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Abstract: We consider the full two-loop effects of the Kaluza-Klein states on the running of the

canonical gauge couplings in models with large extra spatial dimensions. Part of the contribution of the

Kaluza-Klein states is perturbatively exact, while that induced by the wavefunction renormalisation

of the low-energy spectrum is valid in two-loop order. From the gauge couplings unification condition,

we estimate the corrections induced on α3(Mz) by towers of Kaluza Klein states associated with some

states of the low-energy spectrum assumed to be that of the Minimal Supersymmetric Standard Model

(MSSM).

1. Introduction

The possibility of unification of the gauge cou-

plings in supersymmetric (string-inspired) mod-

els with large extra spatial dimensions has re-

cently been investigated in some detail [1, 2, 3, 4].

This was motivated by the renewed interest [1]

in the phenomenology of the models with large

additional spatial dimensions [5, 6, 7]. Addi-

tional space dimensions to the four-dimensional

space-time are common in string theories and

their presence has strong theoretical motivations

and phenomenological implications for the high

energy physics. String models are usually for-

mulated in higher dimensional spaces compact-

ified to the four dimensional space-time. The

presence of spatial (compactified) dimensions im-

poses that Φ(x, y) and Φ(x, y + 2πRo) be equal

where Φ(x, y) is a field of our model, x denotes

the four dimensional space-time coordinates and

y stands for the additional (compactified) spa-

tial dimensions which we assume to be all of

equal radius, Ro. The coefficients (operators) of

the Fourier expanded field Φ with respect to the

new spatial coordinates y represent the Kaluza-

Klein (KK) modes which we denote by Φ(n)(x)

for further reference. As we increase the energy

scale the new dimensions will open up, which

from the point of view of the four-dimensional

field theory (adopted throughout this work) cor-

responds to the appearance in the spectrum of

additional heavy states (excited modes). The so-

called “zero-modes”, Φ(0)(x), are usually identi-

fied with (some) states of the low-energy spec-

trum which in the present work will be consid-

ered to be those of the MSSM. The mass of the

excited modes will be of the order of the inverse

size of the extra (compact) spatial dimensions

considered, µ0 ≡ 1/Ro,

µo2~n = µ
2
0(n

2
1 + n

2
2 + · · ·n2δ) +m20 (1.1)

where δ is the number of additional dimensions,

~n ≡ (n1, n2, · · · , nδ), the integers ni are Kaluza-
Klein excitation numbers with integer values and

m0 denotes the mass of “zero-modes” which will

be neglected in this work since m0 will be much

smaller than µ0.

Additional symmetries imposed on the wave-

functions Φ(x, y) and the exact details of the

compactification procedure can result in very dif-

ferent scenarios for the assignment of the excited

modes to the low energy spectrum. We adopt

the orbifold compactification procedure outlined
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in [1] and, although the assignment of excited

modes is model dependent, in general these ad-

ditional states may exist for the gauge sector, for

the Higgs fields and even for the fermions [1]. As

we will discuss later this leads to different phe-

nomenological predictions, due to the different

beta function coefficients such choices bring in.

The purpose of the present work is to present

the two-loop Renormalisation Group Evolution

(RGE) equations in models with (large) extra di-

mensions and to give some insights into the phe-

nomenology of the models with Kaluza-Klein mo-

mentum states which may lower significantly the

unification/string scale through their effects on

the RGE. The low-energy spectrum is assumed to

be that of the Minimal Supersymmetric Standard

Model (MSSM) with an additional set of Kaluza-

Klein states whose “zero-level” modes are iden-

tified with the corresponding MSSM states. Our

results are subject to further (Type I/I ′) string
thresholds at the high scale.

We evaluated1 the exact perturbative con-

tribution of the Kaluza-Klein states to the “run-

ning” of the gauge couplings with the scale2. Our

approach to quantifying these effects is different

from that of [1] where this is done in a one-loop

calculation where the thresholds induced by the

Kaluza-Klein modes as well as the higher order

perturbative contributions to the canonical gauge

coupling3 are neglected. We find similar results

to those of [1] for the power-law running [1, 5, 7]

of the couplings, induced by the (large number

of) Kaluza-Klein states. We also included in the

present analysis the two-loop effects above the de-

compactification scale µ0, due to one-loop wave-

function renormalisation of the low-energy spec-

trum assumed to be that of the MSSM. Such ef-

fects are present because the anomalous dimen-

sions of the matter fields of the low-energy spec-

trum “feel” (in one-loop order) the presence of

1up to a technical approximation in which a discrete

sum is replaced by an integral
2The detailed derivation of the full two-loop RGE flow

for the gauge couplings will be presented elsewhere [8].
3Note that for field theory calculations one uses the

canonical gauge coupling, as opposed to the holomorphic

gauge coupling (present in string theory calculations) de-

fined as the coefficient of the gauge kinetic term. For a full

discussion and a relationship between the two couplings

see [9, 10, 11].

