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Abstract: We give a pedagogical introduction to integration techniques appropriate for

non-commutative spaces. A rather detailed discussion outlines the motivation for adopting the Hopf
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∫
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1. Introduction

It is a recurrent theme of recent years that the

physics of the not-so-distant future will probably

involve some species of ‘quantum space’, a fuzzy

substratum free of the singularities inherent in

the classical concept of a point. Then, if a long

tradition continues, the algebraic codification of

its properties will entail non-commutativity as an

essential ingredient. The first textbooks on this

new physics will probably include an appendix

with elements of integration techniques on the

relevant non-commutative spaces. We know little

yet about what these spaces might turn out to be

but there are general arguments that the coordi-

nate functions over them generate Hopf algebras.

While contemplating on the rest of the contents

of the book, we attempt here a first sketch of

a part of its appendix—a short, informal crash

course in some techniques in quantum integra-

tion.

Sec. 2 motivates the algebraic setting cho-

sen. Hopf algebras are close enough to classical

groups to guarantee a continuity of language and

yet accommodate naturally rather exotic geomet-

rics. Assuming a convinced reader, Sec. 3 then

goes on with the basics of Hopf algebra integra-

tion, while Sec. 4 and 5 extend the discussion

to the braided case. We rely on simple, detailed

examples to illustrate the proposed techniques.

2. Quantum Points + Translations

= Hopf Algebras

2.1 Quantum points

Once we have decided to abandon classical mani-

folds we have to make up our mind on what kind

of spaces we would like to consider. It is com-

mon place by now to emphasize that, having ad-

mitted non-commutativity in the algebra of func-

tions over the ‘space’ under consideration, we can

no longer talk about an underlying manifold con-

sisting of points—what we are left with is the al-

gebra of functions itself. What needs perhaps to

be also stressed, to dispel a certain feel of unease

that comes with a pointless space, is that, as we

will see in the case of Hopf algebras, the ‘mani-

fold’ still consists of well-defined entities, which

one could think of as ‘quantum points’. To make

this more precise, consider a non-commutative,

in general, algebra (A, m, 1A), where A is a vec-
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tor space andm a multiplication map, which will

play in the sequel the role of the algebra of func-

tions over some ‘quantum manifold’—we will de-

note its elements by a, b, etc.; 1A is the unit func-
tion. We concetrate on the conceptual aspects of

the problem and take A to be finite-dimensional,
avoiding potential divergences of the sums that

enter in our discussion. Nevertheless, we find the

picture of a continuous group manifold invaluable

in developing some intuition and, although the

latter involves an infinite-dimensional algebra of

functions, we will keep it in the back of our mind

as a guide. Dual to A, in a sense to be made
precise shortly, is a ‘quantum space’ H, with el-
ements g, h, x, y etc.—these are the ‘quantum

points’ referred to earlier and among them there

is an identity 1H. Functions evaluated on points
give numbers, even in the quantum case. We for-

malize this by introducing an inner product, or

pairing, 〈·, ·〉 between A and H, with values in C,
via 〈h, a〉 ≡ a(h) ∈ C for any function a ∈ A and
‘point’ h ∈ H.
One might ask at this stage, how can func-

tions valued in C be non-commutative? The an-

swer lies actually in the dual. To see this, con-

sider a classical point hcl and evaluate on it the

product of functions ab: (ab)(hcl) = a(hcl)b(hcl)

which is equal to (ba)(hcl). What happens is that

when a classical point sees a product of functions,

it ‘splits’ in two copies of itself, hcl → hcl ⊗ hcl,
and feeds each of them as argument to each of

the factors in the product

(ab)(hcl) ≡ (a⊗ b)(hcl ⊗ hcl)
= a(hcl)b(hcl) . (2.1)

If the underlying manifold consists in its entirety

of such classical points, the functions ab and ba

agree when evaluated on all points and can (and

should) therefore be considered equal. The con-

clusion is that the function algebra over a clas-

sical space is commutative because the classical

coproduct map

∆ : H → H⊗H; hcl 7→ hcl ⊗ hcl (2.2)

is symmetric under the exchange of its two tensor

factors. To put our notation in some use, we

rewrite (2.1)

〈hcl, ab〉 ≡ 〈hcl,m(a⊗ b)〉

= 〈∆(hcl), a⊗ b〉
= 〈hcl ⊗ hcl, a⊗ b〉
= 〈hcl, a〉 〈hcl, b〉
= a(hcl)b(hcl) . (2.3)

Notice how, in the second line above, the coprod-

uct map ∆ in H is dual to the product map
m in A. We see that, in some sense, classical
points are quite primitive, in that the only infor-

mation they carry is about their own position—

when confronted with products of functions they

can only produce multiple copies of themselves.

