
Corfu Summer Institute on Elementary Particle Physics, 1998

PROCEEDINGS

Non-perturbative Supersymmetry Breaking and Finite

Temperature Instabilities in N=4 Superstrings

Costas Kounnas∗
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Abstract: We obtain the non-perturbative effective potential for the dual five-dimensional N = 4

strings in the context of finite-temperature regarded as a breaking of supersymmetry into four

space-time dimensions. Using the properties of gauged N = 4 supergravity we derive the universal

thermal effective potential describing all possible high-temperature instabilities of the known N = 4

superstrings. These strings undergo a high-temperature transition to a new phase in which five-branes

condense. This phase is described in detail, using both the effective supergravity and non-critical string

theory in six dimensions. In the new phase, supersymmetry is perturbatively restored but broken at

the non-perturbative level.
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1. Introduction

A convenient way to analyse a D-dimensional

theory at finite temperature is to identify the

temperature with the inverse radius of a com-

pactified Euclidean time on S1, R = 1/2πT and

to modify the boundary conditions around the S1

according to spin-statistics: periodic for bosons,

antiperiodic for fermions. The modified bound-

ary conditions shift the S1 Kaluza-Klein charge

by an amount proportional to the helicity of the

state, m→ m+Q. In string theories this shift is

generalised and includes a winding contribution:

m→ m+Q+ δn/2. This shift is dictated by the

world-sheet modular invariance; δ = 1 for the

heterotic string and δ = 0 for the type II strings

[1, 2, 3]. Furthermore, the GSO projection in the

odd winding number sector is reversed.

For an even winding number n, the ther-

mal modification can be regarded as a shift of

m and Q compatible with the (supersymmetric)

GSO projection. As a consequence, the spectrum

in even n sectors is not different in the thermal

and supersymmetric cases, the mass formula for
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the (lightest) BPS fermions, gauge bosons and

scalars with even windings n remainsM2 = P 2,

with m modified, and tachyonic states are not

present. The situation is not the same for states

with odd winding number n due to the reversion

of the GSO projection. It follows that the only

states that can become tachyonic are those with

n = ±1 and correspond to (D − 1)-dimensional
scalars coming from the longitudinal components

of the D-dimensional metric.

Tachyons cannot appear in a perturbative

supersymmetric field theory, which behaves like

the zero-winding sector of strings; all (squared)

masses are increased by finite temperature cor-

rections, M2 = P 2, and a thermal instability is

never generated by a state becoming tachyonic at

high temperature. However, as we will see below,

in non-perturbative supersymmetric field theo-

ries such an instability can arise from thermal

dyonic modes, which behave as the odd winding

string states [4]. Indeed, in theories with N = 4

supersymmetries, the BPS mass formula is deter-

mined by the central extension of the correspond-

ing superalgebra [5]–[7] and dyonic field theory

states are mapped to string winding modes [8,

7]. Using heterotic–type II duality, one can ar-
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gue that the thermal shift of the BPS masses

modifies only the perturbative momentum charge

m. In both heterotic and type II perturbative

strings, the thermal winding number n is not af-

fected by the temperature shifts. Since, in di-

mensions lower than six, heterotic–type II dual-

ity exchanges the winding numbers n of the two

theories, and since the winding number of the one

theory is the magnetic charge of the other, it is

inferred that field theory magnetic numbers are

not shifted at finite temperature. This in turn

indicates how to modify the BPS mass formula

at finite temperature [4].

It turns out that string theories with D-di-

mensional space-time supersymmetry look at fi-

nite temperature as if supersymmetry were spon-

taneously broken in D − 1 dimensions [1]–[4].

2. Thermal masses and string-string

dualities

The non-perturbative four-dimensional thermal

mass formula has been obtained in Ref. [4]. The

procedure is to start with the N = 4 four-dimen-

sional BPS mass formula on a circle with radius

R, which depends on an effective string tension

Tp,q,r =
p

α′H
+

q

λ2Hα
′
H

+
rR26

λ2H(α
′
H)
2

=
p

α′H
+

q

α′IIA
+

r

α′IIB
.

(2.1)

The modified finite-temperature formula reads

then

M2
T =

(
m+Q′ + kp2

R
+ k Tp,q,r R

)2

−2 Tp,q,r δ|k|,1 δQ′,0 ,
(2.2)

In these expressions, kp is the winding number in

the heterotic string representation with intercept

scale α′H , while kq is the magnetic Kaluza-Klein
charge and kr is the magnetic winding charge.

Still in the heterotic picture, kq is the wrapping

number of the heterotic five-brane around T 4 ×
S1R, while kr corresponds to the same wrapping

number after performing a T-duality along the

circle of the sixth dimension. The shift in the

momentum Kaluza-Klein number m

m −→ m+Q′ +
kp

2
,

is dictated by the change of boundary conditions

at finite temperature, compared to a simple circle

compactification. The helicity charge Q′ distin-
guishes (four-dimensional) bosons and fermions.