“zero-modes” (identified with the MSSM states,

hence giving the usual MSSM two-loop contri-

bution) and that of the excited (heavy) modes

described by the interaction Lagrangian between

the MSSM states and the (excited) Kaluza-Klein

states. The one-loop corrected wavefunctions of

the MSSM states induce the two-loop contribu-

tion to the running of the gauge couplings. Such

two-loop effects (above µo scale) were not in-

cluded in the previous analyses of this topic [1, 2].

The two-loop RGE equations for the gauge

couplings are applied to two models we consider

to investigate. The first case will be that of the

MSSM with excited modes for the gauge sector

and for the two Higgses. The Kaluza Klein state

H(n) for any of the two MSSM Higgs fields will
be a massive chiral N = 1 multiplet H(n) =
(H(n), ψ

(n)
H ). For the gauge boson sector, a mas-

sive gauge boson mode (i.e. a massive N = 1
vector supermultiplet) which we call V (n) is rep-

resented by an N = 1 massless vector supermul-
tiplet A(n) = (A(n), λ(n)) (which for n = 0 will
be identified with MSSM gauge bosons) and a

N = 1 chiral supermultiplet in the adjoint rep-
resentation, Ã(n) = (φ(n), ψ(n)). The supermul-

tiplet Ã(0) is not present as a low-energy state

of the MSSM and this is ensured by requiring

the Ã(x, y) field be odd under the Z2 orbifold

compactification procedure and thus has no zero

mode component4 [1]. This completes the de-

scription of the assignment of the Kaluza-Klein

modes to the low-energy spectrum for this case.

For the second case we will consider that only

the gauge sector has additional towers of Kaluza-

Klein modes while the Higgses and the fermions

live on the boundary without any (non-zero) ex-

citations.

The above description of the Kaluza-Klein

states for the models considered fixes the con-

tribution of each excited mode to the one-loop

4The initial tower of KK states is split into two towers

of given parity (odd and even with respect to y) with half

the number of states each plus a zero-mode state. For

the case when the extra dimensions are compactified on

S1/Z2 at least, an extra factor
√
2 comes with any cou-

pling of excited modes as compared to the similar cou-

pling of zero-modes, due to the normalisation of the KK

basis. In the RGE equations the two effects of reducing

the number of states and of increasing αi by (
√
2)2 will

cancel against each other.
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beta function coefficients and this will enable us

to compute their effects on the evolution of the

gauge couplings. Further information is needed

for a full two-loop calculation, such as the inter-

action Lagrangian between zero-modes and ex-

cited modes; in the absence of a fully derived

MSSM from a higher dimensional string model

for the models to be investigated here we will

make some generic assumptions about the afore-

mentioned interaction. Moreover, string thresh-

olds at the high scale (not known) may affect our

conclusions and an accurate calculation should

consider them as well. The two cases we consider

may not be the most relevant for phenomenology

and there could be difficulties with deriving them

from a generic string model, but the method we

present is more general and could be used for

other cases, too.

2. The evolution equations in mod-

els with extra spatial dimensions

In this section we present the effects of the KK

states on the running of the gauge couplings be-

low the scale where a more fundamental theory

(of strings) will apply. There are good reasons

[8] to think that a field theory approach to quan-

tifying the effects of the Kaluza-Klein states us-

ing standard RGE techniques is appropriate for

those states situated well below the string scale.

In our (four-dimensional) field theory approach,

we therefore truncate the (infinite) tower of KK

states to a finite number of states situated below

this scale, and under these circumstances the use

of the Renormalisation Group Evolution (RGE)

techniques is indeed justified. The result (eq.

2.1) is derived using the the Novikov-Shifman-

Vainshtein-Zakharov “beta function” [9, 10, 11].

