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Abstract: We study F4-threshold corrections in an eight dimensional S-dual pair of string theories,
as a prototype of dual string vacua with sixteen supercharges. We show that the orbifold CFT

description of D-string instantons gives rise to a perturbative expansion similar to the one appearing

on the fundamental string side. By an explicit calculation, using the Nambu-Goto action in the static

gauge, we show that the first subleading term agrees precisely on the two sides. We then give a general

argument to show that the agreement extends to all orders.

1. Introduction

During the last years, it have been an enormous

progress in our understanding of the non pertur-

bative aspects of superstring theories. The key

to this development is the discovery of duality

symmetries, which relate the strong and weak

coupling limits of apparently different string the-

ories. This give us a way to compute certain

strong coupling quantities in one string theory

by mapping it to a weak coupling result in a

dual string theory. The consistency checks of

this non-perturbative dualities are strangest for

effective couplings called BPS-saturated effective

couplings, some times they are linked to anoma-

lies. Duality can be used to calculate their non-

perturbative corrections. One can then identify

the non-perturbative effects responsible for such

corrections. For theories with more than N=2

supersymmetry such non-perturbative effects are

due to instantons, which can be associated in

string theory to Euclidean branes wrapped around

an appropriate compact manifold [2]. Here we

will be interested in a particular test of this strong-

weak duality in the simplest context of the eight

dimensional dual pair with sixteen supercharges

obtained via an orbifold/orientifold of type IIB

theory considered in [3]. The dual orbifold–orien-

∗This work has been done in collaboration with
E.Gava,J.F.Morales and K.S.Narain [1]

tifold actions are defined by the orbifold (−)FLσV
(“fundamental side”), where all the R-R states to

which the D-brane usually couple are remouved

and orientifold ΩσV (“type I side”), correspond-

ing to a generalized Ω-projection of the closed

oriented type IIB string giving rise to vanishing

massless tadpoles thus preventing the introduc-

tion of the open-string excitations, with σV a

shift of order two in the two torus. The complete

matching of the BPS states on the two sides of

this duality map was computed [3], and it have

been shown that N winding modes on the funda-

mental side corresponds to bound states of ND-

strings on the type one side. Moreover, the mod-

uli dependence for O(2,2) F4 gauge couplings,
for the gauge fields coming from the KK reduc-

tion of the metric and antisymmetric tensor, were

considered. These F4 couplings have there ana-
logues in the heterotic/type I duality for toroidal

compactification to D ≥ 5 [4]. In that context
these F4 couplings were special since they are
related by supersymmetry to CP-odd couplings,

for which it is well known that only one-loop cor-

rections are possible [5]. The analysis in the het-

erotic/type I duality was made possible since for

D ≥ 5, on the heterotic side, the BPS spectrum is
completely perturbative. Therefore, allowing for

an exact treatment which yields an exact one-

loop result even non-perturbatively. A similar
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analysis for the type II models under consider-

ation here, has not been done, but we expect

similar result to be true. We will assume that

this is the case, i.e. that the one-loop formula

obtained for the moduli dependence of some F4
terms in the fundamental side is exact. As it will

turn out that the non-perturbative result on the

dual type I side will support this assumption.

The one-loop formula can be expressed [6,

7, 3], in the type I variables, as a sum of a fi-

nite number of perturbative corrections and an

infinite series of D-string instanton contributions.

Indeed, for D ≥ 5, the D-string instanton is the
only source of non-perturbative contributions on

the type I side. The form of the N-instanton

contribution in this sum suggests that it can be

read off from the O(N) gauge theory describ-

ing N nearby D-strings, whose worldsheets are

wrapped on a two-torus [7]. More precisely, the

leading behavior in the volume of the compactifi-

cation torus for the SO(32) F4 andR4 gauge and
gravitational couplings respectively were shown

in agreement [7] with the exact formula found

in a perturbative computation in the heterotic

side [6]. Similar results were found in [3]. In all

the cases, the D-string instanton coupling to the

gauge fields are obtained from the classical D-

string instanton action, while the contributions

from quantum fluctuations around the D-string

instanton background are encoded in the elliptic

genus of the corresponding O(N) gauge theory.

