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Abstract: The M–theoretic extension of the heterotic E8×E8 string leads to a geometrical picture of
two walls (branes) at the ends of a finite 11-dimensional interval. While the supergravity multiplet can

penetrate in the d = 11 bulk, the two E8 gauge multiplets are confined to the two walls, respectively.

We consider hidden sector supersymmetry breakdown in the framework of this theory. Gravitational

interactions are shown to induce soft breaking terms in the observable sector; generically all of order of

the gravitino mass. This is very similar to the situation in the weakly coupled case, with a difference

for the observable sector gaugino masses that leads to important phenomenological and cosmological

consequences.

.

1. Introduction

In the past, a discussion of the phenomenological

applications of string theory has mainly concen-

trated on the weakly coupled heterotic E8 × E8
string. Models with realistic gauge groups and

particle content have been constructed. Qualita-

tively the unification of gauge and gravitational

couplings can be understood [1] with some mod-

erate uncertainties in the relation between the

string scale Mstring and the grand unified scale

MGUT. Supersymmetry is broken dynamically

via gaugino condensation [2, 3] leading to a hid-

den sector supergravity model at low energies

with specific predictions for the soft breaking pa-

rameters including problematically small gaugino

masses [4]. At the moment we do not possess a

convincing mechanism to resolve this problem.

Recently there have been attempts to study

string theories in the region of intermediate and

strong coupling. The strongly coupled version

of the E8 × E8 theory is believed to be an orb-
ifold of 11–dimensional M–theory, an interval in

d = 11 with E8 × E8 gauge fields restricted to
the two d = 10 dimensional boundaries respec-

tively [5]. Applied to the question of unifica-

tion [6] the following picture emerges: the GUT–

scale MGUT = 3 × 1016 GeV is identified with
1/R where V = R6 is the volume of compact-

ified six–dimensional space. αGUT = 1/25 and

the correct value of the d = 4 reduced Planck

mass MP = 2.4 × 1018 GeV can be obtained by
choosing the length of the d = 11 interval to be

R11 ≈ 6R. The fundamental mass scale of the
d = 11 theory M11 = κ−2/9 (with κ the d = 11

Einstein gravitational coupling) has to be chosen

roughly a factor 2 larger than MGUT and at that

scale αstring = g2string/4π is of order unity. This

then represents a rather natural framework for

the unification of coupling constants. The large

compactification radius could lead to a solution

of the strong CP problem [7, 8].

As in the weakly coupled theory, supersym-

metry might be broken dynamically by gaugino

condensation in the hidden E8 on one boundary

of space–time [9, 10, 11]. Gravitational interac-

tions will play the role of messengers to the ob-

servable sector at the opposite boundary with in-

teresting consequences for the soft supersymme-

try breaking parameters [10, 11]. In this talk we

shall discuss this mechanism in detail and com-

pute the predictions for the low energy effective

theory. We find results very similar to the situa-

tion in the d = 10 weakly coupled case, with one

notable exception: gaugino masses are of compa-

rable size to the gravitino mass, thus solving the
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problem of small gaugino masses that occurred

in the weakly coupled case. The smallness of the

gaugino masses in the observable sector has al-

ways been problematic, both for explicit model

building and also in connection with the desire

to obtain a realistic cold dark matter candidate

in form of a stable neutralino. The strongly cou-

pled version avoids these problems in a natural

way.

2. Gaugino condensation

In our review of gaugino condensation in the d =

10 weakly coupled E8 ×E8 theory we shall start
from the d = 10 effective field theory and go to

d = 4 dimensions via the method of reduction

and truncation explained in ref. [12]. In string

theory compactified on an orbifold this would de-

scribe the dynamics of the untwisted sector. We

retain the usual moduli fields S and T as well as

matter fields Ci that transform nontrivially un-

der the observable sector gauge group. In this

approximation, the Kähler potential is given by

[12, 13]

G = − log(S+S̄)−3 log(T+T̄−2CiC̄i)+log |W |2

(2.1)

with superpotential

W (C) = dijkCiCjCk (2.2)

and the gauge kinetic function is given by the

dilaton field

f = S . (2.3)

We assume the formation of a gaugino conden-

sate < χχ >= Λ3 in the hidden sector where

Λ is the renormalization group invariant scale of

the confining hidden sector gauge group. The

gaugino condensate appears in the expression for

the auxiliary components of the chiral superfields

[14]

Fj =
(
G−1
)k
j

(
exp(G/2)Gk +

1

4
fk(χχ)

)
+ . . .

