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ABSTRACT: A brief review of bicovariant differential calculi on finite groups is given, with some new
developments on diffeomorphisms and integration. We illustrate the general theory with the example

of the nonabelian finite group Ss.

1. Introduction

Differential calculi can be constructed on spaces
that are more general than differentiable mani-
folds. Indeed the algebraic construction of dif-
ferential calculus in terms of Hopf structures al-
lows to extend the usual differential geometric
quantities (connection, curvature, metric, viel-
bein etc.) to a variety of interesting spaces that
include quantum groups, noncommutative space-
times (i.e. quantum cosets), and discrete spaces.

In this contribution we concentrate on the
differential geometry of finite group “manifolds”.
As we will discuss, these spaces can be visual-
ized as collections of points, corresponding to
the finite group elements, and connected by ori-
ented links according to the particular differen-
tial calculus we build on them. Although func-
tions f € Fun(G) on finite groups G commute,
the calculi that are constructed on Fun(G) by al-
gebraic means are in general noncommutative, in
the sense that differentials do not commute with
functions, and the exterior product does not co-
incide with the usual antisymmetrization of the
tensor product.

Among the physical motivations for finding
differential calculi on finite groups we mention
the possibility of using finite group spaces as in-
ternal spaces for Kaluza-Klein compactifications
of supergravity or superstring theories ( for ex-

in terms of noncommutative geometry @:] can
be recovered as Kaluza-Klein compactification of
Yang-Mills theory on an appropriate discrete in-
ternal space). Differential calculi on discrete spaces
can be of use in the study of integrable models,
see for ex. ref. [?] Finally gauge and gravity
theories on finite group spaces may be used as
lattice approximations. For example the action
for pure Yang-Mills f F N *F considered on the
finite group space ZN x ZN x ZN x ZN | yields
the usual Wilson action of lattice gauge theories,
and N — oo gives the continuum limit L";%:] New
lattice theories can be found by choosing differ-
ent finite groups.

A Dbrief review of the differential calculus on
finite groups is presented. Most of this mate-
rial is not new, and draws on the treatment of
ref.s [Ij, :_d, :_ﬂ], where the Hopf algebraic approach
of Woronowicz [8] for the construction of differ-
ential calculi is adapted to the setting of finite
groups. Some developments on Lie derivative,
diffeomorphisms and integration are new. The
general theory is illustrated in the case of Ss.

2. Differential calculus on finite groups

Fun(G) as a Hopf algebra

Let G be a finite group of order n with generic
element g and unit e. Consider Fun(G), the set
of complex functions on G. An element f of

ample Connes’ reconstruction of the standard model Fun(G) is specified by its values f; = f(g) on
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the group elements g, and can be written as

F=> fo2%, fyeC (2.1)
geG
where the functions 9 are defined by
29(g') = &5 (2.2)

g

Thus Fun(G) is a n-dimensional vector space,
and the n functions 29 provide a basis. Fun(G)
is also a commutative algebra, with the usual
pointwise sum and product [(f + h)(g) = f(g) +
hg), (f-h)(9) = f(g)h(g), (Af)(g) = Af(9), f,h €
Fun(G),\ € C] and unit I defined by I(g) =
1,Vg € G. In particular:

ng:I

geqG

29z9 = dg.9'7, (2.3)

The G group structure induces a Hopf algebra
structure on Fun(G), with coproduct A, coin-
verse k and counit € defined by group multipli-
cation, inverse and unit as:

A(f)(g,9") = f(g9), (2.4)
k(f)(g) = flg™), (2.5
e(f) = fle), (2.6

On the basis functions z9 the costructures take
the form:

Ax9) = Z mh®xh719, k(z9) = :1:971, e(z9) =07
heG
(2.7)

The coproduct is related to the pullback induced
by left or right multiplication of G on itself. Con-
sider the left multiplication by g¢1:

Lg,92=g192, V91,92 € G (2.8)

This induces the left action (pullback) L4, on
Fun(Q):

Ly f(92) = f(9192)]g2, Lgi : Fun(G) — Fun(G)
(2.9)
where f (9192)|g2 means f(g1g2) seen as a func-

tion of go. For the basis functions we find easily:
Lo 29 = a9 9 (2.10)

Introducing the mapping £ : Fun(G) — Fun(Gx
G) = Fun(G) ® Fun(QG):

(L1)(91592) = (L4, f)(92) = f(9192)]g, (2.11)

we see that

L=A (2.12)

Thus the coproduct mapping A on the function
f encodes the information on all the left actions
Ly,9 € G applied to f, without reference to a
particular g (“point of the group manifold”). Tt
also encodes the information on right actions.