The “running” of the gauge couplings due to

Kaluza-Klein states alone is actually perturba-

tively exact, it includes the sum of their thresh-

old effects and their mass renormalisation effects

(to all orders in perturbation theory)) due to any

additional gauge and/or Yukawa interactions. In

fact the two effects “conspire” together to give

a dependence of the RGE equations on the bare

mass (eq.(2.1) only [8] of the KK states. The

origin of this effect can be traced to the fact

that the holomorphic gauge coupling runs at one-

loop level only in N = 2 theories. However,

the contribution to the RGE due to the MSSM

matter wave-function renormalisation is valid in

two-loop order only, therefore the overall effect,

eq.(2.1), is valid in this approximation only. Fol-

lowing this idea, we showed [8] that the overall

two-loop value of the gauge couplings just below

the scale µo has the following structure

α −1
i (µ0) = α

−1
i (Λ)

+
b̃i

2π

{
πδ/2

δ Γ(1 + δ/2)

[(
Λ

µ0

)δ
− 1
]
− ln Λ

µ0

}

+
bi

2π
ln
Λ

µ0
+
T i(G)

2π
ln

αΛ

αi(µ0)

+
1

4π

3∑
k=1

(bik − 2 bk Tk(G)δik)
∫ Λ
µ0

d lnµ

2π
αk(µ)

+
1

4π

3∑
k=1

(
bik − 2 bk Tk(G)δik − bHik

)

×
∫ Λ
µ0

d lnµ

2π
αk(µ) f(µ, µ0; δ)

+
1

4π

3∑
k=1

bHik

∫ Λ
µ0

d lnµ

2π
αk(µ) g(µ, µ0; δ) (2.1)

We used the following notations: Λ represents

the high scale of the model where all couplings

meet, αi(Λ) = αΛ, b̃i is the sum over the Dynkin

indices for the distinct representations (of the

gauge group) that have a tower of Kaluza-Klein

states, µ0 ≡ 1/Ro, bi is the one-loop MSSM beta
function coefficient, (bi = 33/5, 1,−3). The one-
loop gauge wavefunction renormalisation effects5

are accounted for by the last term in the third

line of eq.(2.1). This term is perturbatively ex-

act [9], and hence includes all higher (than one-

loop) orders as well. Further, bik is the two

loop MSSM-only beta function, so the term with

the coefficient (bik − 2bkTkδik) accounts for the
“standard” two-loop MSSM effects to α−1i due

to the wavefunction renormalisation (induced by

the MSSM gauge bosons) of the three MSSM

generations and Higgs fields; bHik is the two loop

contribution due to the two Higgs doublets via

their one-loop wavefunction renormalisation in-

duced by excited KK modes (of the gauge sec-

tor) only. The term with the coefficient (bik −
5this is a two-loop order contribution to α−1i
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2bk Tk(G)δik − bHik) is the similar contribution

coming from the one-loop wavefunction renor-

malisation of the three MSSM families (due to

excited KK gauge modes).

Finally, the functions f , g are model depen-

dent form factors which encode some information

regarding the contribution ∆γφ of the excited

Kaluza Klein states to the anomalous dimensions

γφ of the MSSM fields, i.e. γφ = γoφ + ∆γφ
where γoφ is just the MSSM anomalous dimen-

sion of the MSSM field φ induced by the MSSM

states only. These form factors could be com-

puted in a Lagrangian formulation of the theory

in higher dimensions compactified to the four di-

mensional space-time. In the absence of a fully

derived MSSM from such a theory, we assumed

that

∆γφ(m) = −fφ(m,µ0; δ)
3∑
j=1

2αk(m)Ck(φ)

(2.2)

for energy scales µ0 ≤ m ≤ Λ and where φ stands
for the MSSM fermions. Ck(φ) is the Casimir

operator for the representation φ. For the two

Higgses the similar form factor is denoted by g.

Below the scale µ0 the form factors f, g vanish

while above this scale can be taken equal. In the

limit δ → 0 we recover the usual MSSM running
(f(m,µ0; 0) = g(m,µ0; 0) = 0). Below the scale

µ0 the usual MSSM spectrum and RGE equa-

tions apply.

Although the form factors f and g are model

dependent, some general information about their

form is available. As emphasized in [6, 12], for

orbifold compactifications, the couplings αj,~n be-

tween two massless twisted modes (i.e. a low-

energy state without KK excitations) situated at

the same fixed point of the orbifold and one un-

twisted (i.e. one with KK modes, as a KK boson)

of level ~n is changed from the ordinary gauge cou-

pling αj , and hence f(m,µ0, δ) is expected to be

proportional to

f(m,µ0, δ) ∝ NKK(m,µ0, δ)ρ−µo2~n αH (2.3)

where αH is the four dimensional heterotic string

coupling, αH = 1/M
2
H and ρ is a number which

depends on the orbifold twist [12], being of or-

der 10 or larger. Also NKK(m,µ0, δ) is an av-

erage number of Kaluza-Klein states coupling to

the two massless twisted modes and accounts for

summing up all the effects due to Kaluza Klein

modes which renormalise the wave function of

the low-energy (twisted) states. If µo2~n ≡ ~n2µ20 �
Λ2 and since Λ is identified with the string scale

MH , then

f(m,µ0, δ) ∝ NKK(m,µ0, δ) (2.4)

In this case of “large” compactification radius sit-

uated well below the string scale, the two loop

effects due to Kaluza-Klein will have an enhance-

ment role due to NKK .