(2.4)

which are order parameters for supersymmetry

breakdown. Minimizing the scalar potential we

find FS = 0, FT 6= 0 and a vanishing cosmologi-
cal constant. Supersymmetry is broken and the

gravitino mass is given by [15]

m3/2 =
〈FT 〉
T + T̄

≈ Λ
3

M2
P

(2.5)

and Λ = 1013 GeV would lead to a gravitino mass

in the TeV – range. A first inspection of the soft

breaking terms in the observable sector gives a

disturbing result. They vanish in this approxima-

tion. Scalar masses are zero because of the no–

scale structure in (2.1) (coming from the fact that

we have only included fields of modular weight

−1 under T–duality in this case) [4]. In a more
general situation we would get scalar masses m0
comparable to the gravitino mass m3/2 and the

above resultm0 = 0 is just an artifact of the cho-

sen approximation at the classical level. Gaugino

masses m1/2 are given by

m1/2 =
∂f
∂S
FS +

∂f
∂T
FT

2Ref
(2.6)

and with f = S and FS = 0 we obtain m1/2 =

0. One loop corrections will change this pic-

ture as can be seen already by an inspection of

the Green–Schwarz anomaly cancellation counter

terms, as they modify f at one loop. In the sim-

ple example of the so–called standard embedding

with gauge group E6 × E8 we obtain [13, 16]

f6 = S + εT ; f8 = S − εT . (2.7)

This dependence of f on T will via (2.6) lead

to nonvanishing gaugino masses which, however,

will be small compared to m3/2 and m0 since εT

is considered a small correction to the classical

result. This might be problematic when applied

to the supersymmetric extension of the standard

model. With the large difference of the soft scalar

and the gaugino masses a sizeable fine tuning is

needed to induce the breakdown of electroweak

symmetry at the correct scale [17]. The smallness

of the gaugino masses also leads to an apparent

problem in the context of relic abundances of the

lightest superparticles (LSP) [18, 19].

3. Heterotic M–theory

Let us now reconsider these questions in the strongly

coupled E8×E8 – M–theory, which we shall dis-
cuss now in detail. The effective action is given

2
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by (for details see [5])

L =
1

κ2

∫
d11x
√
g

[
−1
2
R+ . . .

]
+ . . . (3.1)

+
1

2π(4πκ2)2/3

∫
d10x
√
g

[
−1
4
F aABF

aAB + . . .

]
.

Compactifying to d = 4 we obtain [6] (with the

correction pointed out in ref. [20])

GN = 8πκ
2
4 =

κ2

8π2V ρ
, (3.2)

αGUT =
(4πκ2)2/3

V
(3.3)

with V = R6 and πρ = R11. Fitting GN and

αGUT = 1/25 then gives R11M11 of order 10 and

M11R ≈ 2.3. The rather large value of the d = 4
reduced Planck MassMP = κ

−1
4 is obtained as a

result of the fact that R11 is large compared to

R.

We now perform a compactification using the

method of reduction and truncation as above.

For the metric we write [10, 11]

gMN =


 e−γe−2σgµν

eσδmn
e2γe−2σ


 (3.4)

with M,N = 1 . . . 11; µ, ν = 1 . . . 4; m,n =

5 . . . 10; 2R11 = 2πρ = M−1
11 e

γe−σ and V =

e3σM6
11. At the classical level this leads to a

Kähler potential as in (2.1)

K = − log(S + S̄)− 3 log(T + T̄ − 2CiC̄i) (3.5)

with

S = 2

(4π)
2/3

(
e3σ ± i24

√
2D
)
, (3.6)

T = π2

(4π)
4/3

(
eγ ± i6

√
2C11

)
(3.7)

where D and C11 fields are defined by

1

4!
e6σG11λµν = ελµνρ (∂

ρD) , (3.8)