Indeed one can define the right action R on
Fun(QG) as:

(Rf)(91,92) = (Ry, f)(92) = f(g291)lg, (2.13)

Introducing the flip operator 7 : Fun(G x G) —
Fun(G x G):

u € Fun(G x G)
(2.14)

(Tu)(91, 92) = u(g2,91),
it is easy to find that:
R=70A (2.15)

For the basis functions:

1 -1
Rgx? =x99 | Ra? = 1oA(z9) = g " Il

heG
(2.16)
Finally:
Eglﬁgz - £91927 Rglez - R92917(2'17)
£g1 Ry, = R92£91 (2-18)

Bicovariant differential calculus

Differential calculi can be constructed on Hopf
algebras A by algebraic means, using the costruc-
tures of A [d].
differential calculi on A = Fun(G) have been
discussed in ref.s [b, 6, 7). Here we give the main
results derived in [7_7:], to which we refer for a more
detailed treatment.

In the case of finite groups G,

A first-order differential calculus on A is de-
fined by

i) a linear map d: A — T, satisfying the
Leibniz rule
d(ab) = (da)b+ a(db), VYa,b € A, (2.19)

The “space of 1-forms” I' is an appropriate bi-
module on A, which essentially means that its
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elements can be multiplied on the left and on
the right by elements of A [more precisely A is
a left module if Va,b € A,Vp,p’ € ' we have:
a(p+p') =ap+ap’, (a+b)p=ap+bp, albp) =
(ab)p, Ip = p. Similarly one defines a right
module. A left and right module is a bimod-
ule if a(pb) = (ap)b]. From the Leibniz rule
da = d(Ia) = (dI)a + Ida we deduce dI = 0.

ii) the possibility of expressing any p € I' as

p = Z akdbk
k

for some ay, by, belonging to A.

(2.20)

Left and right covariance

A differential calculus is left or right covari-
ant if the left or right action of G (£, or Ry)
commutes with the exterior derivative d. Re-
quiring left and right covariance in fact defines
the action of £, and R, on differentials: Lydb =

d(Lyb),Vb € Fun(G) and similarly for R,db. More

generally, on elements of I" (one-forms) we define
Ly as:
Lg(adb) = (Lga)Lydb = (Lya)d(Lyh) (2.21)

and similar for ®4. Computing for example the

left and right action on the differentials dz9 yields:

Ly(dz9) = d(L,z%) = da? 9, (2.22)
Ro(dz?) = d(Ryz%) = dz9 (2.23)

A differential calculus is called bicovariant if it is
both left and right covariant.

Left invariant one forms

As in usual Lie group manifolds, we can in-
troduce a basis in I' of left-invariant one-forms
09:

69 = Z "dzh (= Z xhdwhgfl), (2.24)
heG heG

It is immediate to check that £z 09 = 09. The
relations (2.24) can be inverted [as they should,
since property ii) of a first order differential cal-
culus must hold]:

da" = Z(whg — zM)p9

geqG

(2.25)

From 0 =dl =d} ;27 =) ;dz? =0 one

geG
finds:
1 -1
g 09 = g z"dzh9 :E whg dz"? =0
geG g,h€G heG  geG

(2.26)
Therefore we can take as basis of the cotangent
space I' the n—1 linearly independent left-invariant
one-forms 09 with g # e (but smaller sets of 69
can be consistently chosen as basis, see later).

The commutations between the basic 1-forms

09 and functions f € Fun(G) are given by:
fO9 =0Ryf (2.27)
Thus functions do commute between themselves
(i.e. Fun(G) is a commutative algebra) but do
not commute with the basis of one-forms 69. In
this sense the differential geometry of Fun(G)
is noncommutative, the noncommutativity be-

ing milder than in the case of quantum groups
Fung(G)(which are noncommutative algebras).