The shift kp/2 is dictated then by modular in-

variance of the dual perturbative strings. Finally,

the mass formula (2.2) includes a subtraction in

the odd k winding sector of the effective Tp,q,r
string. We refer to Ref. [4] for a detailed discus-

sion.

The mass formula (2.2) depends on three

parameters: the six-dimensional heterotic string

coupling λH , the circle compactification R6 from

six to five dimensions, and the radius R which

will be identified with the inverse temperature.

It also depends on a scale: the duality invari-

ant scale is the (four-dimensional) Planck scale

κ =
√
8πM−1

P = (2.4×1018 GeV)−1. It is conve-
nient to introduce instead of λH , R6 and R the

(dimensionless) variables

t =
RR6

α′H
, u =

R

R6
, s = g−2H =

t

λ2H
,

(2.3)

which will be directly related to moduli of the

effective supergravity theory; gH is now the four-

dimensional heterotic string coupling. The vari-

ous α′ scales in the effective tension (2.1) are

α′H = 2κ
2s, α′IIA = 2κ

2t, α′IIB = 2κ
2u,

(2.4)

when expressed in Planck units. In addition,

string–string dualities have a simple formulation

using these variables. Before the temperature

shift onm, the BPS mass formula is invariant un-

der the exchanges s↔ t, s↔ u and t↔ u. These

operations correspond respectively to heterotic–

IIA, heterotic–IIB and IIA–IIB dualities in the

undeformed (by temperature) N = 4 supersym-

metric theories. In terms of s, t and u, the tem-

perature radius R is given by

R2 = α′Htu = 2κ
2stu (2.5)

and R is by construction identical in all three

string theories.

As a consequence of the BPS conditions and

the s ↔ t ↔ u duality symmetry in the unde-

formed supersymmetric theory, the integers p, q,

r are non-negative and relatively prime. Fur-

thermore, mk ≥ −1 because of the inversion

2
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of the GSO projection in the theory deformed

by temperature. Using these constraints, it is

straightforward to show that in general there are

two potential tachyonic series with m = −1 and
p = 1, 2:

p = 1, ∀(q, r) relat. primes :

R =

(√
2± 1√
2

)
1√
T1,q,r

,

p = 2, ∀(p, q, r) relat. primes :

R =

√
2

T2,q,r

(2.6)

One of the perturbative heterotic, type IIA or

type IIB potential tachyons corresponds to a crit-

ical temperature that is always lower than the

above two series. The perturbative Hagedorn

temperatures are:

heterotic tachyon : m = ∓1, kp = ±1, Q′ = 0

2πT =
(√
2− 1)

√
2

α′H
;

type IIA tachyon : m = 0, kq = ±1, Q′ = 0

2πT =
1√
2α′IIA

;

type IIB tachyon : m = 0, kr = ±1, Q′ = 0

2πT =
1√
2α′IIB

,

and T = (2πR)−1.
This discussion shows that the temperature

modification of the mass formula inferred from

perturbative strings and applied to the non-per-

turbative BPS mass formula produces the appro-

priate instabilities in terms of Hagedorn temper-

ature. We will now proceed to show that it is

possible to go beyond the simple enumeration of

Hagedorn temperatures. We will construct an

effective supergravity Lagrangian that allows a

study of the nature of the non-perturbative insta-

bilities and the dynamics of the various thermal

phases.

The above formula hold for supersymmetry

broken by temperature effects in Euclidean spa-

ce. They would similarly hold for a non-super-

symmetric four-dimensional Minkowski theory in

which supersymmetry would be broken by a par-

ticular Scherk-Schwarz compactification of the

fifth dimension.

3. Effective supergravity in

N=1 representation

In the previous section, we have studied the ap-

pearance of tachyonic states generating thermal

instabilities at the level of the mass formula for

N = 4 BPS states. To obtain information on

dynamical aspects of these instabilities, we now

construct the full temperature-dependent effec-

tive potential for the would-be tachyonic states.

Our procedure to construct the effective the-

ory is as follows. We consider five-dimensional

N = 4 theories at finite temperature. They can

then effectively be described by four-dimensional

theories, in which supersymmetry is spontane-

ously broken by thermal effects. Since we want to

limit ourselves to the description of instabilities,

it is sufficient to only retain, in the full N = 4

spectrum, the potentially massless and tachyonic

states. This restriction will lead us to consider

only spin 0 and 1/2 states, the graviton and the

gravitino1. This sub-spectrum is described by an

N = 1 supergravity with chiral multiplets.

The scalar manifold of a generic, unbroken,

N = 4 theory is [9]–[12](
Sl(2, R)

U(1)

)
S

× G/H,

G/H =

(
SO(6, r + n)

SO(6)× SO(r + n)
)
TI ,φA

.

(3.1)

The manifold G/H of the N = 4 vector multi-

plets naturally splits into a part that includes the

6r moduli TI , and a second part which includes

the infinite number n→∞ of BPS states φA.
In the manifold G/H , we are only interested

in keeping the six BPS states Z±A , A = 1, 2, 3,
which, according to our discussion in the previ-

ous section, generate thermal instabilities in het-

erotic, IIA and IIB strings. For consistency, these

states must be supplemented by two moduli T

and U among the TI ’s. We consider heterotic

1The four gravitinos remain degenerate at finite tem-

perature; it is then sufficient to retain only one of them.