The perturbative computations of [6, 3] show that,

on top of the leading D-string instanton correc-

tions, there are a finite number of contributions

corresponding to perturbative corrections in the

D-string instanton background. One can ask the

question whether the CFT describing the infrared

limit of the D-string gauge theory captures some

information about these subleading terms. The

aim of this letter is to show that this is indeed

the case.

Let us first start by briefly reviewing the

computation of the moduli dependence ofF4 cou-
plings in the the fundamental side and how the

result agrees, at the leading order in a large vol-

ume expansion, with what one gets from the CFT

describing the D-string system. We will subse-

quently show that the CFT description also gives

rise to a perturbative expansion which has the

same structure as the one appearing on the fun-

damental string side. In particular, we will show

a perfect agreement for the first subleading cor-

rection.

2. Type IIB on T 2/(−)FLσV
The F4 couplings we are interested in are ob-
tained from the one-loop string amplitudes:

A` = 〈(V L8 )`(V L9 )4−`〉 (2.1)

with

V Li =

∫
d2z(Gµi + iBµi)(∂X

µ − 1
4
pνSγ

µνS)

(∂̄X i − 1
4
pρS̃γ

iρS̃)eipX (2.2)

the vertex operators of the left O(2, 2) gauge

fields arising from the Fi ≡ Gµi + iBµi com-
ponents of the metric and antisymmetric tensor.

Here and in the following we will denote with

capital indices M = (µ, i) the ten dimensional

noncompact µ = 0, 1, . . .7 and compact i = 8, 9

directions. The combinations with the minus

sign represent the graviphoton vertex operators,

which carry always additional power of momenta

and are therefore irrelevant for the computation

of F4 couplings. It is convenient to define a gen-
erating function Z(νi, τ, τ̄ ), in term of which the

above amplitudes read:

A` = t̃8
∫
F

d2τ

τ22
τ42
∂`

∂ν`8

∂4−`

∂ν4−`9

Z(νi, τ, τ̄ ) (2.3)

with t̃8 = t8F
`
8F
4−`
9 , t8 is the tensor arising from

the trace over the right-moving fermions zero-

modes and F the fundamental domain for the
modulus of world-sheet torus. Z(νi, τ, τ̄ ) is the

partition function arising from a perturbed Polyakov

action, whose bosonic part is:

S(νi) =
2π

α′

∫
d2σ(
√
gGµνg

αβ∂αX
µ∂βX

ν

+iB
NS

µν ε
αβ∂αX

µ∂βX
ν +
√
g
α′

2πτ2
νi∂̄X

i),(2.4)

and ∂̄ = 1
τ2
(∂σ2 − τ∂σ1). The geometry of the

target torus are described as usual by the two

complex moduli

T = T1 + iT2 =
1

α′
(BN89 + i

√
G)

U = U1 + iU2 = (G89 + i
√
G)/G88 , (2.5)
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where Gij and B
N
ij are the σ-model metric and

NS-NS antisymmetric tensor. Since the theory

we are considering involves half shift alongX8 di-

rection, it is convenient to replace the radius R8

by 2R8. Indeed this new radius is what appears

on the dual IIB/ΩσV theory (upto the scaling

by the string coupling constant). As a result T ,

U and ν8 are replaced by 2T , U/2 and 2ν8 respec-

tively and furthermore all the windings along σ1
and σ2 are integer valued.