Quantum points can do better than this. When

paired with products of functions they split, via

a coproduct map as above, in two other quantum

points, h 7→ ∆(h) ≡ h(1)⊗h(2), with h(1)⊗h(2) 6=
h(2) ⊗ h(1) in general, and feed each of them in
the two factors of the product

〈h, ab〉 =
〈
h(1), a

〉 〈
h(2), b

〉
6=
〈
h(2), a

〉 〈
h(1), b

〉
= 〈h, ba〉 . (2.4)

Consequently, ab 6= ba in general. By examin-
ing all the values of all the functions in A, one
can nevertheless establish commutation relations

between them, e.g. if ba systematically returns

twice the value of ab, on all quantum points, one

imposes the relation ba = 2ab in the algebra. The

rule for assigning the two points h(1) ⊗ h(2) to h
(i.e. the coproduct ∆(h)) cannot of course be ar-

bitrary. If the product in A is to be associative,
∆ has to be coassosiative

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆ . (2.5)

The identity point is taken to be classical (or

grouplike): ∆(1H) = 1H ⊗ 1H. We introduce
also a counit ε in H. ε(h) is defined to be the
value of the unit function on h: ε(h) ≡ 〈h, 1A〉.
This can be different from 1 since h can be an

arbitrary linear combination of elements in H.
Just like (A, m, 1A) defines an algebra, the triple
(H, ∆, ε) defines a coalgebra. Notice that we
don’t have, at this point, any notion of prod-

uct of quantum points—H is not yet an algebra
(and, similarly, A is not yet a coalgebra).
Experimenting a little with the above, one

discovers that ∆(h) has, in general, to involve
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a sum over pairs of points, rather than a single

pair. We continue to denote such a sum by h(1)⊗
h(2) i.e.

∆(h) =
∑
i

hi(1) ⊗ hi(2) ≡ h(1) ⊗ h(2) . (2.6)

The coassociativity mentioned above says that

h(1)(1) ⊗ h(1)(2) ⊗ h(2) = h(1) ⊗ h(2)(1) ⊗ h(2)(2)
≡ h(1) ⊗ h(2) ⊗ h(3) ,

(2.7)

where in the last line we have renumbered se-

quentially the subscripts, given that the partic-

ular order of applying the successive ∆’s does

not matter. There are two points that should be

kept in mind to avoid confusion with the above

notation: first, h(1)⊗h(2) in (2.6) and in the sec-
ond line of (2.7) denotes two different things and

second, there are n − 1 implied summations in
h(1) ⊗ . . .⊗ h(n).

2.2 Translations

We continue building up an arena for physics

by introducing a concept of translations for our

functions—it is in terms of this that the invari-

ance of our integral will be expressed (there are

of course other uses for it as well). Quite gener-

ally, one can describe (left) translated functions

by introducing a new algebra T that acts on the
points in H via a left action

. : T ⊗H → H ,
t⊗ h 7→ t . h , (2.8)

with

(tu) . h = t . (u . h) , (2.9)

t, u ∈ T and h ∈ H. Then the translated func-
tion a ∈ A by t, which we write as at, is de-
fined via at(h) ≡ a(t . h). The simplest choice
for T is H itself with . a left multiplication, in
other words we can endow H with an associative
product (turning it into an algebra) and define

ah(g) ≡ a(hg). From this we can abstract the no-
tion of an ‘indefinitely translated’ function a(·)(·),
where the argument in the subscript defines the

translation and the second argument evaluates

the translated function. Such a function can be

written as a sum over tensor products of single-

argument functions

a(·)(·) ≡
∑
i

ai(1)(·)⊗ ai(2)(·)

≡ a(1) ⊗ a(2) , (2.10)

which we realize as a coproduct in A. Coassocia-
tivity of this coproduct is dual to the associativ-

ity of the product in H, which itself guarrantees
the general property (2.9) of an action. ∆ can

equally well be thought of as describing transla-

tions from the right, in this case the element ofH
that describes the translation is fed in the second

tensor factor and the resulting right-translated

function accepts arguments in the first. We can

also introduce a counit ε in A: ε(a) is the value
of a at the identity. Since the identity point is

classical, ε supplies a one-dimensional representa-

tion for A: ε(ab) = ε(a)ε(b). Notice that, again,
product and coproduct are dual

〈hg, a〉 =
〈
h⊗ g, a(1) ⊗ a(2)