3
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and type II strings respectively on T 4 × S16 × S15
and K3 × S16 × S15 , where S

1
6 is a trivial circle

and S15 is the temperature circle. The moduli T

and U describe the T 2 ≡ S15 × S26 torus. Thus,
r + n = 8 in the N = 4 manifold (3.1). To con-

struct the appropriate truncation of the scalar

manifold G/H, which only retains the desired

states ofN = 1 chiral multiplets, we use a Z2×Z2
subgroup contained in the SO(6) R-symmetry of

the coset G/H . This symmetry can be used as

the point group of an N = 1 orbifold compactifi-

cation, but we will only use it for projecting out

non-invariant states of the N = 4 theory2 with

r + n = 8.

The Z2 × Z2 projection splits H = SO(6) ×
SO(8) in SO(2)3×SO(2)×SO(3)2 and the scalar
manifold becomes(

Sl(2,R)
U(1)

)
S
×
(
Sl(2,R)
U(1)

)
T
×
(
Sl(2,R)
U(1)

)
U

×
(

SO(2,3)
SO(2)×SO(3)

)
Z+
A

×
(

SO(2,3)
SO(2)×SO(3)

)
Z−
A

,

(3.2)

A = 1, 2, 3. The tachyonic instabilities will how-

ever be controlled by the diagonal sub-manifold,(
Sl(2, R)

U(1)

)
S

×
(
Sl(2, R)

U(1)

)
T

×
(
Sl(2, R)

U(1)

)
U

×
(

SO(2, 3)

SO(2)× SO(3)
)
ZA

,

(3.3)

identifying Z+A = Z
−
A = ZA.

¿From the structure of the truncated scalar

manifold, we find that the Kähler potential is

K = − log[(S + S∗)(T + T ∗)(U + U∗)]
−2 log[1− 2ZAZ∗A + (ZAZA)(Z∗BZ∗B)].

(3.4)

The superpotential of the theory is obtained us-

ing the fact that at the level of N = 4 supergrav-

ity, finite temperature corresponds to a particu-

lar Scherk-Schwarz gauging, breaking supersym-

metry spontaneously. This gauging is defined by

a set of generalized (field-dependent) structure

constants, involving the compensating multiplets

which are used to define the G/H manifold. The

truncation to N = 1 supergravity delivers then

2Only untwisted states would contribute to thermal

instabilities.

the following expression for the superpotential:

W =
√
2
[
(1 − ZAZA)(1 − ZBZB)

+2(TU − 1)Z21 + 2SUZ22 + 2STZ23
]
.

(3.5)

¿From the Kähler potential and the super-

potential we can then compute the full effective

scalar potential and study its instabilities. Its

complicated expression simplifies drastically in

the directions relevant to instabilities. Introduc-

ing the variables

s = ReS, t = ReT, u = ReU,

zA = ReZA, x2 =
∑
A z
2
A,

HA =
zA

1− x2 , A = 1, 2, 3,

ξ1 = tu, ξ2 = su, ξ3 = st,

(3.6)

the resulting scalar potential becomes

V = V1 + V2 + V3,

κ4V1 =
4

s

[
(ξ1 + ξ

−1
1 )H

4
1

+
1

4
(ξ1 − 6 + ξ−11 )H21

]
,

κ4V2 =
4

t

[
ξ2H

4
2 +
1

4
(ξ2 − 4)H22

]
,

κ4V3 =
4

u

[
ξ3H

4
3 +
1

4
(ξ3 − 4)H23

]
.

(3.7)

This expression displays the duality properties

ξ1 → ξ−11 : heterotic temperature duality;

t ↔ u, H2 ↔ H3: IIA–IIB duality.

3.1 Phase structure of the thermal

effective theory

The scalar potential (3.7) derived from our effec-

tive supergravity possesses four different phases

corresponding to specific regions of the s, t and

u moduli space. Their boundaries are defined

by critical values of the moduli s, t, and u (or

of ξi, i = 1, 2, 3), or equivalently by critical val-

ues of the temperature, the (four-dimensional)

string coupling and the compactification radius

R6. These four phases are:

1. The low-temperature phase:

T < (
√
2− 1)1/2/(4πκ);

4
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2. The high-temperature heterotic phase:

T > (
√
2− 1)1/2/(4πκ), g2H < (2 +

√
2)/4;

3. The high-temperature type IIA phase:

T > (
√
2− 1)1/2/(4πκ), g2H > (2 +

√
2)/4

and R6 >
√
α′H ;

4. The high-temperature type IIB phase:

T > (
√
2− 1)1/2/(4πκ), g2H > (2 +

√
2)/4

and R6 <
√
α′H .

The distinction between phases 3 and 4 is, how-

ever, somewhat academic, since there is no phase

boundary at R6 =
√
α′H .