The right action of G on the elements 69 is
given by:
Rpb? = 029 vh e G (2.28)
where ad is the adjoint action of G on G, i.e.
ad(h)g = hgh™!.
in 1-1 correspondence with unions of conjugacy
classes (different from {e}) [b]: if 69 is set to
zero, one must set to zero all the §24(M9 vh € @
corresponding to the whole conjugation class of

g.

Then bicovariant calculi are

We denote by G’ the subset corresponding to
the union of conjugacy classes that characterizes
the bicovariant calculus on G (G’ = {g € G|09 #
0}). Unless otherwise indicated, repeated indices
are summed on G’ in the following.

A bi-invariant (i.e. left and right invariant)
one-form © is obtained by summing on all 9
with g # e:

0= 0 =Y wr

g#e g#e

(2.29)
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Exterior product

For a bicovariant differential calculus on a
Hopf algebra A an exterior product, compatible
with the left and right actions of G, can be de-
fined by

091 A 092 = 99 ® 092 — 99{19291 ® 09 (2.30)

where the tensor product between elements p, p’ €

I is defined to have the properties pa® p' = p®

ap', a(p®@p’) = (ap)®p’ and (p@p’)a = p®(p'a).
Note that:

09 NG =0 (nosum on g) (2.31)

Left and right actions on I' ® I" are simply
defined by:

Li(p@p') = Lrp @ Lnp,
Ru(p®p') =Rnp ® Rip'

(2.32)
(2.33)

(with the obvious generalization to '®...®T") so
that for example:

Lrh(0'®607) =606, (2.34)
Ru(0° @ ¢7) = 23 g gadhi (2 35)

We can generalize the definition (2.37)to exterior
products of n one-forms:

0 A . NG =
i1d ki ko En—2in
w 1J2'1]€1VV ljzkzw zjiks"'W Jn—1Jjn
0 ® .. ® 60" (2.36)

where the matrix W is defined by:
0N =W 0820 =

=006 — A7 0"®60. (2.37)

and AY & is the braiding matrix defined by (2-30).

The space of n-forms I'"" is therefore defined as
in the usual case but with the new permutation
operator A, and can be shown to be a bicovari-
ant bimodule, with left and right action defined
as for I'®...®T with the tensor product replaced
by the wedge product.

Exterior derivative

Having the exterior product we can define
the exterior derivative

d:T—STAT (2.38)

d(akdbk) = day N dby, (239)

which can easily be extended to ' (d : T —
IA+1) "and has the following properties:

dpAp')=dpnp' +(=1)FpAdp  (2.40)
d(dp) = 0 (2.41)

Ly(dp) = dLgp (2.42)

Rgy(dp) =dRyp (2.43)

where p € T"*, o/ € T"". The last two properties
express the fact that d commutes with the left
and right action of G.

Tangent vectors

Using (2.25) to expand df on the basis of
the left-invariant one-forms 69 defines the (left-
invariant) tangent vectors t4:

df =) foda? = > Ry f = 0" =

geG heG’

=Y (taf)0"

heG’

(2.44)

so that the “flat” partial derivatives t;, f are given
by
thf=Rpf = f

The Leibniz rule for the flat partial derivatives

(2.45)

t, reads:

to(ff') = (tg/)Rg—1 f' + ftof' (2.46)

In analogy with ordinary differential calcu-
lus, the operators t, appearing in (2.44) are called
(left-invariant) tangent vectors, and in our case
are given by

ty =Ry —id (2.47)
They satisfy the composition rule:
toty = C"y tn (2.48)
h
where the structure constants are:
h _ sh h h
C gg = 5g,g — 5g — 59, (2.49)
and have the property:
ad(h)g _
C ad(lh)gz,ad(h)gs = 0%, 05 (2.50)
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Note 2.1 : The exterior derivative on any
f € Fun(G) can be expressed as a commutator
of f with the bi-invariant one-form O:

df:[(_)’f]

as one proves by using (2.27) and (2.44).