〉
. (2.11)

It is rather natural to impose on translations a

certain covariance property: they should respect

the ‘quantum nature’ of A i.e. the ‘indefinitely’
translated functions should obey the same com-

mutation relations as the original ones. This im-

plies that the coproduct should be an algebra

homomorphism

∆(ab) = ∆(a)∆(b)

(ab)(1) ⊗ (ab)(2) = a(1)b(1) ⊗ a(2)b(2) .
(2.12)

By looking at 〈hg, ab〉 one finds that the same
should hold in H—this turns A and H into bial-
gebras. What is missing in order to turn both

of them into full-fledged Hopf algebras is the an-

tipode S. This can be useful if, after translating

our functions by some h, we change our mind

and wish to undo the translation. When H is a
classical group (discrete or not), S(h) = h−1 and
A inherits an antipode via S(a)(h) ≡ a(S(h)).
In the general case we define S via

S(h(1))h(2) = ε(h) = h(1)S(h(2)) (2.13)

(similarly for A) and it still holds

〈S(h), a〉 = 〈h, S(a)〉 . (2.14)
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S is an antihomomorphism, S(hg) = S(g)S(h).

Notice that S2 is not necessarily the identity map;

this can be a nuissance in transcribing classical

results that hold for groups in the general Hopf

algebra case but it is also the source of unex-

pected novelties. We will often pick a linear ba-

sis {f i}, i = 0, . . . , N in A. This means that any
function in A can be written as a linear com-
bination, with coefficients in C, of the f i—we

choose f0 = 1A, the unit function. Similarly,
{ei}, i = 0, . . . , N , will be a dual linear basis in
H with

〈
ei, f

j
〉
= δi

j ; e0 will denote the identity

1H.
To summarize, we started from a primitive

notion of ‘quantum space’ and the functions de-

fined over it and saw that, in general, the former

forms a coalgebra while the latter an algebra.

Further introducing translations and requiring

their compatibility with the algebra of functions

results in a symmetric structure, turning both

the space and the functions over it into bialge-

bras. Adding a notion of inverse we end up with

a pair of dual Hopf algebras. We illustrate the

above concepts in the following two examples.

Example 2.1 Discrete classical space

H in this case is a discrete group algebra. It
contains n classical points {ei}, i = 0, . . . , n− 1
and their linear combinations. The coproduct is

∆(ei) = ei ⊗ ei (no summation over i). (∆ ⊗
id) ◦ ∆(ei) is given by ei ⊗ ei ⊗ ei (no summa-
tion) and agrees with (id⊗∆) ◦∆(ei). All prod-
ucts eiej are contained in the set {ei}, hence H
is finite-dimensional, linearly spanned by {ei}.
The group law can then be given in terms of the

constants Mij
k via eiej = Mij

kek. The role of

derivatives is played by the difference operators

eij ≡ ei−ej, i < j, with ∆(eij) = eij⊗1+1⊗eij
and ε(eij) = 0, S(eij) = −eij.
A is generated by the functions {f i}, i =

0, . . . , n − 1, with
〈
ei, f

j
〉
= δi

j , and is com-

mutative. f i is is a delta-like function peaked

over ei, hence f
if j = 0 whenever i 6= j while

each f i squares to itself. Since no new functions

can be produced by multiplication, A is linearly
spanned by the set {f i}. The coproduct in A is
given by the same numerical constants that give

the product in H: ∆(f i) = Mjkif jfk. Notice
that (ei ⊗ f i)(ej ⊗ f j) = ei ⊗ ei ⊗ f i, which in

turn is equal to ∆(ei)⊗ f i. ei⊗ f i is the canoni-
cal element and the above identity is in the spirit

of ea+b = eaeb.

The unit function is 1 on every ei so that

ε(ei) = 1. All f
i, except f0, vanish on the iden-

tity hence ε(f0) = 1, ε(f i) = 0, i 6= 0. For
the antipode we have S(ei) = ei

−1 ≡ Sijej and
S(f i) = Sj

if j . 2

Example 2.2 A discrete ‘quantum space’

H is generated by 1, x and y with x2 = 0, y2 = y
and yx = −xy + x. The coproduct is

∆(x) = x⊗ 1 + 1⊗ x− 2y ⊗ x
∆(y) = y ⊗ 1 + 1⊗ y − 2y ⊗ y , (2.15)

i.e. x, y are of the difference operator type. The

rest of the Hopf structure is ε(x) = ε(y) = 0

and S(x) = −(1 − 2y)x, S(y) = y (notice that
S2(x) = −x). H is spanned linearly by {ei} =
{1, x, y, xy}. Writing eiej = (Mi)jkek and ∆(ei) =
(W k)i

j
ejek we find

M0 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 M1 =



0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0




M2 =



0 0 1 0

0 1 0 −1
0 0 1 0

0 0 0 0


 M3 =



0 0 0 1

0 0 0 0

0 0 0 1

0 0 0 0



(2.16)

W0 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 W1 =



0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0




W2 =



0 0 0 0

0 −2 0 0
1 0 −2 0
0 0 0 0


 W3 =



0 0 0 0

0 0 0 0

0 0 0 0

1 0 −2 0


 .