The partition function Z(νi, τ, τ̄ ) is given by∫
F

d2τ

τ22
Z(νi, τ τ̄ ) '

∫
F

d2τ

τ22

∑
ε

Γε2,2(νi)Aε(2.6)

with

Γε2,2(νi) =
4T2
U2

∑
W,ε

e2πiTdetW e
− πT2
τ2U2

∣∣(1 U)W( τ−1)∣∣2

e
− π
τ2
(ν8 ν9)W

(
τ
−1
)

(2.7)

and Aε the anti-holomorphic BPS partition
functions

A+− ≡ 1
2

ϑ2(q̄)
4

η(q̄)12
, A−+ ≡ 1

2

ϑ4(q̄)
4

η(q̄)12
,

A−− ≡ 1
2

ϑ3(q̄)
4

η(q̄)12
(2.8)

The Γ2,2 lattice has been written in (2.7) as a

sum over all possible world-sheet instantons(
X8

X9

)
=W

(
σ1

σ2

)
≡
(
m1 n1
m2 n2

)(
σ1

σ2

)
(2.9)

with worldsheet and target space coordinates σ1, σ2
and X8, X9 respectively, both taking values in

the interval (0,1]. The entries m1, n1 are even or

odd integers depending on the specific orbifold

sector, while m2, n2 run over all integers. We

denote the three relevant sectors: n1 odd, m1
odd and both odd by ε = +−,−+,−− respec-
tively. The untwisted sector, ε = ++, will not

contribute, since it has too many zero modes to

be soaked by the four vertex insertions at this

order in the momenta. Note that, due to the

existence of these different sectors, the duality

group Γ on U is not the full SL(2, Z) group but

the subgroup defined by the matrices(
a b

c d

)
; b ∈ 2Z (2.10)

The integration over the fundamental domain

can be done using the standard trick [9], which

reduces the sum over all wrapping mode configu-

rations in a given SL(2,Z) orbit to a single inte-

gration over an unfolded domain. The unfolded

domains are either the strip or the upper half

plane depending on whether the orbit is degener-

ate (detW = 0) or non degenerate (detW 6= 0).
In [6, 3] these contributions were identified with

the perturbative and D-string instanton correc-

tions respectively in the type I side. The result

for the non-degenerate contributions were writ-

ten as [3]

〈(F8)`(F9)4−`〉nondeg = V10
(4π2α′)4

t8F
`
8F
4−`
9

1

T2∑
n,ε

∑
m1,n1,n2

Anε
∂`

∂ν`8

∂4−`

∂ν4−`9

In(ν8, ν9) (2.11)

where Anε are the coefficient in the q̄ expansion
of the modular forms (2.8) and In are the result

of the modular integrations

In =
(U2T2)

1
2

m1
e−2πiT1m1n2e−2πin(

n1+U1n2
m1

)

e
πiν8(

nU2
m1T2

−m1)
√
π

β
e−2
√
βγ (2.12)

with

β = π(n22U2T2 + ν9n2 − ν8U1n2 −
U2ν

2
8

4T2
)

γ =
πT2

U2
(m1 +

nU2

T2m1
)2. (2.13)

Here the sum over m1 and n1 are over even and

odd integers, depending on the ε-sectors, and for

a fixed m1 the range of n1 goes from 0 to m1−1.

3. Type IIB on T 2/ΩσV

In terms of the type IIB on T 2/ΩσV variables

this result should come from D-instanton contri-

butions since the duality relations (TF2 = T
I
2 /λI)

1implies that it goes like e
−NT

I
2

λI . Indeed it has

been shown in [3] that its leading order in the T2

1where the subscripts “F” and “I” are used to distin-

guish orbifold (T 2/(−)FLσV ) and orientifold (T 2/ΩσV )
compactifications of the type IIB string.
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expansion

〈(F8)`(F9)4−`〉nondeg =
V10

(4π2α′)4
t8F

`
8F
4−`
9

1

T2

∑
ε

∑
m1,n1,n2

m41
m1|n2|

U `

U42

e−2πiTm1|n2|Aε(n1 + Ūn2
m1

) (3.1)

is exactly reproduced by a direct computation of

D-instanton contributions in the type I side. In

this identification the D-instanton number N =

LM is mapped to the determinant m1n2 of the

representative matrices M , while different wrap-

ping mode configurations labelled by m1, n1, n2
are mapped to L, s,M , describing the different