3.1.1 Low-temperature phase

This phase, which is common to all three strings,

is characterized by

H1 = H2 = H3 = 0, V1 = V2 = V3 = 0.

(3.8)

The potential vanishes for all values of the mod-

uli s, t and u, which are then restricted only by

the stability of the phase, namely the absence

of tachyons in the mass spectrum of the scalars

Hi. This mass spectrum is analysed in Ref. [4].

Stability requires then:

ξ1 > ξH = (
√
2 + 1)2, ξ2 > 4, ξ3 > 4.

(3.9)

¿From the above conditions, it follows in partic-

ular that the temperature must verify

T =
1

2πκ

(
1

ξ1ξ2ξ3

)1/4
<
(
√
2− 1)1/2
4πκ

. (3.10)

Since the (four-dimensional) string couplings are

s =
√
2g−2H , t =

√
2g−2A , u =

√
2g−2B ,

this phase exists in the perturbative regime of all

three strings. The relevant light thermal states

are just the massless modes of the five-dimen-

sional N = 4 supergravity, with thermal mass

scaling like 1/R ∼ T .
Alternatively, if this effective theory is con-

sidered as a six-dimensional Minkowski model

compactified on S1R × S1R6 , with spontaneously

broken supersymmetry, then the lowest S1R Kalu-

za-Klein modes have masses shifted by a quantity

proportional to the gravitino mass scale,

m23/2 =
1

4R2
,

which then controls both the Kaluza-Klein mass

shifts and the splitting of supersymmetric multi-

plets.

3.1.2 High-temperature heterotic phase

This phase is defined by

ξH > ξ1 >
1

ξH
, ξ2 > 4, ξ3 > 4, (3.11)

with ξH = (
√
2 + 1)2, as in Eq. (3.9). The in-

equalities on ξ2 and ξ3 eliminate type II insta-

bilities. In this region of the moduli, and after

minimization with respect to H1, H2 and H3, the

potential becomes

κ4V = −1
s

(ξ1 + ξ
−1
1 − 6)2

16(ξ1 + ξ
−1
1 )

.

It has a stable minimum for fixed s (for fixed

α′H) at the minimum of the self-dual
3 quantity

ξ1 + ξ
−1
1 :

ξ1 = 1, H1 =
1
2 , H2 = H3 = 0,

κ4V = − 1
2s
.

(3.12)

The transition from the low-temperature vacuum

is due to a condensation of the heterotic thermal

winding mode H1, or equivalently by a conden-

sation of type IIA NS five-brane in the type IIA

picture.

At the level of the potential only, this phase

exhibits a runaway behaviour in s. We will show

in the next section the existence of a stable solu-

tion to the effective action with non-trivial metric

and/or dilaton.

In heterotic language, s, t and u are partic-

ular combinations of the four-dimensional gauge

coupling gH , the temperature T = (2πR)
−1 and

the compactification radius from six to five di-

mensions R6. The relations are

s =
√
2g−2H , t =

√
2
RR6

α′H
, u =

√
2
R

R6
,

ξ1 = tu =
2R2

α′H
, ξ2 =

2R

g2HR6
, ξ3 =

2RR6
α′Hg

2
H

.

(3.13)

3With respect to heterotic temperature duality.

5
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As expected, ξ2 and ξ3 are related by radius in-

version, R6 → α′HR
−1
6 . Then, in Planck units,

R =
1

2πT
= κ
√
stu = κ[ξ1ξ2ξ3]

1/4,

R6 = κ

(
2st

u

)1/2
=

√
2κξ3

[ξ1ξ2ξ3]1/4
.

(3.14)

The first equation indicates that the tempera-

ture, when expressed in units of the four-dimen-

sional gravitational coupling constant κ is invari-

ant under string–string dualities.

In terms of heterotic variables, the critical

temperatures (3.11) separating the heterotic pha-

ses are

ξ1 = ξH : 2πT<H =
gH

21/4κ
(
√
2− 1),

ξ1 =
1

ξH
: 2πT>H =

gH

21/4κ
(
√
2 + 1).

(3.15)

In addition, heterotic phases are separated from

type II instabilities by the following critical tem-

peratures:

IIA : ξ2 = 4, 2πTA =
R6

4
√
2κ2

,

IIB : ξ3 = 4, 2πTB =
1

2g2HR6
.

(3.16)

Then the domain of the moduli space that avoids

type II instabilities is defined by the inequalities

ξ2,3 > 4. In heterotic variables,

2πT <
1

2α′Hg
2
H

min (R6 ; α
′
H/R6)

=
1

4
√
2κ2
min (R6 ; α

′
H/R6) .

(3.17)

Type II instabilities are unavoidable when T >

Tself−dual, with

2πTself−dual =
1

2g2H
√
α′H
=
21/4

4κgH
.

The high-temperature heterotic phase cannot be

reached4 for any value of the radius R6 if

T<H > Tself−dual,

or

g2H >

√
2 + 1

2
√
2
∼ 0.8536. (3.18)

4From low heterotic temperature.