C11ij̄ = C11δij̄ (3.9)

and xi (xj̄) is the holomorphic (antiholomorphic)

coordinate of the Calabi–Yaumanifold. The imag-

inary part of S (ImS) corresponds to the model
independent axion, and the gauge kinetic func-

tion is f = S. This is very similar to the weakly

coupled case. Before drawing any conclusion from

these formulae, however, we have to discuss a

possible obstruction at the one loop level. It can

be understood from the mechanism of anomaly

cancellation [6]. For the 3–index tensor field H

in d = 10 supergravity to be well defined one has

to satisfy dH = trF 21 + trF
2
2 − trR2 = 0 coho-

mologically. In the simplest case of the standard

embedding one assumes trF 21 = trR
2 locally and

the gauge group is broken to E6 × E8. Since in
the M–theory case the two different gauge groups

live on the two different boundaries of space–time

such a cancellation point by point is no longer

possible. We expect nontrivial vacuum expecta-

tion values (vevs) of

(dG) ∝
∑
i

δ(x11−x11i )
(
trF 2i −

1

2
trR2
)
(3.10)

at least on one boundary (x11i is the position of i–

th boundary). In the case of the standard embed-

ding we would have trF 21 − 12 trR2 =
1
2 trR

2 on one

and trF 22 − 12 trR2 = −
1
2 trR

2 on the other bound-

ary. This might pose a severe problem since a

nontrivial vev of G might be in conflict with su-

persymmetry (G11ABC = HABC). The super-

symmetry transformation law in d = 11 reads

δψM = DMη +

√
2

288
GIJKL

(
ΓIJKLM + . . .

)
η + . . .

(3.11)

Supersymmetry will be broken unless e.g. the

derivative term DMη compensates the nontriv-

ial vev of G. Witten has shown [6] that such a

cancellation can occur and constructed the solu-

tion in the linearized approximation (linear in the

expansion parameter κ2/3) which corresponds to

the large T –limit in the weakly coupled theory∗.

The supersymmetric solution can be shown to

lead [10] to a nontrivial dependence of the σ and

γ fields with respect to x11:

∂γ

∂x11
= − ∂σ

∂x11
=

√
2

24

∫
d6x
√
gωABωCDGABCD∫
d6x
√
g
(3.12)

where the integrals are over the Calabi–Yau man-

ifold and ω is the corresponding Kähler form.

Formula (3.12) contains all the information to

∗For a discussion beyond this approximation in the
weakly coupled case see ref. [21].
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deduce the effective d = 4 supergravity theory,

including the Kähler potential and the gauge ki-

netic function [10, 11]. A definition of our S and
T fields in the four–dimensional theory now re-
quires an average over the 11–dimensional inter-

val. We therefore write

S = 2

(4π)2/3

(
e3σ̄ ± i24

√
2D̄
)
, (3.13)

T = π2

(4π)
4/3

(
eγ̄ ± i6

√
2C̄11

)
(3.14)

where bars denote averaging over the 11th di-

mension. It might be of some interest to note

that the combination ST 3 is independent of x11
even before this averaging procedure took place.

exp(3σ) represents the volume of the six–

dimensional compact space in units ofM−6
11 . The

x11 dependence of σ then leads to the geometri-

cal picture that the volume of this space varies

with x11 and differs at the two boundaries. In

the given approximation, this variation is linear,

and for growing R11 the volume on the E8 side

becomes smaller and smaller. At a critical value

of R11 the volume will thus vanish and this will

provide us with an upper limit on R11. For the

phenomenological applications we then have to

check whether our preferred choice of R11 that

fits the correct value of the d = 4 Planck mass†

satisfies this bound. Although the coefficients

are model dependent we find in general that the

bound can be satisfied, but that R11 is quite close

to its critical value. A choice of R11 much larger

than (few× 1015GeV)−1 is therefore not permit-
ted.

This variation of the volume is the analogue

of the one loop correction of the gauge kinetic

function (2.7) in the weakly coupled case and

has the same origin, namely a Green–Schwarz

anomaly cancellation counterterm. In fact, also

in the strongly coupled case we find [10], as a

consequence of (3.12), corrections for the gauge

coupling constants at the E6 and E8 side.