sectors of the orbifold conformal field theory to

which the effective O(N) gauge theory flows in

the infrared. The coupling of the N D-instanton

background to the F8, F9 gauge fields is read from

the classical D-instanton action

SD−inst = 2πNTF − πN

4α′U2λI
pν

(Gµ9 + UGµ8)S
cm
0 γ

µνScm0 + .... (3.2)

where TF = 1
α′ (B89+

i
λI

√
G) and Scm0 = 1

N

∑N
i=1 S

i

are the fermionic zero modes corresponding to

the center of mass of the N copies of D-string

worldsheets. Indeed, bringing down four pow-

ers of these terms, we soak the eight fermionic

zero modes and combining with the quantum D-

instanton partition function 1
NT2

∑
M,L,sM

−4

A( s+ŪML ), the perturbative result (3.1) is repro-

duced. Note that the center of mass fermions

here are defined with unconventional normaliza-

tion in order to make the comparison with the

fundamental string side more transparent.

4. Perturbative corrections around

D-string instantons

The exact formula (2.11) shows the presence of

T2-subleading terms which should correspond to

a finite number of perturbative corrections around

the N D-instanton background. In order to make

more transparent the translation in terms of the

type I variables it is convenient to use the com-

plex source ν, and its complex conjugate ν̄, de-

fined as:

ν ≡ 1

2U2
(ν9 + Uν8), (4.1)

In terms of these new variables, after a long but

straightforward algebra, one can express, to the

order of interest, the ν̄-expansion of the gener-

ating function I(ν, ν̄) = ∑nAnε In of (2.11) for-
mally as:

I(ν, ν̄) =
4∑
r=0

ν̄r

r!
DrŪ

[
1

(T2 − ν
2π )
r+1
I0(ν)

]

+O(ν̄5), (4.2)

where

I0(ν) = V10
(4π2α′)4

∑
ε

∑
m1,n1,n2

e−2πiT̄m1n2

m1n52

Aε(n1 + Ūn2
m1

)e2m1n2ν (4.3)

and DŪ is the Ū -covariant derivative, which act-

ing on a modular form of weight −2r gives a the
weight −2r + 2 form

DŪΦr = (
i

π
∂Ū −

r

πU2
)Φr (4.4)

In (4.2) the first 4 terms in the series have been

explicitly indicated, being the only relevant ones

to the present discussion, The function appear-

ing there has no definite modular transforma-

tion properties, and the covariant derivative Dr
Ū

should be understood as acting on the coefficient

of ν4−r in the expansion of the function inside
the brackets in (4.2). This gives the F̄ rF 4−r

gauge couplings we are interested in, with F =
1
2U2
(F9 + UF8) and F̄ =

1
2U2
(F9 + ŪF8):

〈F̄ rF 4−r〉 = V10
(4π2α′)4

∑
N

e−2πiNT̄

NT r+12

4−r∑
k=0

1

(NT2)k

(r + k)!

k!(r!)2(4 − r − k)!HN (D
r
ŪA−+) (4.5)

where HN is the Hecke operator for the subgroup

Γ :

HN (D
r
ŪA−+) =

∑
ε

∑
N |L

L−1∑
s=0

L4−2r

DrŪAε(Ū)|Ū=MŪ+sL

(4.6)

where (L, s) are (even,odd), (odd,even) and (odd,odd)

in the three ε sectors +−, −+ and −− respec-
tively. Note that Dr

Ū
A−+(Ū) is a modular form

4
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of weight 2r− 4 with respect to the subgroup Γ.
The above definition of the Hecke operator coin-

cides with the standard one appearing for exam-

ple in [10] upto an overall N dependent factor.