The dual Hopf algebra A is spanned by {f i} =
{1, a, b, ab}, with commutation relations a2 = 0,
b2 = −2b and ba = −ab−2a. The Hopf structure
is

∆(a) = a⊗ 1 + 1⊗ a+ b⊗ a
∆(b) = b⊗ 1 + 1⊗ b+ b⊗ b (2.17)
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and ε(a) = ε(b) = 0, S(a) = a(1 + b), S(b) = b

(so that S2(a) = −a). 2

Background material on Hopf algebras can be

found in [12] and [9].

3. Quantum Integrals

3.1 A trace formula

Having codified translations in the coproduct, we

now define a right integral in the Hopf algebra A
as a map from functions to numbers, 〈·〉R : A →
C, which is invariant under right translations

〈a(1)〉Ra(2) = 〈a〉R1A (3.1)

for all a in A. We call 〈·〉R trivial if all 〈f i〉R are
zero. Left integrals are similarly defined via

a(1)〈a(2)〉L = 1A〈a〉L . (3.2)

Radford and Larson [5] give the following trace

formula for the right integral

〈a〉Rtr ≡
〈
S2(ei), f

ia
〉
, (3.3)

where ei ⊗ f i is the canonical element, as they
warn though, it does not always produce a non-

trivial result.

Example 3.1 Integration on discrete groups

Let’s try (3.3) in a classical setting. S2 = id in

this case and 〈a〉Rtr =
〈
ei, f

ia
〉
=
∑
i f
i(ei)a(ei) =∑

i a(ei) which is the standard formula for the

integral on the discrete group H, normalized so
that 〈1A〉Rtr = |H|. 2

Notice that (3.3) defines a (possibly trivial)

invariant integral for every Hopf algebra, without

requiring that it be of the function type. Conse-

quently, we can use it to evaluate the integral of

a group element or a difference operator. What

is, classically, the meaning of such an integral?

Just like the integral of a function is the sum of

its pairings with all the elements of a basis in the

dual, the integral of a group element is the sum

of the values, on that particular element, of all

the functions in a basis in the dual, and likewise

for a difference operator.

Example 3.2 Integral of a group element

We use again (3.3), with S2 = id, to compute

the integral of a group element ei. We have

〈ei〉 =
〈
eiej , f

j
〉
= Mij

k
〈
ek, f

j
〉
= Mij

j = δi
0,

since from eiej = ej it follows that ei = e0 =

1. For the difference operators eij we get then

〈eij〉 = δi0. 2

Example 3.3 Failure of the trace formula

We compute the integral given by (3.3) for the

Hopf algebra of Ex. 2.2. Using the definition of

W k given in the above example we find from (3.3)

〈fk〉Rtr = Tr(S2W k) . (3.4)

Inspection of the matrices given explicitly in (2.16)

shows that 〈fk〉Rtr = 0, k = 0, . . . , 3. 2

Further material for this section can be found

in [6, 11, 13].

3.2 A non-trivial trace formula

We want to analyze now under what conditions

does (3.3) fail and try, if possible, to modify it so

that it furnishes always a non-trivial result. Our

approach will be based on a ‘vacuum expectation

value’ treatment of the integral [15]. To arrive

at such a formulation, we first remark that the

invariance relation (3.1), when paired with an

arbitrary x in H gives

〈x . a〉 = ε(x)〈a〉 , (3.5)

where x . a ≡ a(1)
〈
x, a(2)

〉
. For x a group-like

element, x. a is the function a (right) translated

by x. When x is a difference-like operator, x . a

is the ‘derivative’ of a along x. In the first case,

ε(x) = 1 and (3.5) states that the integral of the

translated function is equal to that of the original

one while in the second, ε(x) = 0 and we get that

the integral of a derivative is zero.

Given that x acts on products of functions

via its coproduct, x . (ab) = (x(1) . a)(x(2) . b),

one can form a new algebraAoH, the semidirect
product of A and H, containing these as subalge-
bras and with cross relations

xa = (x(1) . a)x(2)

= a(1)
〈
x(1), a(2)

〉
x(2) . (3.6)
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The inverse relations are

ax = x(2)
〈
x(1), S

−1(a(2))
〉
a(1) . (3.7)

Consider now two formal symbols |ΩH〉 and |ΩA〉,
the H and A-right vacua respectively [4], which
satisfy

x|ΩH〉 = ε(x)|ΩH〉
a|ΩA〉 = ε(a)|ΩA〉. (3.8)

Left vacua 〈ΩH|, 〈ΩA| are defined analogously.
In terms of these, the inner product 〈x, a〉 can be
given as the ‘expectation value’

〈ΩA|xa|ΩH〉 = 〈ΩA|a(1)
〈
x(1), a(2)

〉
x(2)|ΩH〉

= 〈x, a〉 ,

if we normalize the vacua so that 〈ΩA|ΩH〉 =
〈ΩH|ΩA〉 = 1. Similarly, the left action of H on
A can be written as

x . a|ΩH〉 = xa|ΩH〉 . (3.9)

We can now write a symbolic expression for our

‘vacuum’ integral

〈a〉Rv ∼ |ΩA〉〈ΩH|a|ΩH〉〈ΩA|. (3.10)

Invariance in the form (3.5) follows from (3.9)

and the left version of the first of (3.8). This can

be turned into something more than symbolic if

we borrow from [3] the result that the operators

|ΩA〉〈ΩH|, |ΩH〉〈ΩA| can be represented in AoH
as

|ΩH〉〈ΩA| ∼ E ≡ S−1(f i)ei ,
|ΩA〉〈ΩH| ∼ Ē ≡ S2(ei)f i . (3.11)

Indeed, one easily finds that Ea = ε(a)E, xE =

ε(x)E etc., as well as that E2 = E, Ē2 = Ē.

Then (3.10) can be given a precise meaning by

defining [2]

〈a〉Rv |ΩA〉〈ΩA| ≡ ĒaE . (3.12)

This needs perhaps some explanation. The r.h.s.

above is an element of A o H that realizes the
operator |ΩA〉〈ΩA|. The latter is unique up to
scale, and hence, for different inputs a in the

l.h.s., we get numerical multiples of the same op-

erator in the r.h.s. (after using the commutation

relations in A o H to bring the r.h.s. in some
standard ordering). After choosing a normaliza-

tion for |ΩA〉〈ΩA|, we may define 〈a〉Rv to be the
numerical constant that multiplies |ΩA〉〈ΩA| in
the l.h.s. above. Notice that when the left and

right integrals coincide, ĒaE is a pure function

and |ΩA〉〈ΩA| is realized in A. The connection of
this definition with the trace formula is revealed

by computing

ĒaE = S2(ei)f
iaE

= f i(1)a(1)

〈
S2(ei), f

i
(2)a(2)

〉
E

= fn
〈
en, f

i
(1)a(1)

〉〈
S2(ei), f

i
(2)a(2)

〉
E

= fn
〈
enS

2(ei), f
ia
〉
E . (3.13)

The quantity multiplying E in the last line above

is a modified trace which is both right-invariant

and non-trivial. Indeed, invariance is easily ver-

ified along the lines of the proof of the original

trace formula, Eq. (3.3). For the non-triviality,

we set Θil ≡
〈
eiS

2(ek), f
kf l
〉
and compute

S2(ei)f
i = f i(1)

〈
S2(ei(1)), f

i
(2)

〉
S2(ei(2))

= f i(1)f
j
(1)

〈
S2(ei), f

i
(2)f

j
(2)

〉
S2(ej)

= S2(f i)f j
〈
eiS

2(ek), f
kf l
〉

S2(ej)S
2(el)

= ΘliS
2(f i)f jS2(ej)S

2(el) (3.14)

from which we may conclude that not all Θli are

zero, since S2(ei)f
i 6= 0 (see [13] for an alterna-

tive proof). Some Hopf algebra trickery shows

that
〈
xS2(ei), f

ia
〉
supplies actually a left inte-

gral for x (as well as a right one for a), so it

is proportional to their product. Then (3.3) re-

turns the integral of a multiplied by the integral

of the unit element in the dual and will hence fail

whenever the latter vanishes. Our modified trace

above avoids this by summing over all integrals

in the dual and ‘tagging’ each by the (linearly

independent) fn. The appearance of |ΩA〉〈ΩA|
in (3.12) might look a little strange now, but it

is actually a blessing in disguise. When later we

look for an integral in braided Hopf algebras, it

will become apparent that a purely numerical in-

tegral cannot, in general, transform covariantly

and the operator |ΩA〉〈ΩA| that the braided ana-
log of the above construction produces exactly

6
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compensates for the fact that we do not explic-

itly display the measure used in our integrations.

Example 3.4 The modified trace

Continuing Ex. 2.2, we derive the commutation

relations of (3.6)

xa = 1 + b+ ax

xb = −(b+ 2)x
ya = ay

yb = 1 + b− (b+ 2)y . (3.15)

We also compute the vacuum projectors in (3.11)

E = 1− ax(1− 2y) + by − abx(1− y)
Ē = 1− xa+ yb− xyab . (3.16)

One easily verifies that they satisfy indeed Ea =

ε(a)E etc.. A straightforward calculation now

gives

〈1A〉Rv |ΩA〉〈ΩA| = ĒE = 0
〈a〉Rv |ΩA〉〈ΩA| = ĒaE = −abg
〈b〉Rv |ΩA〉〈ΩA| = ĒbE = 0
〈ab〉Rv |ΩA〉〈ΩA| = ĒabE = abg (3.17)

where g ≡ 1 − 2y. The element abg ∈ A o H
realizes (up to scale) the operator |ΩA〉〈ΩA|. We
fix the normalization so that 〈a〉Rv = −1 and
〈ab〉Rv = 1, the other two integrals being zero.
We can also treat E above as a spectator to find

ĒaE = −abE and ĒabE = abE, thus isolating
the right delta function δRA = ab. A left invariant
integral in A is given by 〈·〉Lv = 〈S(·)〉Rv . We find
〈ab〉Lv = −1, all other integrals being zero.
Noting that x / a ≡

〈
x(1), a

〉
x(2) satisfies

Ex / a = Exa, we may compute a left-invariant

integral in H via

〈z〉Lv |ΩH〉〈ΩH| = EzĒ z ∈ H . (3.18)

We find that the only non-zero integral is

〈z〉Lv |ΩH〉〈ΩH| = ExyĒ
= −(1 + b)x(1 − y) ; (3.19)

notice that 〈z〉L ∝ 〈z, δRA〉. The r.h.s. of (3.19)
realizes |ΩH〉〈ΩH| in A oH. A right integral in
H is given, as before, via the antipode. 2

4. Hopf Algebras + Statistics

= Braided Hopf Algebras

4.1 The universal R-matrix

It is a rule of thumb in algebra that the interest-

ing way to generalize a symmetry or constraint is

by relaxing it ‘up to similarity’. Deforming the

coproduct of our ‘points’ into a non-cocommu-

tative one gives rise to a rich algebraic structure

when the two coproducts ∆ and ∆′ ≡ τ ◦∆ (with
τ the permutation map) are related by conjuga-

tion

∆′(x) = R∆(x)R−1 (4.1)

for all x in H. Here R ∈ H ⊗H is the universal
R-matrix which satisfies additionally

(∆⊗ id)R = R13R23 (4.2)

(id⊗∆)R = R13R12 . (4.3)

A Hopf algebra H for which an R exists is called
quasitriangular. Consider the collection of (left)

representation spaces of such anH (left H-modu-
les). These are vector spaces (possibly with ad-

ditional structure, like product, coproduct etc.)

on which H acts from the left. This collection
is equipped with a tensor product operation that

combines two H-modules V , W to form a new

one, their tensor product V ⊗ W , on which H
acts via its coproduct

h . (v ⊗ w) = (h(1) . v)⊗ (h(2) . w) . (4.4)

Another way to obtain new modules from old

ones, at least in the classical case, is via the trans-

position τ : V ⊗W 7→ W ⊗ V . This operation
commutes, in the classical case, with the action

of H since ∆′ = ∆. To obtain an analogous op-
eration in the Hopf algebra case, we need to em-

ploy a braided transposition Ψ which consists in

first acting with R on the tensor product of the
modules to be transposed and then effecting τ

Ψ(v ⊗ w) ≡ τ(R(1) . v ⊗R(2) . w)
= R(2) . w ⊗R(1) . v , (4.5)

where we have written R ≡ R(1) ⊗ R(2) (sum-
mation implied). Things get interesting when

R′ ≡ τ(R) = R(2) ⊗ R(1) 6= R−1, which is
often the case. This results in Ψ2 6= id (by

7
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Ψ2 we mean ΨV⊗W ◦ ΨW⊗V ). It is as though
the objects we transpose were hanging from the

ceiling by threads and successive transpositions

were recorded in the entanglement of the threads.

Taking this picture seriously, we will adopt a di-

agrammatic notation in which Ψ, Ψ−1 look like

wv

w v(a) (b)

wv

w v(a’) (b’)

where Ψ(v⊗w) ≡ w(a) ⊗ v(b) and Ψ−1(v⊗w) ≡
w(a

′) ⊗ v(b′). In other words, we imagine the al-
gebra elements flowing from top to bottom along

the braids, with over- and under-crossings repre-

senting the effect of Ψ and Ψ−1 respectively. We
see that the existence of an R in H endows all al-
gebraic structures covariant under the action of

H with a natural statistics. The usual bosonic
and fermionic rules for transposition can be put

in this language but, in general, Ψ can be much

more drastic, as the action of R that precedes
that of τ if often far from trivial.

4.2 Braided Hopf algebras

One might think now of developing an algebra,

involving products, coproducts etc., in which all

typographical transpositions are effected by Ψ,

Ψ−1, rather than τ . Braided Hopf algebras are
a transcription of ordinary Hopf algebras in this

braided setting [10]. Thus, one has a braided

antipode, braided coproduct etc., which satisfy

braided versions of the standard Hopf algebra ax-

ioms. Denoting e.g. the product and coproduct

by the first two of the vertices below

a
(1)

a
(2) x   (a   )

(1)

(a)

(1)
(x   )

(2)
a

(2)

(b)

x aaba

ab

one gets the braided version of the multiplicativ-

ity of the coproduct expressed by the third dia-

gram above. Similarly, we denote ε, S, S2, S−1,
S−2 respectively by

and express the braided analogues of e.g.

a(1)ε(a(2)) = a

S(a(1))a(2) = ε(a)

S(ab) = S(b)S(a)

by the diagrams

respectively (the output braid of the counit is

supressed since, being a number, it braids triv-

ially). Covariance is codified in the requirement

that one should be able to move crossings past

all vertices and boxes, e.g. the relations

should hold. The inner product and the canoni-

cal element look like

ax

e
if i

For the product-coproduct duality we adopt a

convention which is slightly different from the

one we used before, as shown below

x a bx ba x y a x y a

As a result, to get the unbraided expression that

corresponds to any of the diagrammatic iden-

tities that appear in the following, one should

translate the diagrams, ignoring the braiding in-

formation, into the language of Sect. 3 and then

set ∆→ ∆′, S → S−1. Notice that all diagrams
reveal new (dual) information when viewed up-

side down. The commutation relations in the

semidirect product (i.e. the braided analogue of

8
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(3.6)) are

(2)
(a’) x

(1)

(b’)
< x ,a >

(2) (1)
a

x a x a

xa

a

a x

x

>

a x

x(a) a
(2)
(b) <x

(2)
(a) ,Sa (b)

(1)(1)

A detailed exposition of the basics (and more) of

braided Hopf algebras can be found in [10] and

references therein.

5. Braided Integrals

5.1 Problems with braiding

In the case of braided Hopf algebras, the integral

presents an additional complication. Defining it,

along the lines of (3.1), as a number, implies that

it braids trivially, regardless of the transforma-

tion properties of the integrand. This can easily

be seen to lead to problems when combined with

the translational invariance property, as the fol-

lowing toy example shows.

Example 5.1 The fermionic line

Consider the algebra A of functions on the clas-
sical fermionic line. It is generated by 1 and a

fermionic variable ξ, with ξ2 = 0, and admits the

braided coproduct ∆(ξ) = ξ⊗1+1⊗ξ, with Ψ the
standard fermionic braiding, Ψ(ξ ⊗ ξ) = −ξ ⊗ ξ
(Ψ2 = id) in this case). ε(ξ) = 0 and S(ξ) = −ξ.
Representing the integral with a rhombus, we

want it to satisfy

a b a b

(c) (d)
ba a >

(d)
><b

(c)
<

(5.1)

Taking both inputs to be ξ, and using the Berezin

result 〈ξ〉 = 1, we get for the l.h.s.

Ψ(〈ξ〉 ⊗ ξ) = Ψ(1⊗ ξ)
= ξ ⊗ 1

while the r.h.s. gives

(id⊗〈·〉) ◦Ψ(ξ ⊗ ξ) = −(id⊗〈·〉)(ξ ⊗ ξ)
= −ξ ⊗ 1 .

The problem originates in the absense of any ex-

plicit mention, in our algebraic treatment, to the

‘measure’ dξ. 2

More material on braided integrals is in [1, 7, 8].