If µo2~n ≡ ~n2µ20
<∼Λ2 then the couplings αj,~n

are strongly suppressed and two loop effects in-

duced by excited Kaluza-Klein modes become

less significant and therefore the predictions from

the RGE equations are less dependent to the ex-

act details (the interaction Lagrangian between

the light states and the Kaluza-Klein states) of

the theory, encoded in f and g. If so we are

mainly left with the usual MSSM two-loop terms,

but the validity of (2.1) is rather limited in this

case.

We also note that the power-law behaviour

of the RGE for the gauge couplings should be re-

stricted, for consistency with the orbifold models

to values of δ = 1, 2 as the higher powers would

introduce a scale dependence not present in the

large radius limit of the string calculations. More

explicitly, the one-loop string corrected relation

between the gauge couplings, at the string scale

is

α−1i (Mstring) = α
−1
string +

1

4π
∆i (2.5)

where the values of ∆i have a large radius be-

haviour

∆i ∝ (Radius)2 (2.6)

for Calabi-Yau [13] compactifications.

The origin of this apparent discrepancy6 be-

tween the string thresholds scale dependence re-

stricted to R2o in the large radius limit and that

we obtained (Rδo) is in the exact structure of the

spectrum of the model. In our calculation we

considered that all towers of Kaluza-Klein states

are N = 2 supersymmetric for all δ = 1, 2, ..6.
6Note that ∆i includes both momentum and winding

modes
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In string models this is true only for δ = 1, 2,

the rest of the spectrum having N = 4 super-
symmetry and hence does not induce any RGE

running of the holomorphic coupling. The over-

all running will therefore be due to the N = 2
sector only. This remains also true when we eval-

uate the canonical gauge coupling with the sum

over the Kaluza-Klein states restricted to N = 2
sector, thus explaining the R2o dependence

7.

3. Two models and their predictions

In this section we consider two models and es-

timate the size of the corrections on α3(Mz) in-

duced by the KK states, assuming the gauge cou-

plings unification.

Model A considers excited KK modes for the

MSSM gauge bosons and for the two Higgses8

while model B includes only Kaluza Klein gauge

bosons in addition to the MSSM spectrum. The

excited modes are assumed to be N = 2 massless
vector multiplets (gauge modes) and N = 2 hy-
permultiplets (Higgs modes). To ensure that the

“zero-level” modes are indeed only N = 1 super-
symmetric multiplets, additional symmetry con-

ditions must be imposed. For orbifold compacti-

fications, the chiral adjoint component of N = 2
vector multiplet is considered odd under the dis-

crete group of the orbifold so that it does not

have zero modes9, the three generations of the

MSSM are assumed to lie all at the (same) fixed

points of the orbifold considered (this avoids the

presence of KK states for them) and that after

compactification the spectrum of the MSSM is

indeed reproduced entirely. These are strong as-

sumptions and must be recovered while deriving

such models within a Lagrangian formalism in a

4+ δ dimensional space. Assuming that all these

conditions are fulfilled, the coefficient b̃i of (2.1)

should be replaced by the combination

b̃i(ξ) = ξ[T (RiHu) + T (R
i
Hd
)] + T i(G)− 3T i(G)

= 2 ξ Ti(Hu)− 2Ti(G)
7For the numerical analysis of Section 3 we will allow

δ ≥ 2, choice motivated by the suggestion that suitable
orbifold choices can allow [1] for all KK states to fall into

N = 2 multiplets.
8A detailed description of model A is presented in [1].
9This ensures that the chiral adjoint field is not present

in the low energy spectrum.

=

{
3

5
ξ; ξ − 4; −6

}
i

(3.1)

where T i(Hu) = T i(Hd) = (3/10, 2, 0)i. For

model A ξ = 1 and for model B ξ = 0. The

last and second-last term in the first line of equa-

tion (3.1) represent the contribution of a Kaluza-

Klein state of the gauge sector, associated with

the N = 1 massive vector supermultiplet which
consists of N = 1 massless vector supermultiplet
and a chiral supermultiplet in the adjoint rep-

resentation, hence the terms −3Ti(G) and the
term Ti(G) respectively, to account for the ex-

cited mode of the gauge boson 10.