We would like now to show how these correc-

tions can be reproduced by the effective D-string

instanton action. To this aim, we start with

the D-string instanton action in the presence of

constant field strength background for the gauge

fields Gµi, Bµi under consideration. Each field

strength appears in the action with two fermion

zero modes and therefore the amplitude is ob-

tained by extracting the 8 fermion zero modes in

the partition function. One immediately encoun-

ters two problems:

1) One needs to keep in the action higher

order terms in the fermion zero modes. Unfortu-

nately in curved backgrounds the covariant Green-

Schwarz actions that exist in the literature in-

clude only terms upto quartic in fermions, with

higher order terms in principle being calculable

using space-time supersymmetry and kappa sym-

metry. On dimensional grounds, as will become

clear in the following, each pair of fermion zero

modes appears with 1/T2 and therefore, such higher

order terms can contribute to order 1/T 22 correc-

tion (compared to the leading order term). In

the absence of information on such higher or-

der terms we will be restricted below to calcu-

late only the first subleading correction. How-

ever later we will argue that the complete action

should correctly reproduce the full perturbative

expansion.

2) Even upto the terms quartic in fermion

fields, the Green-Schwarz action presupposes that

the background fields satisfy the supergravity equa-

tions of motion. Of course constant field strengths

satisfy the gauge field equations, however they

can contribute to the stress energy tensor and

therefore can modify the classical equations for

dilaton and the 8-dimensional metric. However

this problem will not appear if we restrict our-

selves to the first subleading correction in 1/T2.

Indeed as seen from equation (4.5), the first sub-

leading term appears in two ways: i) for ν̄ = 0

(i.e. Fµνz = 0) there is a correction coming from

the first order expansion of 1/(T2− ν
2π ). This can

get contribution from terms in the action that are

quadratic in Fµνz̄ . For Fµνz = 0 arbitrary con-

stant values of Fµνz̄ will solve the equations of

motion since the resulting stress energy tensor is

zero. ii) the first order in ν̄ already comes with

1/T 22 and therefore does not require an expan-

sion of the term 1/(T2 − ν
2π )
2. This means that

in the action we need to include only the first or-

der term in both the F ’s which certainly solves

the linearized equations of motion. All the ex-

pressions in the following should be understood

to make sense only in the first subleading term

in 1/T2.

The Green-Schwarz, covariant world-sheet ac-

tion for a single string coupled to the N = 1, 10-
D supergravity multiplet, is given by [11] (α′ =
1
2 ):

SD−inst = 2π
∫
d2σ[

√
|detĜab|
λI

+
1

2
εabRab]

+ . . . (4.7)

The . . . above indicate terms involving 6 and

higher powers of fermion fields. Here we have di-

rectly rewritten the action of [11] in the Nambu-

Goto form, by using the equations of motion for

the world-sheet metric. The resulting induced

metric Ĝab and the antisymmetric coupling Rab
are given by:

Ĝab = ∂(aX
M∂b)X

NGMN − 2i∂(aXMΘ̄γMDb)Θ
−Θ̄γMDaΘΘ̄γMDbΘ

Rab = i∂[aX
M∂b]X

NBMN +
2i

λI
∂[aX

M Θ̄γMσ3Db]Θ

+
1

λI
Θ̄γMD[aΘΘ̄γ

Mσ3Db]Θ. (4.8)

Here the covariant derivativeDa is defined to be:

Da = ∂a − 1
4
γK̂L̂ω̃K̂L̂N ∂aX

N , (4.9)

where ω̃K̂L̂N = ωK̂L̂N + λI2 H
K̂L̂
N σ3, with ω the spin

connection and H the 3-form field strength of

the RR antisymmetric tensor B. The capital,

Latin indices are 10-dimensional curved indices,

whereas hatted ones are SO(1, 9) flat indices.

ΘT = (θ, θ̃) denotes a doublet of SO(1, 9) Majorana-

Weyl spinors on which σ3 acts. θ and θ̃ have

the same SO(1, 9) chirality and are world-sheet

scalars. Finally, Θ̄ ≡ (θT γ0, θ̃Tγ0). Note that
the fields appearing above are supposed to sat-

isfy the 10-dimensional supergravity equations of

motion.