Gauge couplings will no longer be given by

the (averaged) S–field, but by that combination
†With V depending on x11 we have to specify which

values should be used in eq. (3.3). The appropriate choice

in the expression for GN is the average value of V while

in the expression for αGUT we have to use V evaluated

at the E6 border.

of the (averaged) S and T fields which corre-
sponds to the S–field before averaging at the
given boundary:

f6,8 = S ± αT (3.15)

at the E6 (E8) side respectively
‡. The critical

value of R11 will correspond to infinitely strong

coupling at the E8 side S − αT = 0 (Notice the
similarity to (2.7) in the weakly coupled limit).

Since we are here close to criticality a correct

phenomenological fit of αGUT = 1/25 should in-

clude this correction α−1GUT = S + αT where S
and αT give comparable contributions. This is
a difference to the weakly coupled case, where

in f = S + εT the latter contribution was small

compared to S. Observe that this picture of a

loop correction αT to be comparable to the tree
level result still makes sense in the perturbative

expansion, since f does not receive further per-

turbative corrections beyond one loop [22, 23].

4. Supersymmetry breakdown in M–

theory

In a next step we are now ready to discuss the dy-

namical breakdown of supersymmetry via gaug-

ino condensation in the strongly coupled M–theory

picture. In analogy to the previous discussion

we start investigating supersymmetry transfor-

mation laws in the higher–dimensional (now d =

11) field theory [9]:

δψA ∼ DAη +GIJKL
(
ΓIJKLA − 8δIAΓJKL

)
η

− δ(x11) (χ̄aΓBCDχ
a) ΓBCDA η + . . . (4.1)

δψ11 ∼ D11η +GIJKL
(
ΓIJKL11 − 8δI11ΓJKL

)
η

+ δ(x11) (χ̄aΓABCχ
a) ΓABCη + . . . (4.2)

where gaugino bilinears appear in the right hand

side of both expressions. It can therefore be ex-

pected that gaugino condensation breaks super-

symmetry. Still the details have to be worked

out. In the d = 10 example, the gaugino con-

densate and the three–index tensor field H con-

tributed to the scalar potential in a full square.

This lead to a vanishing cosmological constant as

well as the fact that FS = 0 at the classical level.

‡With the normalization of the T field as in (3.14), α
is a quantity of order 1.
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Hořava has observed [9] that a similar mecha-

nism might be in operation in the d = 11 theory

After a careful calculation this leads to a vanish-

ing variation δψA = 0. In our model (based on

reduction and truncation) we can now compute

these quantities explicitly. We assume gaugino

condensation to occur at the E8 boundary

〈χ̄aΓijkχa〉 = Λ3εijk (4.3)

where Λ < MGUT and εijk is the covariantly

constant holomorphic 3–form. This leads to a

nontrivial vev of G11ABC at this boundary and

supersymmetry is broken§. At that boundary

we obtain FS = 0 and FT 6= 0 as expected
from the fact that the component ψ11 of the 11–

dimensional gravitino plays the role of the gold-

stino.

In the effective d = 4 theory we now have to

average over the 11th dimension leading to

〈FT 〉 ≈
1

2
T
∫
dx11δψ11∫
dx11

(4.4)

as the source of SUSY breakdown.

This will then allow us to compute the size of

supersymmetry breakdown on the observable E6
side. Gravitational interactions play the role of

messengers that communicate between the two

boundaries. This effect can be seen from (3.3):

largeR11 corresponds to largeMP and 〈FT 〉 gives
the effective size of SUSY breaking on the E6 side

(R11 → ∞ implies MP → ∞). The gravitino
mass is given by

m3/2 =
〈FT 〉
T + T̄ ≈

Λ3

M2
P

(4.5)

(similar to (2.5) in the weakly coupled case) and

we expect this to represent the scale of soft super-

symmetry breaking parameters in the observable

sector [17]. These soft masses are determined by

the coupling of the corresponding fields to the

goldstino multiplet. As we have seen before, we

cannot compute the scalar masses reliably in our

approximation: m0 = 0 because of the no–scale

§One might speculate that a nontrivial vev of DAη
might be operative here as in the case without gaugino

condensation (see discussion after eq. (3.11)). However,

the special values of Hijk ∝ εijk necessary to cancel
the contribution of the gaugino condensate do not per-

mit such a mechanism (see footnote 6 in ref. [6]).