(2.51)

Note 2.2 : From the fusion rules (2.48) we
deduce the “deformed Lie algebra” (cf. ref.s [§,
4, 71)):

_ A93:94
tgl tgz A

h
91792t93t94 =C th

91,92

(2.52)

where the C' structure constants are given by:

g = (9 _ A93:94 g _
C 91,92 — c 91,92 A 91,920 93,94
=9 Y =
91,92 92,929195

-1
= gg92 )9 _ g9 (2.53)

and besides property @:5:(]) they also satisfy:

C s =C", (2.54)
Moreover the following identities hold:

i) deformed Jacobi identities:

k h , k h _
c hhglc 216792 — A% 21920 hl,gsc 27%94 -

k h

=C" .C% (2.55)

ii) fusion identities:
k h h h
C" 1 gC %y =C"g9C % (2.56)

Thus the C structure constants are a repre-
sentation (the adjoint representation) of the tan-
gent vectors t.

Cartan-Maurer equations, connection and
curvature

From the definition (2.24) and eq. (2:27) we
deduce the Cartan-Maurer equations:

o+ C%, 0 A0 =0 (257)
91,92
where the structure constants CY 91,92 L€ those

given in (2.49).
Parallel transport of the vielbein 69 can be

defined as in ordinary Lie group manifolds:

VO = —w? , @67 (2.58)

where wglgz is the connection one-form:

g1 — 191 93
w?ly, =T 6,0

(2.59)

Thus parallel transport is a map from I" to T'®T;
by definition it must satisfy:

V(ap) = (da)®@p+aVp, Yac A, peT (2.60)

and it is a simple matter to verify that this re-
lation is satisfied with the usual parallel trans-
port of Riemannian manifolds. As for the ex-
terior differential, V can be extended to a map
V:TNM®T — I @ T by defining:

Vie®p)=de®p+(-1)"9Vp  (2.61)

Requiring parallel transport to commute with
the left and right action of G means:

Ln(VO9) =V (Lp09) = VI (2.62)
Ri(V09) = V(Ry09) = Vo449 (2,63)

Recalling that Ly, (ap) = (Lra)(Lyp) and Ly (p®
p') = (Lnp) @ (Lnp'), Ya € A, p, p' €T (and
similar for Rj,), and substituting (2.58) yields re-

spectively:

re eC (2.64)

1
93,92

and

F‘ld(h)gl

ad(h)gs,ad(h) (2.65)

g2 - Fg193792
Therefore the same situation arises as in the case
of Lie groups, for which parallel transport on the
group manifold commutes with left and right ac-
tion iff the connection components are ad(G) -
conserved constant tensors. As for Lie groups,
condition (:'2:6:5) is satisfied if one takes I' propor-
tional to the structure constants. In our case, we
can take any combination of the C' or C struc-
ture constants, since both are ad(G) conserved
constant tensors. As we see below, the C' con-
stants can be used to define a torsionless connec-
tion, while the C constants define a parallelizing
connection.

As usual, the curvature arises from V2:

V299 =R’ , ®6 (2.66)

R =dw?, +w? A wT (2.67)

g2 g g2
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The torsion RY is defined by:

RI = df% + w9 A 69 (2.68)

1
g2

Using the expression of w in terms of I' and
the Cartan-Maurer equations yields

Rgl —

g2
_ (_T9 h g1
- ( r h,g2c 93,94 +T gs,h™ 94,92
— (_T9 h 91 h o
- ( r h,gzc 93,91 T r ga,hF 94,92

9 h B 993 Q94
94:h™  gagsg, 1,92) ®
g1 — (_ (91
R = ( c 92,93
(91
( c 92,93

+ T
992 ® 993

+ Fglgz,gg) 092 A 093 =

_ 91 )
92,93 93,939295

(2.69)

Thus a connection satisfying:

1‘\91 g1 — g

1
92,93 g3,939295 c 92,93

(2.70)

corresponds to a vanishing torsion RY = 0 and
could be referred to as a “Riemannian” connec-
tion.