5
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We then proceed by choosing the static gauge,

which amounts to identifying the Euclidean world-

sheet complex coordinates z ≡ 1√
2τ2
(σ1 + τσ2),

z̄, with the spacetime torus coordinates Xz ≡
1√
2τ2
(X8 + UX9), X z̄ respectively and the com-

plex structure of the world-sheet torus, τ , with

that of the spacetime torus, U . In addition, local

kappa-symmetry allows to reduce the fermionic

degrees of freedom by imposing 2

γzθ ≡ 1√
2U2
(γ8 + Uγ9)θ = 0

γ z̄ θ̃ ≡ 1√
2U2
(γ8 + Ūγ9)θ = 0 (4.10)

The resulting gauge fixed fermions θ (θ̃) become

left-moving (right-moving) world-sheet fermions

in the 8s (8c) of SO(8).

We will be interested in a constant back-

ground for the field strength of Aµi ≡ Gµi
λI
+Bµi

3.

To extract the relevant couplings it is convenient

to choose for the vielbeins the representation

eL̂M =

(
eji Gµi
0 ηµν

)
+O(G2µi) (4.11)

with eji the square root of the torus metric (in

the complex basis ezz = e
z̄
z̄ =
√
T I2 , e

z
z̄ = e

z̄
z = 0).

Since we are interested in extracting four powers

of the field strengths Aµi from the expansion of

(4.7) and then set Gµi to zero, we can set always

Gµi to zero unless a derivative hits on it. This is

so because such terms would anyway disappear

in the final result due to gauge invariance. Fur-

thermore since the connections involve at most

one derivative of the metric, the terms contain-

ing two or more derivatives of GµI are irrelevant

for our present discussion. Here and in the fol-

lowing we will always set these components to

zero.

Using the ansatz (4.11), and recalling from

[3] that, after orientifolding, θ is periodic (and

therefore has 8 zero modes, denoted by θ0), whereas

2Strictly speaking, because of the Majorana-Weyl na-

ture of fermions, the gauge fixing condition makes sense

only in the Minkowski space-time (and world-sheet). We

assume that X9 is time like in which case z and z̄ are real

light-like coordinates and τ2 and U2 are imaginary. At

the very end we will do the analytic continuation back to

complex τ and U
3Notice that precisely this combination appears in the

connections in (4.9)

θ̃ is anti-periodic, it can be seen that the contri-

butions of interest in (4.8) come from two kind of

terms, θ̄0γ
z̄γK̂L̂ω̃K̂L̂i θ0 for i = z, z̄ and θ̄0γ

µγK̂L̂

ω̃K̂L̂ρ θ0. The first type of terms gives the follow-

ing fermionic bilinears

η =
i

4
∂[µAν]z̄ θ̄0γ

µνz̄θ0

η̄ =
i

4
∂[µAν]z θ̄0γ

µνz̄θ0, (4.12)

whereas the second type gives

ερµ =
i

4
∂[νAρ]z̄ θ̄0γ

µνz̄θ0. (4.13)

In the above formulae and in the following γz
and γz̄ denote SO(2) gamma matrices and the

T2 dependence will be explicitly displayed. Con-

tributions to the F4 couplings will come from the
D-instanton partition function once four powers

of these combinations are brought down to soak

the 8 fermionic zero modes. This is why we re-

placed the fermions in (4.12,4.13) by their zero

mode part θ0. F4 couplings will be defined then
by the fourth order terms in the η, η̄ expansion

of the resulting effective action. The action (4.7)

can then be written as 4

SD−inst = 2πiTF − 4πη
+2π

∫
d2z
[
∂zX

µ∂z̄Xµ − 2i¯̃θγz̄∂z θ̃ − 2iθ̄γz∂z̄θ

+
η̄

T2 − η (∂z̄X
µ∂z̄Xµ − 2i¯̃θγz̄∂z̄ θ̃) + ...