5.2 The braided vacuum projectors

As we mentioned at the end of Sec. 3, the ‘vac-

uum expectation value’ approach suggests a so-

lution [2]. Our starting point is the braided ana-

logue of the vacuum projectors of (3.11). Denot-

ing them by E , Ē we find

E = Ē = (5.2)

We give, in Fig. 1, the proof that Ea = Eε(a), for
all a in A—the rest of the required relations are
proved similarly. Forming ĒaE and treating
E as a spectator, we get a glimpse of the inner
workings of the rhombus

(5.3)

The output in the above diagram is a multiple

of the delta function, the coefficient being the

numerical integral of the input. Again, one can

show that this provides a non-trivial integral for

all finite dimensional braided Hpf algebras, tran-

scribing either (3.14) or the more elegant proof

in [13]. Opting for the latter we find

1

(5.4)

9
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Figure 1: Proof of Ea = Eε(a), a ∈ A

from which non-triviality follows. The analogue

of (3.3) is easily deduced from (5.3)

〈a〉Rtr =

a

(5.5)

and a direct proof of its invariance is shown in

Fig. 2.

Example 5.2 The Berezin integral as a sum

Continuing our toy example 5.1, we introduce a

fermionic derivative σ, with σ2 = 0 and σξ =

1−ξσ and the standard Hopf structure and braid-
ing. Then, {ei} = {1, σ} and {f i} = {1, ξ} which
gives E = 1− ξσ = σξ and Ē = 1− σξ = ξσ. For
the integrals we compute ĒE = 0 and ĒξE = ξ.
Left and right integrals coincide in this case so

|ΩA〉〈ΩA| is realized in A by ξ and we recover
the Berezin result. Notice that (5.3) gives the

Berezin integral as a sum over ‘points’. The inte-

gral of the unit function receives two equal (unit)

contributions from the two ‘points’ in the space,

but the undercrossing in Ē flips the sign of one
of them so that they cancel. 2

Example 5.3 The quantum fermionic plane

This was introduced in [14, 16]—we follow the

conventions in [2]. A is generated by the fermionic
coordinate functions ξi, i = 1, . . . , N . They sat-

isfy

ξ2ξ1 = −qR̂12ξ2ξ1 (5.6)

and are dual to the derivatives σi, i = 1, . . . , N

that generate H with relations

σ1σ2 = −qσ1σ2R̂12 . (5.7)

In AoH we have

σiξj = δij − qR̂−1mj,niξnσm . (5.8)

The braided coproduct is ∆(ξi) = ξi ⊗ 1 + 1⊗ ξi
and similarly for the σ’s. The braiding is given

by

Ψ(ξ2 ⊗ ξ1) = −qR̂12ξ2 ⊗ ξ1
Ψ(σ1 ⊗ σ2) = −qσ1 ⊗ σ2R̂−112
Ψ(ξi ⊗ σj) = −q−1DlaR̂ia,bkD−1bj σl ⊗ ξk
Ψ(σi ⊗ ξj) = −q−1R̂kj,liξl ⊗ σk .

For the canonical element we find

f i ⊗ ei = eq−1(ξi ⊗ σi) ,

(compare with the bosonic quantum plane result

in [4]) where

eq(x) =
∑∞
k=0

1
[k]q !
xk , [k]q =

1−q2k
1−q2 ,

[k]q! = [1]q[2]q . . . [k]q , [0]q ≡ 1 .

10
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Figure 2: Proof of the invariance of the integral

The vacuum projectors are

E =
N∑
k=0

(−1)k
[k]q−1 !

ξi1...kσik...1

Ē =
N∑
k=0

(−1)kqk
[k]q!

Di1j1 . . .Dikjkσik...1ξj1...k ,

where ξi1...k ≡ ξi1 . . . ξik and similarly for σ. The
integral of a monomial ξi1...r , r < N , is given by

Ēξi1...rE =
(
A∑
k=0

(−1)kqk(k−2A+1)[A]q!
[k]q![A− k]q!

)
ξi1...rE ,

with A ≡ N − r. Using standard q-machinery,
the sum in parentheses can be shown to vanish

for 0 ≤ r < N while for r = N the integrand
is (proportional to) the (left- and right-) delta

function. Then both Ē and E reduce to 1AoH
and the numerical integral is (proportional) to 1.

We conclude that the integral is essentially inde-

pendent of q. Notice that, in the limit q → −1,
the algebra (5.6) does not become a bosonic one,

e.g. (5.6) implies ξ2i = 0 which persists for all

values of q. 2
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