In this case, T<H always exceeds TA and TB. Only

type II thermal instabilities exist in this strong-

coupling regime and the value of R6/
√
α′H de-

cides whether the type IIA or IIB instability will

have the lowest critical temperature, following

Eq. (3.16).

If on the other hand the heterotic string is

weakly coupled,

g2H <

√
2 + 1

2
√
2
, (3.19)

the high-temperature heterotic phase is reached

for values of the radius R6 verifying T
<
H < TA

and T<H < TB, or

2
√
2g2H(

√
2− 1) < R6√

α′H
<

1

2
√
2g2H(

√
2− 1) .
(3.20)

The large and small R6 limits, with fixed cou-

pling gH , again lead to either type IIA or type

IIB instability.

3.1.3 High-temperature type IIA and IIB

phases

These phases are defined by inequalities:

ξ2 < 4 and/or ξ3 < 4. (3.21)

In this region of the parameter space, either H2
or H3 become tachyonic and acquire a vacuum

value:

H22 =
4− ξ2
8ξ2

, κ4V2 = −1
t

(4− ξ2)2
16ξ2

, (3.22)

and/or

H23 =
4− ξ3
8ξ3

, κ4V3 = − 1
u

(4− ξ3)2
16ξ3

. (3.23)

In contrast with the high-temperature heterotic

phase, the potential does not possess stationary

values of ξ2 and/or ξ3, besides the critical ξ2,3 =

4.

Suppose for instance that ξ2 < 4 and ξ3 > 4.

The resulting potential is then V2 only and ξ2
slides to zero. In this limit,

V = − 1

stuκ4
,

and the dynamics of φ ≡ − log(stu) is described
by the effective Lagrangian

Leff = − e

2κ2

[
R+

1

6
(∂µφ)

2 − 2
κ2
eφ
]
.

6
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Other scalar components log(t/u) and log(s/u)

have only derivative couplings, since the poten-

tial only depends on φ. They can be taken to

be constant and arbitrary. The dynamics only

restricts the temperature radius κ−2R2 = e−φ,
R6 and the string coupling are not constrained,

besides inequalities (3.21).

In conformally flat gravity background, the

equation of motion of the scalar φ is

2̂φ = − 6
κ2
eφ.

The solution of the above and the Einstein equa-

tions defines a non-trivial gravitational φ-back-

ground. This solution will correspond to the

high-temperature type II vacuum. We will not

study this solution further here.

4. High-temperature heterotic

phase

The thermal phase relevant to weakly-coupled,

high-temperature heterotic strings at intermedi-

ate values of the radius R6 [see inequalities (3.19)

and (3.20)] has an interesting interpretation; we

study this here, using the information contained

in its effective theory, which is characterized by

Eqs. (3.12):

tu = 1, H1 =
1

2
, H2 = H3 = 0. (4.1)

These values solve the equations of motion of all

scalar fields with the exception of s. The result-

ing bosonic effective Lagrangian describing the

dynamics of s and gµν is

Lbos = − 1
2κ2

eR− e

4κ2
(∂µ ln s)

2 +
e

2κ4s
. (4.2)

For all (fixed) values of s, the cosmological con-

stant is negative since e−1V = −(2κ4s)−1 and
the apparent geometry is anti-de Sitter. But the

effective theory (4.1) does not stabilize s.

To study the bosonic Lagrangian, we first

rewrite it in the string frame. Defining the dila-

ton as

e−2φ = s, (4.3)

and rescaling the metric according to

gµν −→ 2κ2

α′H
e−2φgµν , (4.4)

one obtains5

Lstring frame = e−2φ

α′H

[
−eR+ 4e(∂µφ)(∂µφ)

+
2e

α′H

]
.

(4.5)

The equation of motion for the dilaton then is

R+ 4(∂µφ)(∂
µφ)− 42φ = 2

α′H
. (4.6)

Comparing with the two-dimensional sigma-mo-

del dilaton β-function [13] with central charge

deficit δc = D − 26, which leads to

R+ 4(∂µφ)(∂
µφ)− 42φ = − δc

3α′H
, (4.7)

we find a central charge deficit δc = −6, or, for
a superstring,

δĉ =
2

3
δc = −4. (4.8)

In the string frame, a background for theory (4.5)

has flat (sigma-model) metric gµν = ηµν and lin-

ear dilaton dependence [14] on a spatial coordi-

nate, say x1:

φ = φ0 +Qx
1, Q2 =

δĉ

8α′H
=
1

2α′H
(4.9)

(φ0 is a constant).

The linear dilaton background breaks both

four-dimensional Lorentz symmetry and four-di-

mensional Poincaré supersymmetry. Since super-

symmetry breaks spontaneously, one expects to

find goldstino states in the fermionic mass spec-

trum and massive spin 3/2 states. And, because

of the non-trivial background, the theory in the

high-temperature heterotic phase is effectively a

three-dimensional supergravity.