We assume that above the scale µ0 the values

of the form factors f and g due to KK gauge

effects are fixed to the following value

fφj (m,µ0; δ) = N(m,µ0; δ)− 1, m > µ0 (3.2)

where N is the total number of KK states be-

low the string scale [1]. This is because above

the scale µ0 only excited N = 1 massless vec-
tor KK states contribute, and their number is

N(m,µ0; δ)− 1. Also

gHu,d(m,µ0; δ) = 0, m > µ0 (3.3)

because above µ0 scale there is no wave func-

tion renormalisation for the MSSM Higgs, due

to N = 2 multiplets running inside the loop, cor-
responding to excited KK for Higgses and vec-

tor bosons. For N(m,µ0; δ) = 1 we recover the

usual result, due to the MSSM gauge bosons only

(identified with the “zero-modes” gauge bosons).

From the scale µ0 down toMz only the usual

MSSM spectrum and RGE running is supposed

to apply. Our numerical results are then ob-

tained from eqs.(2.1), and from three additional

RGE equations for the MSSM-like running of the

couplings below the scale µ0.

10The presence of KK states associated with the Hig-

gses introduces two-loop changes (in the RGE for model

A) of Yukawa type but these effects are ignored in our

analysis; therefore, the only difference between models A

and B is that induced by the coefficient b̃i(ξ) in front of

the power-law term.

5
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3.1 Numerical results

For the case the Higgs fields have towers of ex-

cited Kaluza-Klein modes (model A, ξ = 1) we

cannot obtain phenomenologically viable value11

for α3(Mz) [2]. In this case, the prediction for

the strong coupling α3(Mz) from unification con-

dition lies above the MSSM value [2], in disagree-

ment with the experiment. Additional two-loop

effects above decompactification scale which we

included here (and were neglected in [2]) further

increase α3(Mz) by an amount of about 3− 4%
from the results of [2]. The values of the uni-

fication scale Λ and of the decoupling scale µ0
are also systematically increased from the pre-

dictions of [2] by an amount of about 10%. This

gives an idea of the size of the two-loop correc-

tions for the aforementioned quantities, relative

to their predictions which ignored two-loop terms

above µ0 [2]. Two-loop corrections will increase

even further from these values if one considers

additional towers of KK states for the fermions

which would bring an increase of the unified cou-

pling [2] (due to their positive ∆bi) and hence

the contributions of the integrals in (2.1) become

more significant.

When the MSSM Higgs fields do not have

towers of excited states (model B, ξ = 0) the re-

sults are presented in Table 1. They show that

for an acceptable value for α3(Mz), the unifica-

tion of the gauge couplings takes place at a scale

of about 1014 GeV while the scale of new spa-

tial dimensions is only slightly smaller, with val-

ues also in the region of 1014 GeV and the ra-

tio of the two less than 10. The number of KK

states is not very large and it is usually restricted

by the values of the one-loop beta coefficients

b̃i(ξ) which in turn depend on the way we assign

Kaluza-Klein states to the low energy spectrum.

The validity of perturbation theory also requires

that Nα ≤ 4π, condition which is respected in
our case. We see from Tables 1 and 2 that the

unification of the gauge couplings leads to good

predictions for the strong coupling α3(Mz), in

agreement with the experimental value12.

11This statement is subject to further threshold correc-

tions at the high scale which may change this value of

α3(Mz)
12The average value for α3(Mz) = 0.119± 0.002, [15].

The different behaviour of α3(Mz) for the

two models (A and B) considered can be ex-

plained from eqs.(2.1) giving

α−13 (Mz)− αo−13 (Mz =
3

14π
(2− 3ξ)

×
{

πδ/2

δ Γ(1 + δ/2)

[(
Λ

µ0

)δ
− 1
]
− ln Λ

µ0

}

+two− loop term (3.4)

where αo3(Mz) is the MSSM value for the strong

coupling. For ξ = 0 the Higgs fields do not have

Kaluza-Klein towers of excited modes and since

the second bracket in (3.4) is positive, α3(Mz) ≤
αo3(Mz) ≈ 0.126 which leads to good phenomeno-
logical results, as shown in Table 1. If ξ = 1

(model A) the strong coupling is increased above

the MSSM prediction and above the experimen-

tal upper limit, α3(Mz) ