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Abstract: We present a way in which two higher dimensional, spatially separated gauge sectors are

combined to form a consistent four dimesnional supergravity. We reconsider the issue of the low energy

supersymmetry breaking in the field theory limit of the strongly coupled heterotic string. We derive

general observable soft supersymmetry breaking operators for nonstandard perturbative embeddings.

We discuss racetrack scenarios in M-Theory.

1. Introduction

In their analysis of the effective field theory limit

of the strongly-coupled heterotic E8 × E8 string
theory, Horava and Witten [1, 2] constructed a

consistent eleven-dimensional supergravity on a

manifold M4 × X × S1/Z2, coupled to ten-di-
mensional Yang-Mills models on the fixed hy-

perplanes of the S1/Z2 orbifold. Witten [1] also

solved the equations of motion along the eleventh

dimension on the orbifold S1/Z2, and found the

correct six-dimensional compactification that pre-

serves four unbroken supercharges in the pres-

ence of non-trivial background components of the

antisymmetric tensor field strength GABCD. He

also calculated the gravitational constant in four

dimensions and the gauge couplings on both the

visible and hidden walls.

On the basis of general arguments, this the-

ory should reduce to some four-dimensional N =

1 supergravity theory in the infrared limit. Know-

ing that the final effective theory is four-dimen-

sional N = 1 supergravity, one way to obtain the

complete Lagrangian is simply to read the Kähler

potential, superpotential and gauge kinetic func-

tions off from the direct d = 11→ 4 reduction of
the relevant eleven-dimensional terms. With the

full four-dimensional Lagrangian at hand, one

can study the properties of its vacuum, such as

supersymmetry breaking, and thereby understand
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the infrared limit of the strongly-coupled hetero-

tic superstring.

We follow this route in the first part of this

note, and contrast the generic features of super-

symmetry breaking due to gaugino condensation

in the strongly-coupled case [3] with the better-

known weakly-coupled case [4]. An important

difference is that supersymmetry is generically

broken by nonzero expectation values of both FS

and FT in the strongly-coupled string. The effec-

tive potential of the four-dimensional supergrav-

ity in the strongly-coupled case cannot be written

simply as a perfect square, complicating the min-

imization problem, which is not solved simply by

minimizing the |FS |2 term alone. This observa-
tion may be welcome, given the phenomenologi-

cal interest [5] in the dilaton-dominated scenario

for supersymmetry breaking. However, we also

demonstrate that the potential does not vanish

generically.

The above approach is appropriate if the con-

densation scale Λ is smaller than the threshold

m5 = 1/R5 for five-dimensional Kaluza-Klein ex-

citations. However, if Λ > m5, in order to un-

derstand the pattern of supersymmetry breaking,

one needs the full four-dimensional Lagrangian

constructed by the compactification chain d =

11 → 5 → 4 [6, 7, 8, 9, 10, 11]. For this, one
must first study how the low-energy four-dimen-

sional model arises out of the two d = 10 → 4
sectors which are spatially disconnected in the

original d = 11→ 5 theory, in other words, how
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the two gauge sectors are combined together in

course of the compactification process. The way

this happens is outlined in the second part of the

note.

The complete compactification of that five

dimensional model down to four dimensions has

not been performed yet. An important aspect of

the attempt at the establishing of the detailed

relation between the Horava-Witten model and

the 4d supergravity is that the Horava-Witten

Lagrangian, although anomaly free and super-

symmetric, can be trusted in its role of the ap-

proximation to the strongly coupled string to a

limited extent. It contains terms which are of

the order κ2/3 with respect to the gravitational

action plus these terms of the order κ4/3 which

are necessary to retain supersymmetry in 11d.

The question of supersymmetry transmission

through the bulk in the five-dimensional super-

gravity was discussed in previous papers [9], [10],

[7], [12], [13], [14], [15], [16]. The reader should

be warned that different approaches seem to give

somewhat different results.

2. Supersymmetry Breaking in Four

Dimensions

We begin by following the first route described

in the Introduction. We recall that one obtains

from the Horava-Witten model the Kähler func-

tions and the gauge kinetic functions for the stan-

dard and non-standard embeddings, consistently

to order κ2/3, that is with the threshold cor-

rections to the gauge kinetic functions included.

This is sufficient to reconstruct directly the parts

of the scalar potential that are relevant for seeing

the supersymmetry-breaking structure in the ef-

fective four-dimensional supergravity theory aris-

ing from the strongly-coupled heterotic string,

if gauginos condense at low energies, below the

scale m5 =
1
R5
. In this case, it is fully adequate

to work entirely within the four-dimensional su-

pergravity framework, as we assume in this Sec-

tion. However, if gauginos condense at higher

energies, above the scale m5 =
1
R5
, the full five-

dimensional approach of the following Section is

required.

We first recall the way the vev of gaugino

bilinears 〈λaλb〉 enters the effective scalar poten-

tial of the four-dimensional supergravity [17] 1.

Using the canonical normalization in four dimen-

sions for the gravitational, gauge and gaugino ki-

netic terms, the relevant part of the Lagrangian

is

V = eKgij̄(DiW +
1
4e
−K/2∂ifab〈λaλb〉)

(Dj̄W +
1
4e
−K/2∂j̄ f̄ab〈λ̄aλ̄b〉) + ..., (2.1)

where gij̄ is the inverse Kähler metric and rest of

the notation is standard [17].

Comparing (2.1) with the well-known gen-

eral expression V = gij̄F
iF j̄ − 3eG for the four-

dimensional potential in terms of the F i, the aux-

iliary fields for the chiral multiplets, we read off

the modified expressions for the auxiliary fields

in the presence of the condensates

F i = eK/2gij̄(Dj̄W̄+
1

4
e−K/2∂j̄ f̄ab〈λ̄aλ̄b〉) (2.2)

In the following, we match this expression ex-

plicitly to the fermionic bilinears in the effective

Lagrangian, since [3] this is a better description

when the gauge kinetic function depends on more

than one modulus, and the gaugino bilinears are

among the terms which we obtain directly from

the Calabi-Yau reduction.

In the weakly-coupled heterotic string, at tree

level, the gauge kinetic function is universal: f =

S, and the Kähler function for the illustrative

case of a single universal modulus T is K =

− log(S + S̄) − 3 log(T + T̄ ). In this case, the
full scalar potential reduces to

V = gSS̄|FS |2, (2.3)

since gTT̄ |FT |2 = 3|W |2eK . This relation is equiv-
alent to the vanishing of the perfect square con-

taining the gaugino condensates in the ten-di-

mensional effective action of the weakly-coupled

heterotic superstring [18]. In this way, we find

FS = 0, FT 6= 0 (2.4)

In general models there are additional contribu-

tions to the effective potential which depend on

the modulus T , however, in all the models stud-

ied so far, the vacuum relation FS � FT per-
sists, and supersymmetry breaking occurs along
1We denote by λa the gaugino components, where a

is an adjoint group index, and i labels complex moduli

fields.
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the T direction in the moduli space. The techni-

cal reason is that the dependence on S factorizes

out in simple modular-invariant models of con-

densation, and the equations of motion, i.e., dy-

namics, tell us that FS is small. The vev of the

modulus T is rather small in these models, close

to unity in supergravity units.

The structure of the supersymmetry-brea-

king sector is significantly modified n the strongly-

coupled regime. The Kähler function for the uni-

versal moduli S, T is the same, but the classical,

or tree level, gauge kinetic functions are changed,

and are different for different walls: f1,2 = S ±
ξ0T where

ξ0 = − πρ0
2(4π)4/3κ2/3

1
8π2

∫
X
ωK ∧ ( trF (1) ∧ F (1)

− 12 trR ∧R ). (2.5)

Here ωK is the Kähler (1, 1)-form, and the topo-

logical integral over Calabi-Yau space can be pa-

rametrized in terms of gauge and gravitational

instanton numbers characterizing the embedding

[19]: ξ0 =
nF1− 12nR
32π3 . The interesting region of

moduli space is where S = O(2) and T = O(80)
[19, 20]. Hence, we are not interested in mech-

anisms which generate minima of the potential

at T ≈ 1, but need some new mechanism which
generates a minimum in the region of current in-

terest. We do not discuss any specific mechanism

here, but just state the possibilities opened up by

the current form of the kinetic functions.