To discuss the pattern of goldstino states,

observe first that the supergravity extension of

the bosonic Lagrangian (4.2) includes a non-zero

gravitino mass term for all values of s since

m23/2 = κ
−2 eG =

1

4κ2s
=
1

2α′H
= Q2. (4.10)

Notice also that the potential at the vacuum ver-

ifies

V = − 2
κ4
eG = − 1

2κ4s
= − 2

κ2
m23/2. (4.11)

5Since the rescaling gµν → e−2σgµν leads to e[R +
6(∂µσ)2]→ e−2σeR.
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Consider then the transformation of fermions in

the chiral multiplet (zi, χi) 6:

δχLi =
1

2
κ(6∂zi)εR − 1

2
eG/2 (G−1)jiGj εL + . . . ,

(4.12)

omitting fermion contributions. In the high-tem-

perature heterotic phase,

GS = ∂

∂S
G = − 1

2s
, Ga = ∂

∂za
G = 0,
(4.13)

and the Kähler metric is diagonal with GSS =
(2s)−2. Since also

6∂s = −2Qsγ1, eG/2 = κQ,

only the fermionic partner χs of the dilaton s par-

ticipates in supersymmetry breaking, with the

transformation

δχs =

√
s

2
(1− γ1)ε. (4.14)

Supersymmetries generated by (1−γ1)ε are then
broken in the linear dilaton background in the x1
direction while those with parameters (1 + γ1)ε

remain unbroken. Starting then from sixteen su-

percharges (N = 4 supersymmetry) at zero tem-

perature, the high-temperature heterotic vacuum

has eight unbroken supercharges. Since the effec-

tive space-time symmetry is three-dimensional,

the high-temperature phase has N3 = 4 super-

symmetry: the linear dilaton background acts

identically with respect to the N = 4 spinorial

charges. It simply breaks one half of the charges

in each spinor. Thus, the high-temperature pha-

se is expected to be stable because of supersym-

metry of its effective field theory and because of

its superconformal content.

The mass spectrum of the effective super-

gravity theory in the linear dilaton background is

analyzed in Ref. [4]. One first observes that the

Kähler potential does not induce any mixing be-

tween the dilaton multiplet and other chiral mul-

tiplets. Then, the dilaton multiplet only plays an

active role in the breaking of supersymmetry.

This splitting of chiral multiplets does not

exist in the low-temperature phase H1 = H2 =

6The notation is as in Ref. [15], with sign-reversed G
and σµν = 1

4
[γµ, γν ]. Indices i, j, . . ., enumerate all chiral

multiplets (zi, χi).

H3 = 0, in which

GS = −(2s)−1, GT = −(2t)−1,
GU = −(2u)−1,

(4.15)

with

ψG =
1

2s
χs +

1

2t
χt +

1

2u
χu

as goldstino state7. The low-temperature phase

is symmetric in the moduli s, t and u: it is com-

mon to the three dual strings, in their pertur-

bative and non-perturbative domains. In con-

trast, the high-temperature heterotic phase only

exists in the perturbative domain of the heterotic

string, where s is the dilaton, and, by duality, in

non-perturbative type II regimes.

In the computation of the mass spectrum,

one needs then to isolate the contributions from

the non-zero GS in the mass matrices. Because
of the existence of couplings SUZ22 and STZ

2
3

in the superpotential, there will be mass split-

tings of the O’Raifeartaigh type in the sectors

Z2 and Z3. It turns out that all supersymme-

try breaking contributions to the mass matrices

are due to these superpotential couplings. We

then conclude that the spectrum is supersym-

metric in the perturbative heterotic and moduli

sector (T, U, Z1), and with O’Raifeartaigh pat-

tern in the non-perturbative sectors:

Z2 : m
2
bosons = m2fermions ± 2sum23/2,

Z3 : m
2
bosons = m2fermions ± 2stm23/2.

As already observed in Ref. [3], a similar analysis

applied to the perturbative heterotic string only

would have led to a supersymmetric spectrum.

In the special infinite heterotic temperature

limit discussed in Ref. [4], in which α′H → 0,
all massive states decouple and consequently one

recovers N = 2 unbroken (rigid) supersymmetry

in the effective (topological) field theory of the

remaining massless hypermultiplets.

5. The high-temperature heterotic

phase transition

As we already discussed, the high-temperature

phase of N = 4 strings is described by a non-
7Expressed using non-normalized fermions. Canonical

normalization of the spinors would lead to ψG = χs +

χt + χu.

8
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critical string with central charge deficit δĉ = −4,
provided the heterotic string is in the weakly-

coupled regime with g2H < g2c =
√
2+1
2
√
2
. One pos-

sible description is in terms of the (5+1) super-

Liouville theory compactified (at least) on the

temperature circle with radius fixed at the fer-

mionic point R =
√
α′H/2. The perturbative

stability of this ground state is guaranteed when

there is at least Nsc = 2 superconformal symme-
try on the world-sheet, implying at least N =

1 supersymmetry in space-time. However, our

analysis of the previous section shows that the

boson–fermion degeneracy is lost at the non-per-

turbative level, even though the ground state re-

mains supersymmetric.