]
(4.14)

where . . . represent higher quantum fluctuations,

and we have rescaled Xµ, θ̃ as

Xµ → (1− 2ε
TF2
)µνX

ν µ = 0, . . . 7

θ̃α → (1− η

TF2
)
1
2 θ̃α α = 1, . . . 8. (4.15)

We have considered so far the Nambu-Goto

action for a single D-string. The results (4.14)

can however easily be generalized to the N D-

string case. The low energy effective action de-

scribing the excitations of the N D-string sys-

tem is described by O(N) gauge theory studied

in [3]. As argued in that reference, after inte-

grating out the very massive degrees of freedom

4We omit in this expression a trivial λI -rescaling of all

bosonic Xµ and fermionic fields θ, θ̃

6
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in the infrared limit, we are left with an effec-

tive conformal field theory in terms of the di-

agonal multiplets X iµ, θ
i and θ̃i, i = 1, . . . , N ,

on which the orbifold permutation group SN is

acting. Correspondingly, in (4.14) the fermionic

bilinears η and η̄ will involve
∑N
i=1 θ̄

iγµνz̄θi =

Nθ̄cm0 γ
µνz̄θcm0 + ..., θ

cm
0 being the fermionic zero

mode corresponding to the center of mass. Also,

the volume factor
∑N
i=1Gzz̄∂zX

z
i ∂z̄X

z̄
i = NT

I
2

pick up a factor of N. The effective action is

then given by simply replacing T I2 , η, η̄ and ε by

NT I2 , Nη,Nη̄ and Nε. The operators expressed

in terms of the non-zero mode fields will be re-

placed by the sum of the N copies of them, in-

volving X iµ θ
i and θ̃i.

The moduli dependence of F4 couplings in
the N D-instanton background are then defined

by the η4−r η̄r terms in the expansion of the expo-
nential of (4.14) written for ND-instantons. Iden-

tifying the fermionic bilinears 2πη, 2πη̄ with our

previous sources ν, ν̄, one can show that the per-

turbative results (4.2), (4.3) are reproduced.

Let us start by considering the η̄ = 0 case.

Were it not for the rescaling of the Xµ, θ̃ fields

(4.15), we would have a free theory (upto Weyl

permutations) defining the orbifold partition func-

tion 1
NT2

∑
M,L,sM

−4A( s+ŪML )e2Nη [3, 12]. Iden-

tifying as before L,M, s with m1, n2, n1 respec-

tively we can see by a simple inspection of (4.2),

(4.3) that we reproduce the η̄ = 0 term except

for the fact that we get 1
TF2
instead of 1

TF2 −η
that

appears in (4.2).

We want now to show that, at least to first

order in 1
TF2
, the rescaling of the fields (4.15) re-

sults in the desired renormalization of the inverse

area prefactor 1
TF2
→ 1

TF2 −η
. Indeed, to the first

order, the Jacobian of the transformation (4.15)

is given by the following correlation function:

∫
d2z
[
4εµν〈∂zXµ∂z̄Xν〉 − 2iη〈¯̃θγz∂z θ̃〉

]
.(4.16)

This expression, which involves expectation val-

ues of the kinetic energies of Xµ and θ̃, needs

to be regularized. If we adopt a point-splitting

regularization, the term involving θ̃ is zero be-

cause θ̃ has no zero modes. We are thus left with

the bosonic contribution, which can be evaluated

using:

〈∂zXµ(z)∂z̄Xν(w)〉 = −δ
µν

8π
. (4.17)

The claimed result follows after performing the

z-integration and using δµνεµν = −η. We expect
that higher order terms reproduce the expansion

of 1
TF2 −η

. We can then write finally

IDinst0 (η) ≡ 〈e−SND−inst(η,0)〉
=
V10
(2π2)4

∑
ε

∑
L,M,s

1

LM5(TF2 − η)
e−2πiT̄FLM

Aε(s+ ŪM
L

)e4πLMη (4.18)

that reproduces the r = 0 term in (4.2) after the

previous identifications.

We can now go on and consider r η̄ insertions

in (4.18). From the η̄ coupling in (??) one can see

that each of these correspond to the insertion of a

normalized stress-energy tensor 1
TF2 −η

∫
d2zT (z̄)

with T (z̄) ≡∑Ni=1
[
∂z̄X

µi∂z̄X
i
µ(z̄)− 2i¯̃θ

i
γz̄∂z̄ θ̃

i(z̄)

]
.

But this is precisely the Virasoro generator of an

infinitesimal shift in the z̄ worldsheet coordinate,

L̄0, which couples to Ū . Therefore its insertions

translate into covariant derivatives DŪ acting on

(4.18). Note that although the expressions above

were to make sense only to the first subleading

term in 1/T2 the fact that the η̄ coupling appears

with the same normalization factor 1
TF2 −η

as in

the perturbative result (4.2) is quite remarkable.

The calculation above shows the precise match-

ing of the first subleading correction around D-

string instantons with the exact result on the fun-

damental string side. How can we extend this

to all orders in 1/TF2 ? The steps involved are

two fold. First of all, we will need terms upto

8th order in fermion zero modes in the covariant

Green-Schwarz action. This can in principle be

obtained by repeatedly using space-time super-

symmetry and kappa symmetry. Secondly, we

need to solve the linearized equation for η̄ in the

presence of arbitrary η. This will involve turn-

ing on 8-dimensional gravitational and dilaton

fields to the first order in η̄. Although straight-

forward, the computation involved is rather cum-

bersome. We will give here an alternative argu-

ment to show that the complete action should

7
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correctly reproduce the full perturbative expan-

sion. For N = 1 the covariant D-string action is

the same as the fundamental string action. The

static gauge computation presented here should

be the same as the light cone gauge computation

in the fundamental string side provided one re-

stricts to detW = 1 in equation (4.5). This shows

that at least for single instanton the two results

should agree to all orders in 1/T2. For N > 1, the

orbifold CFT description implies that the result

is obtained from theN = 1 result by applying the

Hecke operator HN , upto N dependent factors.

Indeed, by the zero mode argument of [12, 3], one

knows that only the twisted sectors of the form

(L)M contribute and the resulting expression in-

volves the sum over L,M, s. Modular covariance

in Ū under the subgroup Γ then fixes the pow-

ers of L in the sum over the sectors, giving rise

to Hecke operator HN . The only quantity which

is not fixed in the amplitude 〈F̄ rF 4−r〉 by this
argument is the N dependence of the leading as

well as the subleading terms in 1/TF2 for each r.

To determine this N dependence we note that

the general form of the N D-string action in the

orbifold limit is schematically of the form

SND−inst = NTF2
4∑
k=0

ak

(TF2 )
k
(Fz̄θ

2
0)
k

+

N∑
i=1

4∑
k=0

1

(TF2 )
k
(Fz̄θ

2
0)
kAik +

N∑
i=1

1

TF2
(Fzθ

2
0)

3∑
k=0

1

(TF2 )
k
(Fz̄θ

2
0)
kBik (4.19)

where ak are numerical coefficients independent

ofN and Aik andB
i
k are dimension (1,1) and (0,2)

operators (depending on X , θ̃ and the non-zero

modes of θ) for each of the N copies of the vari-

ables. Here we have suppressed all 8-dimensional

gamma matrices and Lorentz indices. Note that

(4.14) obtained by including only upto quartic

terms in fermion fields in the covariant Green-

Schwarz action fixes a0, a1, a2, A0, A1 and B0 and

these were the objects that entered in the compu-

tation of the first subleading corrections. In writ-

ing (4.19) we have assumed that the higher di-

mensional operators will decouple in the infrared

limit. The powers of TF2 in the above are easily

seen by scaling arguments while the N depen-

dence follows from the definition of the fermion

zero mode θcm = 1
N

∑
i θ
i.

One can see from this general form of the ac-

tion, that the leading term for each r comes with
1
N
HN (D

r
Ū
A−+) while in the subleading correc-

tion in 1/TF2 , the volume T
F
2 is replaced byNT

F
2 .

This exactly reproduces the exact formula (4.5)

of the fundamental string.
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