First, we note that S and T enter the ki-

netic functions, and hence any nonperturbative

potential, in quite a symmetric way. The relative

coefficient ξ0 which weights the contribution of

T changes from model to model. In the elliptic-

fibration models of [20], this number is smaller

than 0.025. It could in principle be either much

larger or much smaller in more general construc-

tions. Because of this greater symmetry between

S and T , there is no obvious reason why FS

should be much smaller than FT in the generic

case, in the interesting portion of moduli space.

In the strongly-coupled case, we obtain

V = eK(S + S̄)2
∣∣∣− W
S+S̄

+ 14e
−K/2(Λ31 + Λ32)

∣∣∣2
+ eK (T+T̄ )

2

3

∣∣∣− 3W
T+T̄

+ 14ξ0e
−K/2(Λ31 − Λ32)

∣∣∣2
− 3eK |W |2 . (2.6)

and the result for the F terms is:

FS =
1

4
(S + S̄)2(Λ31 + Λ

3
2) (2.7)

FT =
1

12
(T + T̄ )2ξ0(Λ

3
1 − Λ32) (2.8)

It is clear that supersymmetry is unbroken: FS =

FT = 0 if and only if both condensates van-

ish. Even if there is only one condensate, both

FS and FT are nonzero. Moreover, if conden-

sates on both walls are switched on simultane-

ously, no matter in what proportion, supersym-

metry is always broken in four dimensions. In

particular, even when the two condensates are

switched on with the same magnitude, and op-

posite signs, supersymmetry is formally broken 2,

contrary to [21]. Let us note, that we suppress

here the possibility of a constant superpotential

contribution, which could arise as a vev of the

gauge and/or gravitational Chern-Simons forms

on either wall. The inclusion of these terms,

the details of which are beyond the scope of the

present note, does not change the general picture

unless one considers very special situations which

are unlikely to arise dynamically.

A further consequence of FS 6= 0 is a nonzero
scalar mass, which arises from (2.1) upon sub-

stituting the correction −δKS = ±ξ0|Aq|2/(S +
S̄)2 3, which gives soft scalar masses proportional

to ±ξ0FS .
Finally, we examine the ratio of the two F

terms

FS

FT
=
3

ξ0

Λ31 + Λ
3
2

Λ31 − Λ32

(
S

T

)2
. (2.9)

In the present region of moduli space, the ratio

of S/T is of the order 1/40 or so, so it would

not require very much fine-tuning to arrange the

magnitudes of the condensates in such a way

that the ratio FS/FT is of the order of unity or

larger. To make the possibility of the mixed S, T -

moduli-driven scenario more plausible, we look

at the ratio FS/FT more carefully. As pointed

2The magnitude of the breaking is to be determined

from the vacuum solution of the effective potential, but

we would expect m3/2 = O(Λ3/M2Pl).
3This correction arises from the correction to the met-

ric of the Calabi-Yau space, i.e., to the factor of
√
g(6)

which multiplies the kinetic terms of the four-dimensio-

nal charged scalars [22].
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out in [19], one can easily express the expecta-

tion value of T through the observable quantities

T = ( MPMGUT
)2
α
1/3

GUT

217/3π3
. Then we can express S as

S = 1
4παGUT

− ξ0T . As a result, we obtain the
ratio of the F terms as a function of ξ0:

FS

FT
=
3

ξ0

(
211/3π2M2GUT

α
4/3
GUTM

2
P

− ξ0
)2
Λ31 + Λ

3
2

Λ31 − Λ32
.

(2.10)

The prefactor multiplying the condensates can be

studied as a function of ξ0, when we fix the ob-

servables at their MSSM values. One finds that

the prefactor vanishes at ξ̄0 ≈ 0.025, but grows
quickly to values of O(1) for larger ξ0, and to
the values ≥ 0.07 at ξ0 ≤ 0.01. For negative
ξ0, i.e. in the regime of ‘strong’ unification, the

value of the prefactor is always larger than 1/10.

Thus, it is possible to obtain quite a large value

of FS , and even the extreme option of S-dilaton-

driven supersymmetry breaking cannot be com-

pletely excluded in the strongly-coupled heterotic

string. This could have interesting consequences,

given the promising results of phenomenological

investigations of this limit in the weakly-coupled

string.

We finish this section with the list of the

soft terms found here in the four-dimensional su-

pergravity approach. We generalize the earlier

results [13, 14, 23, 24, 25] by considering non-

standard embeddings in which charged matter is

present on both walls, i.e., in both gauge sectors,

and we allow for condensates to form on both

walls 4. Restoring powers of the reduced Planck

mass M , the physical gravitino mass in the case

of a vanishing cosmological constant in four di-

mensions is:

m23/2 =
(S+S̄)2/3

22/312M4 (Λ
3
1 + Λ

3
2)
2

+ (T+T̄ )
2

432M4 ξ
2
0(Λ

3
1 − Λ32)2 (2.11)

and the mixing angle θ introduced through the

relation F
S

FT
=
√
3 S+S̄
T+T̄

tan θ is given by

tan θ =
√
3ξ−10

S + S̄

T + T̄

Λ31 + Λ
3
2

Λ31 − Λ32
. (2.12)

Assuming that the CP-violating phases vanish,

we obtains trilinear scalar terms of the form

A =
√
3m3/2

(
sin θ

(
−1± ξ0 3(T+T̄ )

3(S+S̄)±ξ0(T+T̄ )
)

4However, we do not consider five-branes in the bulk.

+
√
3 cos θ

(
−1 + 3(T+T̄ )

3(S+S̄)±ξ0(T+T̄ )
))
(2.13)

and gaugino masses

M1/2 =
√
3m3/2

(S+S̄)±ξ0(T+T̄ )
(
sin θ(S + S̄)

± ξ0 cos θ (T+T̄ )√
3

)
. (2.14)

Note that there is a difference of sign between the

expressions linear in ξ0 corresponding to differ-

ent walls. This can have consequences in some

of nonstandard embedding models, where, e.g.,

matter with Standard Model hypercharge may

exist on both walls. The dilaton-dominated limit

corresponds to sin θ → 1. We can see from the
formulae for the A terms and gaugino masses

that even in this limit there is non-universality

between terms containing charged fields from dif-

ferent walls, see [26] for details.

Using standard supergravity formulae one can

easily write down the formulae for the soft scalar

masses, assuming some reasonable form of the

corresponding Kähler potential, and they are given

in [26], [27]. One again notices the characteris-

tic changes of sign of some terms when one goes

from one wall to the other, and the universality of

these terms is violated even in the dilaton-driven

supersymmetry-breaking limit.

It is useful to generalize the above analysis to

the case of an arbitrary number of condensates.

Hence, following the reference [26] we shall sum-

marize briefly the main features of the racetrack

models with condensates forming in two different

gauge sectors, with different gauge kinetic func-

tions f1,2 = S ± ξ0T 5.
First, let us look for the flat space super-

symmetric points of the effective potential. One

reason is purely technical, namely it is much eas-

ier to find such candidate points than to look

for broken supersymmetry solutions to the full

equations of motion. Secondly, as we expect the

realistic supersymmetry breaking scale to be hi-

erarchically smaller than the Planck scale, one

can expect the relevant points where supersym-

metry is only slightly broken, to be located near

the globally supersymmetric points (although the

existence of remote relevant susy breaking points

cannot be excluded in general). As we are look-

ing for flat space solutions, we shall assume the
5See also discussion in [28].
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vacuum expectation value of the total superpo-

tential to be zero, which is consistent in the pic-

ture with explicit gaugino bilinears, as it does

not lock to each other the values of various con-

densates. Then, the scalar potential takes the

form

V =
(S + S̄)2

16M2
|
∑
i

Λ3i |2 + ξ20
(T + T̄ )2

48M2
|
∑
i

εiΛ
3
i |2

(2.15)

(where εi = ±1 and the rest of the notation is
standard and given in [27]), and is equivalent to

the potential obtained in the globally supersym-

metric limit in the effective superpotential ap-

proach to multiple condensates. It is easy to see

that existence of supersymmetric minima implies

that the sum of condensates vanishes separately

on each wall∑
Λ3i+ = 0 =

∑
Λ3i− (2.16)

at such points in field space. Here i+, i− run
over the number of condensates present on wall

1 and wall 2 respectively and {i} = {i+, i−}.
In the case of at least two condensates on

each wall, equations (2.16) are two independent

equations for two complex variables eS±ξ0T , so
generically they have a solution at finite values

of S and T . The situation is such, that con-

densates on each wall optimize themselves and

supersymmetry is unbroken, but the values of S

and T become fixed. This is an interesting pos-

sibility, and it would be an interesting exercise

to check which values of Re(S) and Re(T ) can

be obtained in such a setup, but in this paper

we want to stay specifically within the class of

calculable perturbative nonstandard embeddings

discussed in [20], and there doesn’t seem to be

enough space for ≥ 4 condensates with realisti-
cally low condensation scales.

Hence we have to look at the vacua with

three or less condensates. These are the inter-

esting cases, given our comments above. First,

when we want to have 3 condensates arranged

on different walls, then one of them must be on

one wall, and two on the opposite. Then it fol-

lows immediately that to fulfill the unbroken susy

conditions the single condensate would have to

vanish. With three nonvanishing condensates on

both walls we therefore always have broken su-

persymmetry. The same applies, as pointed out

in [27], to the case of two condensates on different

walls.

When we have several condensates on a sin-

gle wall, then this works similarly to the weakly

coupled case: supersymmetry is unbroken, but

only S + ξ0T or S − ξ0T is fixed. To have a
hope to fix both moduli within the simple, and

perhaps most appealing, version of the racetrack

scheme one clearly needs to consider condensates

on both walls.

To conclude, in the most interesting case of

two or three condensates on different walls, we

can exclude the existence of flat space, unbro-

ken supersymmetric ground states. This is not

so bad however, because the existence of remote

minima, disconnected from any globally super-

symmetric state, cannot be excluded by a gen-

eral reasoning. In fact, if one finds any proper

minimum of the effective potential in these cases,

supersymmetry is guaranteed to be broken there.

However, to have a vanishing cosmological con-

stant at such a minimum, one has to invoke a

nonzero expectation value of the superpotential,

and it would have to be of the order of Λ3eff if

we are to get the usual hierarchy F ≈ Λ3eff/M .
One source of such effectively constant terms in

the superpotential could be condensates of the

Chern-Simons forms, but then the question of the

scale and ‘stiffness’ of these condensates arises,

which we shall not discuss here. It is worth not-

ing that even if the constant in the superpoten-

tial is present, then on the basis of the dynamics

described by the 4d effective potential one can-

not tell whether it makes FT or FS vanish. In

fact, the most plausible situation in such a case

is that supersymmetry is unbroken, moduli fixed,

but the cosmological constant is nonzero.

3. The Five-Dimensional Connection

between Four-Dimensional Worlds

In this Section, we construct explicitly the four-

dimensional supergravity Lagrangian that arises

from the sequence of compactifications: 11 →
5→ 4, remembering that the result can be trusted
only in the lowest order in κ2/3. As already

mentioned, this approach is inescapable if gaug-

inos condense at high energies, above m5 =
1
R5
.

In this case, the four-dimensional Lagrangian is

5
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born from two spatially separated gauge sectors.

As will be clear from our construction, the result

should be a four-dimensional supergravity theory

in the approximation ξ0 = 0.

Since, in this Section, we first construct the

five-dimensional theory, we perform the Weyl ro-

tation of the metric which gives the canonical

Einstein-Hilbert action in five dimensions. The

relation between the canonical eleven- and five-

dimensional metrics is g
(11)
MN = (e

−2σg(5)µν ; eσg
(0)
ab ).

In this notation, we take e3σ = Re(S), where S

is the Z2-even scalar from the universal hyper-

multiplet [9, 10].

In what follows, we shall use the same sym-

bols for both five-dimensional moduli, e.g., σ,

and for the corresponding four-dimensional quan-

tum fields, whenever it is obvious from the con-

text which ones we actually have in mind.

If we restrict ourselves to a Calabi-Yau space

with h(2,1) = 0, then the decomposition of gauge

fields with compact indices which defines mat-

ter fields in 27s of E6 is Ai = A
kp(x)ωkji (y)Tjp,

where the ωkji (y) are harmonic (1, 1)-forms, and

the Tjp are generators of E6. We note the follow-

ing properties of the generators: TrTipTjqTkr =

εijkdpqr, TrTjpTj′p′ = δjj′δpp′ , and the appro-

priate expansions for the field strength: Fµa →
∂µC

KpωKja Tjp, Fνb → ∂νCLp
′
ωLj

′
b Tjp′ . Finally,

we shall use the following decomposition of the

regular part ofGabc11 in terms of massless Calabi-

Yau modes [10]

(G11)abc = 2∂11C0Ωabc + h.c. (3.1)

With these conventions and definitions, the re-

sult of the reduction of the ‘perfect square’, given

in [2], down to five dimensions is

Lsq = − V0
12κ2

∫
d5x
√
g(5)e

−3σg55 (2∂5C0

+4 κ2√
2λ2
δ(m)P (m)

− 1
32π

(
κ
4π

)2/3
e
9
2σ(g55)

3/4δ(m)ε̄
(4)
m ε

(4)
m

)2
(3.2)

where P (m)(A) = λKLMdpqrA
KpALqAMr , m =

1, 2 labels the walls, and we have used the canon-

ical normalization for gauginos in four dimen-

sions. Here eσ(x,x
5) is the five-dimensional vari-

able measuring the volume of the Calabi-Yau space

along the orbifold interval, in units of the fidu-

cial volume V0. This is the real part of the Z2-

even scalar from the universal hypermultiplet:

Re(S) = e3σ(x
5). The relation between S and

the four-dimensional fields S̃, T̃ is

e3σ(x
5) = e3σ̃ + ξ0e

γ̃(1− 2x
5

πρ0
). (3.3)

In the above expression, eσ̃ = Re(S̃), and eγ̃ =

Re(T̃ ) =
√
g55(xµ).

To construct the effective theory in four di-

mensions, one has to integrate out the compo-

nents of the five-dimensional fields which do not

correspond to massless degrees of freedom in four

dimensions, and the natural way to do this is

through the solution of the equations of motion

along the dimension which one wishes to com-

pactify. To the lowest order in κ2/3, i.e., to the

zeroth order in ξ0, the equation is

∂25C0 =
∑
m

(
−
√
2κ2

λ2
P (m)

+ 1
64π

(
κ
4π

)2/3
e
9
2σ(g55)

3/4ε̄
(4)
m ε

(4)
m

)
∂5δ

(m)

(3.4)

The solution to this equation which obeys the

periodicity condition on the full circle and is an-

tisymmetric across the fixed points of the S1/Z2
has a finite discontinuity at each of these points.

Its derivative develops δ-function singularities at

x5 = 0, πρ0, which cancel other δ-function terms

coming from the expansion of the formal ‘square’.

The regular part of the derivative, which is con-

tinuous everywhere, is

∂5C0 =
1
2πρ0

∑
m=1,2

(
−
√
2κ2

λ2
P (m)

+ 1
64π

(
κ
4π

)2/3
e
9
2σm(g55m)

3/4ε̄
(4)
m ε

(4)
m

)
.

(3.5)

where the subscript m = 1, 2 denotes the restric-

tion of the given function to the m’th wall. We

note that the coefficients of the gaugino bilinears

above differ in higher order in ξ0 (see (3.3)). The

effective four-dimensional Lagrangian is obtained

by substituting (3.5) into Lagrangian (3.2) and

integrating over x5.