On the other hand, the choice:

91 — g1
r 92,93 93,95

(2.71)

corresponds to a vanishing curvature R? s =0
as can be checked by using the fusion equations
(2.56) and property (2.54). Then (2.71) can be
called the parallelizing connection: finite groups
are parallelizable.

Tensor transformations

Under the familiar transformation of the con-
nection 1-form:

(wi _)/ — aikwkl(a—l)lj +aikd(a—1)k_

; L (272)

the curvature 2-form transforms homogeneously:

(R" ;) =a' RF (1) (2.73)

The transformation rule (2.72) can be seen as
induced by the change of basis §* = a’ jﬁj , _vzi‘Eh
a’; invertible z-dependent matrix (use eq. (2.60)
with ap = a';67).

rh o ) 0% NG9 =

Metric

The metric tensor g can be defined as an el-
ement of I' ® I':
g=9i00®6 (2.74)

Requiring it to be invariant under left and right
action of G means:

Lin(g) = 9= Rulg)

or equivalently, by recalling £, (0*®607) = ' @67,
Ru(0° ® 07) = godMi g gedmi .

(2.75)

9,5 € C,  Gad(h)i,ad(h)j = Gi,j (2.76)

These properties are analogous to the ones satis-
fied by the Killing metric of Lie groups, which is
indeed constant and invariant under the adjoint
action of the Lie group.

On finite G there are various choices of biin-
variant metrics. One can simply take g; ; = d; ;,
k 1
or gi; =C l,iC ki

For any biinvariant metric g;; there are ten-
sor transformations a® ; under which g;; is invari-
ant, i.e.:

a’y kb = Y & ne = e (@R,
(2.77)
These transformations are simply given by the
matrices that rotate the indices according to the
adjoint action of G:

al, (g) = seH@loDh (2.78)

where a(g) : G — G is an arbitrary mapping.
Then these matrices are functions of G via this
mapping, and their action leaves v invariant be-
cause of the its biinvariance (2.76). Indeed sub-

stituting these matrices in (2.77) yields:
a’y (9)vmka’y (9) =
Yad(a(g)] =) ad((a(g)] -k = Tk (2.79)

proving the invariance of ~.

Consider now a contravariant vector ¢° trans-
forming as (¢')" = a';(¢?). Then using (2.77)
one can easily see that

(ki) = " i (@) (2.80)
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i.e. the vector ¢; = ¢*y;,; indeed transforms as
a covariant vector.

Lie derivative and diffeomorphisms

The notion of diffeomorphisms, or general
coordinate transformations, is fundamental in grav-
ity theories. Is there such a notion in the setting
of differential calculi on Hopf algebras ? The
answer is affirmative, and has been discussed in
detail in ref.s [g, :_1-9‘, :l-lj As for differentiable
manifolds, it relies on the existence of the Lie
derivative.

Let us review the situation for Lie group man-
ifolds. The Lie derivative l;, along a left-invariant
tangent vector t; is related to the infinitesimal
right translations generated by t;:

1
lt'i,p = Elll)r(l) E[Rexp[eti]p - p] (281)
p being an arbitrary tensor field. Introducing the
coordinate dependence

Lop(y) = im ~[p(y +<ts) — p(y)]  (2.82)
e—=0 ¢

identifies the Lie derivative l;, as a directional

derivative along t;. Note the difference in mean-

ing of the symbol ¢; in the r.h.s. of these two

equations: a group generator in the first, and

the corresponding tangent vector in the second.

For finite groups the Lie derivative takes the
form:

liyp = [Rg-1p — p] (2.83)

so that the Lie derivative is simply given by

Iy, = Ry —id=t,

g9

(2.84)

cf. the definition of ¢4 in @ 27:) For example

I, (09 ®692) = gadla™" g1 g gad(a™ g2 _ g g g

(2.85)

As in the case of differentiable manifolds, the

Cartan formula for the Lie derivative acting on
p-forms holds:

L

=iy, d + diy, (2.86)

g9

see ref.s [0 11, 1.

Exploiting this formula, diffeomorphisms (Lie
derivatives) along generic tangent vectors V' can
also be consistently defined via the operator:

ly =iyd+diy (2.87)

This requires a suitable definition of the contrac-
tion operator iy along generic tangent vectors V,
discussed in ref. L1, .

We have then a way of defining “diffeomor-
phisms” along arbitrary (and x-dependent) tan-
gent vectors for any tensor p:

5p=lyp (2.88)

and of testing the invariance of candidate lagrangians

under the generalized Lie derivative.
Haar measure and integration

Since we want to be able to define actions
(integrals on p-forms) we must now define inte-
gration of p-forms on finite groups.

Let us start with integration of functions f.
We define the integral map h as a linear func-
tional h : Fun(G) — C satisfying the left and
right invariance conditions:

h(ﬁgf) =0= h(Rgf) (2-89)

Then this map is uniquely determined (up to a
normalization constant), and is simply given by
the “sum over G” rule:

h(f) = f(9)

geaG

(2.90)

Next we turn to define the integral of a p-
form. Within the differential calculus we have a
basis of left-invariant 1-forms, which may allow
the definition of a biinvariant volume element.
In general for a differential calculus with n in-
dependent tangent vectors, there is an integer
p > n such that the linear space of p-forms is
1-dimensional, and (p + 1)- forms vanish identi-
cally. We will see explicit examples in the next
Section. This means that every product of p ba-
sis one-forms 69t A 92 A ... A §97 is proportional
to one of these products, that can be chosen to
define the volume form vol:

091 NG A . NG = 9192 Iry0l  (2.91)
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where €91:92:-9» is the proportionality constant.
Note that the volume p-form is obviously left in-
variant. We can prove that it is also right in-
variant with the following argument. Suppose
that vol be given by " A 6"z A ... A O"» where
hi, ha,...h, are given group element labels. Then
the right action on vol yields:

Rg[0" A .o A G2] = gadDh A A gerdhe —
ead(9)h,..ad(g)hp o1 (2.92)

Recall now that the “epsilon tensor” € is necessar-
ily made out of the W tensors of eq. @:3:7:), defin-
ing the wedge product. These tensors are invari-
ant under the adjoint action ad(g), and so is the €
tensor. Therefore ¢24(9)h1,-ad(@hy — hi,hp — 1
and Rgvol = vol. This will be verified in the ex-
amples of next Section.

Having identified the volume p-form it is nat-

ural to set
/fvol =n(f)=> f(g) (2.93)
geG
and define the integral on a p-form p as:
/P = /pghmgp G N ... NOQ% =
/pgl,..-gp eI Iryol =
= 3t lg) (2.94)

geqG

Due to the biinvariance of the volume form, the
integral map [ : I'"? — C satisfies the biinvari-
ance conditions:

es-1- [

Moreover, under the assumption that the vol-

(2.95)

ume form belongs to a nontrivial cohomology
class, that is d(vol) = 0 but vol # dp, the im-
portant property holds:

Jar=o

with f any (p—1)-form: f = fg, 4 092A...AO%.
This property, which allows integration by parts,
has a simple proof. Rewrite [ df as:

/df - /(df92~~gp)992 A NG+

+/fgz,...gpd(992 A A 097’)

(2.96)

(2.97)

Under the cohomology assumption the second
term in the r.h.s. vanishes, since d(692 A ... A
09r) = 0 (otherwise, being a p-form, it should be
proportional to vol, and this would contradict
the assumption vol # dp). Using now (2.44) and
(2.93):

/df = /(tglfgz,,,,gp)eg1 NOZN NG =

/[Rgflfgz,---gp = fg2,...g,) € P V0Ol =

€91 9p Z[Rgl—lfg2,...gp(g) - fgz,...gp(g)] =

geG
=0 (2.98)

Q.E.D.

3. Bicovariant calculus on S3

In this Section we illustrate the general theory on
the particular example of the permutation group
Ss.

Elements: a = (12), b = (23), ¢ = (13),
ab = (132), ba = (123), e.

Nontrivial conjugation classes: I = [a,b, |,
11 = [ab, ba].

There are 3 bicovariant calculi BCy, BCyy,
BC7r 11 corresponding to the possible unions of
the conjugation classes Eﬁ] They have respec-
tively dimension 3, 2 and 5. We examine here
the BCt and BCy calculi.

