a = b = c = d

and i = j, (4.8) yields the standard string-modified

Heisenberg uncertainty principle (1.1) [1] for a sin-

gle recoiling D-particle [3, 17]. However, for the

off-diagonal degrees of freedom, (4.8) takes into ac-

count of the string interactions among the D-particles

and represents the phase space version of the non-

commutative correlators that we obtained above. It

would be interesting to study the representation the-

ory of the algebra (4.8) and thereby determine prop-

erties of the non-commutative spacetime algebra of

observables implied by the relations (4.3) and (4.4).

Space–time Uncertainty Principle

The target space time T in the “physical” frame is

given by (3.11). Upon summing over all worldsheet

genera, the promotion of the couplings Ȳ and Ū to

operators implies that T becomes an operator T̂ . To

leading orders in the string coupling constant expan-

sion, we may replace the velocity operators in (3.12)

by momentum operators according to (3.7), as de-

scribed above. Using (1.6) and the present Born-

Oppenheimer approximation to expand the function

(3.12) as a power series in Ūab/uc � 1, a 6= b, we
arrive at the space–time quantum commutators [5]

[[
Ŷ abi , T̂

]]
=
i `2s h̄M
2|ḡs|

[
δab +

(
1− δab) `s

4|ḡs|
P̂ abj√
E
+ . . .

]
(4.9)

to leading orders, where E = |ḡs|2
∑
a
(Ū iaa)

2 is the

total kinetic energy of the constituent D-particles.

Using (4.7) we thus obtain the space–time uncer-

tainty principle

∆Ȳ aai ∆T ≥ |ḡs|χ/2 `2s (4.10)

When χ = 0 the indeterminancy relation (4.10) co-

incides with the standard one [9] which can be de-

rived from the energy-time uncertainty principle of

quantum mechanics applied to strings. It also fol-

lows from very basic worldsheet conformal symme-

try arguments and it gives a natural representation

of the s-t duality of perturbative string amplitudes.

In the present case this uncertainty relation follows

directly from the phase space uncertainty principle

and it shows that there is a duality between short and

large distance phenomena in string theory. However,

the choice χ = 0 gives a minimum length (4.2) which

is much larger in general than the 11-dimensional

Planck scale. The ambiguities here follow from the

fact that the physical target space (Liouville) time

coordinate T is not the same as the longitudinal

worldline coordinate of a D-particle, but is rather

a collective time coordinate of the system of parti-

cles which is induced by all of the string interactions

among them. We can nevertheless match our results

with those of 11-dimensional supergravity by multi-

plying the definition (3.11) by an overall factor of

|ḡs|−χ/2, which then implies that the target space
propagation time for weakly-interacting D-particles

is very long.

Triple Uncertainty Relations

The commutation relation (4.9) for a 6= b illustrates
the effects of the string interactions on the space–

time duality relation. Using the canonical minimal

uncertainty (4.5) and rescaling the time coordinate T

as described above, we arrive at the triple uncertainty

relations

(
∆Ȳ abi

)2
∆T ≥ |ḡs|

χ `3s

2
√
E
, a 6= b (4.11)

This uncertainty principle implies that the high-energy

scattering of D-particles can probe distances much

smaller than the characteristic length scale in (4.11),

which for χ = 2
3
is `P`

2
s. Triple uncertainty rela-

tions of the sort (4.11) but involving only `3P have

been suggested based on the holographic principle of

M -theory [9]. The existence of a limiting velocity

|~ua| < 1 for the non-relativistic D-particle motion
implies a lower bound on (4.11), so that using the

minimum spatial extensions (4.2) and setting χ = 2
3

in (4.11), we arrive at the characteristic temporal

length

∆T ≥ |ḡs|−1/3 `s (4.12)

which also agrees with the standard result based on

D-particle kinematics [9].
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5. Outlook: Potential Experimental

Tests of Spacetime Non Commu-

tativity

We have seen that a perturbative worldsheet formal-

ism for systems of D-branes yields results which are

consistent with the standard target space dynam-

ics, and which also describes interesting new short-

distance structures, such as non-commutative spatial

coordinates that lead to a proper spacetime quanti-

zation. The most dramatic feature of the uncertainty

relations we exhibited in the previous section is their

dependence on the energy of the D-particle system.