An explicit example with Nsc = 4 super-
conformal was given in Ref. [16, 17]. It is ob-

tained when together with the temperature cir-

cle there is an additional compactified coordinate

on S1 with radius R6 =
√
α′H/2. These two

circles are equivalent to a compactification on

[SU(2) × SU(2)]k at the limiting value of level
k = 0. Indeed, at k = 0, only the 6 world-

sheet fermionic SU(2)× SU(2) coordinates sur-
vive, describing a ĉ = 2 system instead of ĉ = 6

of k → ∞, consistently with the decoupling of
four supercoordinates, δĉ = −4. The central
charge deficit is compensated by the linear mo-

tion of the dilaton associated to the Liouville

field, φ = Qµxµ with Q2 = 1/(2α′H) so that
δĉL = 8α

′
HQ

2 = 4.

Using the techniques developed in Refs. [18,

17], one can derive the one-loop (perturbative)

partition function in terms of the left- and right-

moving degrees of freedom on the world-sheet [4]:

ZLiouv[SU(2)× SU(2)]k=0 = Im τ
−1

η6 η18

× 1
8

∑
α,β,α,β,h,g

(−)α+β+αβθ2 [αβ] θ [α+hβ+g

]

× θ
[
α−h
β−g

]
θ
[
α+h

β+g

]
θ
[
α−h
β−g

]
θ
14
[
α
β

]
.

(5.1)

This partition function encodes a number of pro-

perties, which deserve some comments:

• The initial N = 4 supersymmetry is re-

duced to N = 2 (or N3 = 4) because of

the Z2 projection generated by (h, g). This

agrees with our effective field theory anal-

ysis of the high-temperature phase given

previously. The (perturbative) bosonic and

fermionic mass fluctuations are degenerate

due to the remaining N = 2 supersymme-

try.

• The h = 0 sector does not have any mass-
less fluctuation due to the linear dilaton

background or to the coupling to tempera-

ture. The linear dilaton background shifts

the bosonic masses (squared) by m23/2, so

that all bosons in this sector have masses

larger than or equal to m3/2. This is again

in agreement with our effective theory anal-

ysis. Similarly, fermion masses are shifted

by the same amount because of the S1R tem-

perature modification.

• In the h = 1, “twisted”, sector there are
massless excitations as expected from the

(5+1) super-Liouville theory [19, 20, 17].

• The 5 + 1 Liouville background can be re-
garded as a Euclidean five-brane solution

wrapped on S1 × S1 preserving one-half of
the space-time supersymmetries (N = 2).

• The massless space-time fermions in the
h = 1 sector are six-dimensional spinors

constructed with the left-moving superco-

ordinates Ψµ and β, γ superghosts. They

are also spinors under the SO(4)right con-

structed using four right-moving fermions

χI which parametrize the fifth and sixth

compactified coordinates, with R = R6 =√
α′H/2. They are also vectors under the

SO(28) constructed with 28 right-moving

fermions ΨA (cR = 14).

• Similarly, the massless space-time bosons
are SO(4)right spinors and SO(28) vectors.

They are also spinors under the SO(4)left
constructed with the left-moving fermions

χI for the fifth and sixth coordinates com-

pactified at the fermionic point. Together

with the massless fermions, they form 28

N = 2 hypermultiplets.

These 28 massless hypermultiplets are the only

states that survive in the zero-slope limit and

9
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their effective field theory is described by aN = 2

sigma-model on a hyper-Kähler manifold. This

topological theory arises in the infinite tempera-

ture limit of the N = 4 strings after the heterotic

Hagedorn phase transition.

Although the 5 + 1 Liouville background is

perturbatively stable due to the Nsc = 4 super-
conformal symmetry, its stability is not ensured

at the non-perturbative level when the heterotic

coupling is large:

g2H(xµ) = e
2(φ0−Qµxµ) >

√
2 + 1

2
√
2
∼ 0.8536.

(5.2)

Indeed, the high-temperature heterotic phase on-

ly exists if g2H(xµ) is lower than a critical value

separating the heterotic and Type II high-tempe-

rature phases. Thus one expects a domain wall

in space-time, at x0µ = 0, separating these two

phases: g2H(Q
µx0µ) ∼ 0.8536. This domain wall

problem can be avoided by replacing the (5 + 1)

super-Liouville background with a more appro-

priate one with the same superconformal prop-

erties, Nsc = 4, obeying however the additional
perturbative constraint g2H(xµ) << 1 in the en-

tire space-time.

Exact superstring solutions based on gauged

WZW two-dimensional models with Nsc = 4 su-
perconformal symmetries have been studied in

the literature [21, 22, 16, 17, 23]. We now con-

sider the relevant candidates with δĉ = −4.
The first one is the 5+1 super-Liouville with

δĉ = 4, already examined above. It is based on

the 2d-current algebra:

U(1)δĉ=4 × U(1)3 × U(1)R2=α′
H
/2

×U(1)R26=α′H/2
≡ U(1)δĉ=4 × U(1)3 × SO(4)k=1. (5.3)

Another class of candidate background con-

sists of the non-compact parafermionic spaces de-

scribed by gauged WZW models:[
SL(2, R)

U(1)V,A

]
k=4

×
[
SL(2, R)

U(1)V,A

]
k=4

×U(1)R2=α′
H
/2 × U(1)R26=α′H/2

≡
[
SL(2, R)

U(1)V,A

]
k=4

×
[
SL(2, R)

U(1)V,A

]
k=4

×SO(4)k=1,

(5.4)

where indices A and B stand for the “axial” and

“vector” WZW U(1) gaugings.