structure that appears as an artifact of our ap-

proximation. Fields of different modular weight

will receive contribution tom0 of orderm3/2. For

the mass of a field C we have [4]

m20 = m
2
3/2 − F iF̄ j̄

Zij̄ − ZiZ−1Z̄j̄
Z

(4.6)

where i, j = S, T and Z is the moduli dependent
coefficient of CC̄ term appearing in the Kähler

potential. Scalars of modular weight −1 will be-
come massive through radiative corrections. This

then leads to the expectation that m3/2 should

be in the TeV–region and Λ ≈ 1013 GeV ¶. So

far this is all similar to the weakly coupled case.

An important difference appears, however,

when we turn to the discussion of observable sec-

tor gaugino masses (2.6). In the weakly coupled

case they were zero at tree level and appeared

only because of the radiative corrections at one

loop (2.7). As a result of this small correction,

gaugino masses were expected to be much smaller

than m3/2. In the strongly coupled case the ana-

log of (2.6) is still valid

m1/2 =
∂f6
∂S FS +

∂f6
∂T FT

2Ref6
(4.7)

and the 1–loop effect is encoded in the variation

of the σ and γ fields from one boundary to the

other. Here, however, the loop corrections are

sizable compared to the classical result because

of the fact that R11 is close to its critical value.

As a result we expect observable gaugino masses

of the order of the gravitino mass. The problem

of the small gaugino masses does therefore not

occur in this situation. Independent of the ques-

tion whether FS or FT are the dominant sources

of supersymmetry breakdown, the gauginos will

be heavy of the order of the gravitino mass. The

exact relation between the soft breaking param-

eters m0 and m1/2 will be a question of model

building. If in some models m0 � m1/2 this

might give a solution to the flavor problem. The

no–scale structure found above might be a rea-

son for such a suppression ofm0. As we have dis-

cussed above, this structure, however, is an ar-

tifact of our simplified approximation and does

¶In realistic models E8 is broken and Λ is adjusted by
model building.
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not survive in perturbation theory. At best it

could be kept exact (but only for the fields with

modular weight −1) in the R11 →∞ limit. The
upper bound on R11 precludes such a situation.

With observable gaugino masses of order m3/2
we also see that m3/2 cannot be arbitrarily large

and should stay in the TeV – range [10, 24].

5. The Super–Higgs mechanism

In the previous sections the estimate of the grav-

itino mass was obtained [11, 24, 25] using a the

simplified approximation according to which the

higher dimensional bulk fields were integrated

out via an averaging proceedure‖. In this picture,

the goldstino mode was represented by the lowest

Kaluza–Klein Ψ0 mode of a higher dimensional

field Ψ. In the super–Higgs mechanism this mode

supplies the additional degrees of freedom to ren-

der the gravitino massive. Qualitatively this sim-

plified approximation does give a consistent pic-

ture, but there remain some open questions and

potential problems when one looks into details of

the super–Higgs mechanism. In this section we

would like to point out these potential problems

and show how they can be resolved. For a de-

tailed explanation we refer the reader to [28]. We

shall concentrate here on a qualitative discussion

of the mechanism involved. This will include a

discussion of the possible nature of the goldstino

(is it a bulk or a wall field), the relation to the

Scherk-Schwarz mechanism [29] in that context

[30] and an upper limit for the gravitino mass in

the present picture. We shall argue that a mean-

ingful realization of the super–Higgs mechanism

seems to require some modes in the bulk other

than the graviton and the gravitino. Finally we

shall comment on the phenomenological conse-

quences of this findings, including a discussion

of the nature of the soft breaking terms on both

walls.

Specifically we want to address the following

two questions:

(i) the nature of the massless gravitino in the

‖A corresponding analysis in global supersymmetry
has been performed in ref. [26]. Related work in the

supergravity case has been given in [27].

presence of several F−terms∗∗ on different
walls that cancel and lead to unbroken su-

persymmetry

(ii) the identification of the goldstino in the

case of broken supersymmetry.