This fact distinguishes D-particle dynamics from or-

dinary quantum mechanics, since it implies a bound

on the accuracy of length measurements which de-

pends entirely on the energy content of the system.

Such a situation, whereby the accuracy with which

one can measure a quantity depends on its size, is

a characteristic feature of decoherence in certain ap-

proaches to quantum gravity. In the present case

the presence of D-brane domain wall structures may

act as traps of low energy string states, thereby re-

sulting in a decoherent medium of quantum gravity

spacetime foam. The quantum coordinate fluctua-

tions, due to the open string excitations between D-

particles, can lead to quantum decoherence for a low-

energy observer who cannot detect such recoil fluc-

tuations in the sub-Planckian spacetime structure.

The short-distance physics described by non-abelian

D-particle dynamics in flat target spaces naturally

capture features of spacetime quantum gravity, and

the construction outlined above therefore illuminates

the manner in which D-particle interactions probe

very short distances where the quantum nature of

gravity becomes important.

It would be interesting to see if the non commu-

tativity of quantum spacetime is amenable in some

way to experimental analysis. The foamy proper-

ties of the non-commutative structure may require

a reformulation of the phenomenological analyses of

length measurements as probes of quantum gravity.

One such test is through neutral kaon systems [26]

which are sensitive to the minimal length suppression

effects by the Planck mass scaleMP ∼ 1019 GeV, and
also to quantum gravity decoherence effects. A more

recent suggestion is through γ-ray burst spectroscopy

[27]. Such probes are cosmological in origin and are

sensitive to Planck scale energies through quantum

gravity dispersion relations in which the velocity of

light depends on the photon energy. However, all

of these approaches do not incorporate length mea-

surements in the transverse directions to the probe,

so that it is not immediately clear how to incorpo-

rate non-commutative correlations such as (4.4) into

these analyses.

A recent proposal [28] which is intimately re-

lated to the ideas of this article is that fluctuations

in spacetime geometry on the scale of the Planck time

τP ∼ 10−44 s may be detectable by atom interferom-
eters. In analogy with Brownian motion, whereby

measurements on a macroscopic scale can be used

to determine quantities on an atomic scale, one can

find a diffusion process which enables the determi-

nation of quantities at the Planck scale by experi-

ments at an atomic scale. Spacetime fluctuations in-

duce diffusion in quantum amplitudes from which the

value of τP can be measured and information about

Planck scale dynamics can be extracted. The key

feature of this analysis is an appropriate generaliza-

tion of linear Markovian quantum state diffusion to

non-commuting fluctuation variables which span an

isospin space of internal symmetries of the spacetime

that is distinct from the ordinary position space. The

canonical commuting fluctuations yield no effect in

matter interferometers, but the decoherence effects

resulting from non-commutative fluctuations lead to

a suppression of the observed interference. The anal-

ysis of [28] thus shows that the small numerical value

of the Planck time does not on its own prevent ex-

perimental access to Planck scale physics in the lab-

oratory. The resulting non-commutative metric is

augmented into the isospin space which is attached

to the original spacetime itself and not to the matter

within it. Thus if we consider D-particles as being

intrinsic topological defects of spacetime represent-

ing short-distance singularities of quantum gravity,

then the non-commutativity described in this paper

may be related to the description of [28]. In [4] the

relationship between D-brane recoil and diffusion in

open quantum systems is discussed. It would be in-

teresting to explore the potential relationship with

D-particle spacetimes and those of [28] in more de-

tail, and hence establish an experimental laboratory

for the Planck scale dynamics probed by D-branes.
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