B(C differential calculus

Basis of the 3-dimensional vector space of one-

forms:
6, 6°, 6° (3.1)

Basis of the 4-dimensional vector space of two-
forms:

0% AB°, 0% NB°, 6 NO°, 6° NG (3.2)

Every wedge product of two 6 can be ex-
pressed as linear combination of the basis ele-
ments:

00 NG = —0° NO° —0° NP,
6°NOC = —0° N G° — 6P A B° (3.3)
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Basis of the 3-dimensional vector space of three-
forms:

02 NP NG, 0O NOS NG, B° ANOTAO°  (3.4)
and we have:

0°NO°NOT = —0° N OT A O° =
— 0T NGO =07 NO° AG°
O NO°NOT = —0° NO* NB® =
— 0 AN =07 NG NG
6° NGO NO° = —0°NO° A O° =
— 0 NONGT =0 NG NO°  (3.5)

Basis of the 1-dimensional vector space of four-
forms:

vol = 0% A O° A G% A 6° (3.6)
and we have:
091 A 092 A 093 A 94 = €91:92:93:94 0] (3.7)

where the nonvanishing components of the e ten-
sor are:

€abac = €acab = €cbca = €cach = €babe = €bcba = 1

€baca = €caba = €abch = €cbab = €acbc = €bcac = —

Cartan-Maurer equations:

do® +60° NO° +0° N> =0
de® + 0 AO°+6°NO* =0
do° 40 NO° +6° N O" =0 (3.8)

The exterior derivative on any three-form of
the type 8 AO A6 vanishes, as one can easily check
by using the Cartan-Maurer equations and the
equalities between exterior products given above.
Then, as shown in the previous Section, integra-
tion of a total differential vanishes on the “group
manifold” of S3 corresponding to the BC; bi-
covariant calculus. This “group manifold” has
three independent directions, associated to the
cotangent basis 0%, #°, . Note however that
the volume element is of order four in the left-
invariant one-forms 6.

BCyr differential calculus

Basis of the 2-dimensional vector space of one-
forms:

6, gt (3.9)

Basis of the 1-dimensional vector space of two-
forms:
_eba A eab

vol = % A 9°* = (3.10)

so that:

69t N 092 = 919200l (3.11)

where the € tensor is the usual 2-dimensional
Levi-Civita tensor.

Cartan-Maurer equations:

de®® =0, do** =0 (3.12)

Thus the exterior derivative on any one-form
09 vanishes and integration of a total differential
vanishes on the group manifold of S5 correspond-
ing to the BCyy bicovariant calculus. This group
manifold has two independent directions, associ-
ated to the cotangent basis #2°, 6%,

Visualization of the S3 group “manifold”

We can draw a picture of the group manifold
of S3. It is made out of 6 points, corresponding to
the group elements and identified with the func-

b ab ..ba

tions z¢, x%, x°, x¢, x*°, x

BC7 - calculus:

From each of the six points 9 one can move
in three directions, associated to the tangent vec-
tors tq, ty, te, reaching three other points whose
“coordinates” are

Raz? = 29%, Rpxd =29, Road = z9¢ (3.13)
The 6 points and the “moves” along the 3 direc-
tions are illustrated in the Fig. 1. The links are

not oriented since the three group elements a, b, ¢
coincide with their inverses.
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BCir - calculus:

From each of the six points 29 one can move
in two directions, associated to the tangent vec-
tors tup, tha, reaching two other points whose “co-
ordinates” are

Rapz?d = 29, Rpez? = 292 (3.14)

The 6 points and the “moves” along the 3 direc-
tions are illustrated in Fig. 1. The arrow con-
vention on a link labeled (in italic) by a group
element h is as follows: one moves in the direc-
tion of the arrow via the action of R, on z9.
(In this case h = ab). To move in the opposite
direction just take the inverse of h.

The pictures in Fig. 1 characterize the bico-
variant calculi BC; and BCjr on S3, and were
drawn in ref. [5] as examples of digraphs, used to
characterize different calculi on sets. Here we em-
phasize their geometrical meaning as finite group
“manifolds”.
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Figure 1: S3 group manifold, and moves of the points under the group action
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