The first question (i) arises because of a par-

ticalur nonlocal effect of supersymmetry break-

down first observed by Horava. A given source

of supersymmetry breakdown (parametrized by

a vacuum expectation value (vev) of an auxil-

iary field F ) on one wall could be compensated

by a similar but opposite value (−F ) on another
(separated) wall. Any calculation and approxi-

mation of the system thus has to reproduce this

behaviour. The previously mentioned averaging

proceedure over the bulk distance does this in a

trivial way, leading to unbroken supersymmetry

as expected. A detailed inspection of the grav-

itino, however, reveals a problem. If we start

with the situation F = 0 it is easy to define

the massless gravitino Ψ0 in the d = 4 theory.

Switching on a nontrivial F on one brane and

(−F ) on the other still should give a massless
gravitino, but Ψ0 turns out to be no longer a

mass eigenstate. The resolution of this problem

and the correct identification of the gravitino can

be found in [28]. It is a particular combination

of the possible gravitini that appear when one,

for example, reduces a 5-dimensional theory to a

theory in d = 4 on a finite d = 5 interval. The

theory on a d = 5 circle would lead to N = 2 su-

persymmetry in d = 4 and two massless gravitini

(zero modes on the circle). The Z2 projection on

the interval removes one of the gravitini and is

N = 1 supersymmetric. A nonvanishing vev of F

now interferes with the boundary conditions and

the massless gravitino will be a linear combina-

tion of the zero mode and all the excited Kaluza-

Klein modes whose coefficients will depend on F

(assuming, of course, unbroken supersymmetry

due to a compensating vev −F on another wall).
The second question (ii) deals with the na-

ture of the goldstino (i.e. the longitudinal com-

ponents of the gravitino) in the case of broken

∗∗We generically use the notation F−term for the

source of supersymmetry breakdown. Depending on the

specific situation this could represent a D−term or a
gaugino condensate as well.
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supersymmetry. Remember that the simplified

averaging proceedure leads to a goldstino that

corresponds to the lowest Kaluza–Klein mode Ψ0
of a higher-dimensional bulk field Ψ. Inspecting

the gravitino mass matrix in this case reveals the

fact that this field Ψ0 is not a mass eigenstate,

but mixes with infinitely many higher Kaluza–

Klein modes Ψn. A consistent manifestation of

a super–Higgs mechanism would require a diag-

onalization of this mass matrix and an identifi-

cation of the goldstino. This problem has been

solved in [28], by a suitable redefinition of the

Kaluza-Klein modes. Thus it is shown that a

consistent Super-Higgs mechanism is at work.

6. Conclusions

This resolution of these puzzles clarifies some of

the other questions of the approach.

• The nonlocality of the breakdown shows
some resemblance to the breakdown of su-

persymmetry via the Scherk–Schwarz [29]

mechanism. Here, however, the real gold-

stino of the spontaneous breakdown of su-

persymmetry can be unambiguously iden-

tified.

• The possibility to cancel the supersymme-
try breakdown on a distant wall by a vev on

the local wall tells us, that the mass split-

tings of broken supersymmetry have to be

of order of the gravitino mass m3/2 on both

walls.

• In terms of the physical quantities there is
no real extra suppression, once we separate

the walls by a large distance R. In the limit

R→∞ we will have MPlanck →∞ as well.
The suppression of the soft breaking pa-

rameters will always be gravitational.

• In general, when we have a system of many
separated branes with potential sources of

supersymmetry breakdown, the actual break-

down will be obtained by the sum of these

contributions. The averaging proceedure

will be very useful to decide whether su-

persymmetry is broken or not. The identi-

fication of the goldstino, however, is more

difficult and requires a careful calculation.

• A successful implementation of the super–
Higgs mechanism will require some fields

other than gravitino and graviton in the

bulk††. This implies that in the absence of

such fields a consistent spontaneous break-

down of supergravity might not be achieved.

To summarize we can say that the picture

of supersymmetry breakdown in the M–theoretic

limit looks very promising. It is very similar to

the weakly coupled case, but avoids the problem

of the small gaugino masses. This has impor-

tant consequences for the phenomenological and

cosmological properties of the effective models in

four dimensions.
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