Then, many backgrounds can be obtained by

marginal deformations of the above, preserving

at least Nsc = 2, or also by acting with S- or
T-dualities on them.

As already explained, the appropriate back-

ground must verify the weak-coupling constraint:

g2H(xµ) = e
2φ <<∼ 0.8536 , (5.5)

in order to avoid the domain-wall problem, and

in order to trust the perturbative validity of the

heterotic string background. This weak-coupling

limitation is realized in the “axial” parafermionic

space. In this background, g2H(xµ) is bounded in

the entire non-compact four-dimensional space,

with coordinates {z, z∗, w, w∗}, provided the ini-
tial value of g20 = g

2
H(xµ = 0) is small.

1

g2H(xµ)
= e−2φ =

1

g20
(1+zz∗) (1+ww∗) ≥ 1

g20
.

(5.6)

The metric of this background is everywhere reg-

ular:

ds2 =
4dzdz∗

1 + zz∗
+
4dwdw∗

1 + ww∗
. (5.7)

The Ricci tensor is

Rz z∗ =
1

(1 + zz∗)2
, Rww∗ =

1

(1 + ww∗)2
.

(5.8)

The scalar curvature

R =
1

4(1 + zz∗)
+

1

4(1 + ww∗)

vanishes for asymptotically large values of |z| and
|w| (asymptotically flat space). This space has
maximal curvature when |z| = |w| = 0. This so-
lution has a behaviour similar to that of the Liou-

ville solution in the asymptotic regime |z|, |w| →
∞. In this limit, the dilaton φ becomes linear
when expressed in terms of the flat coordinates

xi:

φ = −Re[log z]− Re[logw] = −Q1|x1| −Q2|x2|,
(5.9)

where

x1 = −Re[log z], x2 = −Re[logw],
x3 = Im[log z], x4 = Im[logw],

10
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and the line element is ds2 = 4(dxi)
2. The im-

portant point here is that, for large values of |x1|
and |x2|, φ� 0, in contrast to the Liouville back-
ground in which φ = Q1x1+Q

2x2, the dilaton be-

comes positive and arbitrarily large in one half of

the space, violating the weak-coupling constraint

(5.5).

We then conclude that the high-temperature

phase is described by the above parafermionic

space, which is stable because of N = 2 super-

symmetry. Since it is perturbative everywhere,

the perturbative massive bosonic and fermionic

fluctuations are always degenerate. On the other

hand, the non-perturbative ones are superheavy

and decouple in the limit of vanishing coupling.

The asymptotic solution of the parafermionic

space suggests an alternative super-Liouville so-

lution with

φ = φ0 − Re[log z]− Re[logw]
= φ0 −Q1|x1| −Q2|x2|.

(5.10)

The appearance of the absolute value of |xi| gives
an upper bound on the coupling constant pro-

vided Qi are positive. However, the conical sin-

gularity at xi = 0 implies, via the dynamical

equation (4.6), the presence of curvature singu-

larities at these points,

Rz z∗ = −πδ(2)(z), Rww∗ = −πδ(2)(w).
(5.11)

In the above modified Liouville background, the

g2H(xµ) is bounded in the entire non-compact

four-dimensional space, provided the initial value

g20 = g
2
H(xµ = 0) = e

2φ0 is small.

6. Conclusions

N = 4 superstring theories at finite tempera-

ture T correspond to a particular gauging of the

N = 4 supergravity. Using techniques of N = 4

gauged supergravity, we were able to compute

the exact effective potential of all potential tachy-

onic modes, describing all three perturbative in-

stabilities of N = 4 strings (heterotic, type IIA

and type IIB) simultaneously. Hagedorn instabil-

ities of different perturbative string descriptions

appear as thermal dyonic 1/2-BPS modes that

become massless (and then tachyonic) at (above)

the corresponding Hagedorn temperature.

We find that the N = 4 thermal potential

has a global stable minimum in a region where

the heterotic string is weakly-coupled, so that the

four-dimensional string coupling g2H <
√
2+1
2
√
2
. At

the minimum, the temperature is fixed in terms

of the heterotic string tension, the four internal

supercoordinates decouple, and the system is de-

scribed by a non-critical superstring in six di-

mensions. Supersymmetry, although restored in

perturbation theory, appears to be broken at the

non-perturbative level.

On the heterotic or type IIA side, the high-

temperature limit corresponds to a topological

theory described by an N = 2 supersymmetric

sigma-model on a non-trivial hyper-Kähler man-

ifold.
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