We need to comment on the next-order cor-

rections to the above solution. As we stressed

earlier, higher-order corrections to (3.5) cannot

be reliably calculated from the Lagrangian (3.2).

It turns out that, in order to find the correc-

tions reliably and to reconstruct the complete

6
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four-dimensional Lagrangian at higher order in

ξ, it would be necessary to go beyond the lin-

ear order in the x5 dependence of the field C0,

hence beyond the order to which the effective La-

grangian can be trusted. Secondly, the compact-

ification 11 → 5 leads in general to a non-linear
σ-model structure which goes beyond the sim-

ple expression (3.2): as pointed out in [10], in

five dimensions the ‘perfect square’ is a part of

the larger non-linear σ-model structure. We re-

iterate that nonlinearities are to be expected in

the solution of the full theory in five dimensions,

since it contains nonlinear terms associated with

gauging, as well as with the nonlinear σ model

structure.

It is useful to summarize certain properties

of the zeroth-order result (3.5). First, we re-

call [9, 10] that the the order parameter for su-

persymmetry breaking in the microscopic five-

dimensional vacuum is the nonvanishing vev of

∂5C0. Secondly, (3.5) expresses this quantity in

terms of fields charged under the gauge group,

which are legitimate zero modes in the effective

four-dimensional theory. We see that the terms

corresponding to superpotentials generated on se-

parate walls enter this expression additively, which

happens to be the simplest possible structure lead-

ing to the effective 4d supergravity. Thirdly,

the terms corresponding to gaugino bilinears en-

ter the expression (3.5) with coefficients that are

equal to the order to which we have solved the

corresponding equation of motion.

In order to see how the soft terms found

above would look in the presence of the non-

universal hypermultiplets in the bulk, i.e., for

Calabi-Yau spaces with Hodge number h(2,1) >

0, we recall [10] that one has to make the replace-

ment

2∂5C0 → 2

1− |Za|2 (∂5C0 + ∂5CaZ
a) (3.6)

in the expressions for the soft terms, see [27],

where a = 1...h(2,1) labels Z2-odd (Ca) and Z2-

even (Za) scalars from the non-universal hyper-

multiplets. The presence of the derivatives ∂5Ca
signals that, in addition to the F terms of the

universal moduli S, T there will be F terms of

the non-universal moduli participating in the brea-

king of the low-energy supersymmetry.

Further details leading to the microscopic,

i.e. five-dimensional, derivation of the operators

breaking softly the N = 1, d = 4 supersymmetry

are presented in [27].

4. Conclusions

In this note we have presented observable su-

persymmetry breaking operators in perturbative

nonstandard embeddings in Horava-Witten model

of the effective low energy field theory limit of

the strongly coupled heterotic string. The impor-

tant feature which we studied in detail is that in

these models charged matter lives in two sectors

with different gauge kinetic functions i.e. on both

10d walls, which are in addition spatially sepa-

rated. Also gaugino condensates may be present

on both walls. We have studied how such two

sectors combine with each other to form the ef-

fective supergravity in four dimensions. We have

demonstrated how the soft supersymmetry brea-

king terms are born in the higher dimensional

(5d) picture, and shown that the higher dimen-

sional picture is consistent, at the level of lowest

order solution to the equation of motion along

the fifth dimension, with the effective four di-

mensional results. It has been demonstrated that

at the lowest order in κ2/3 the structure of the

4d supergravity with the gauge kinetic functions

f1,2 = S results from the integrating-out proce-

dure. We have found nonuniversality between

soft terms on different walls, which is due to

the sign difference in the gauge kinetic functions

and in the corrections to the kinetic functions of

charged scalars.

We argue that the mixed FS/FT , and per-

haps even the FS-dominated, supersymmetry brea-

king should be possible in the class of models dis-

cussed here or in their counterparts in the more

general constructions with different gauge sectors

separated in higher dimensions.

Finally, we believe that present considera-

tions should be helpful in more general situa-

tions, like type I/type IIB orientifolds models

with gauge sectors located on different branes.

Detailed discussion of the issues raised in this

note can be found in the papers [27] and [26].
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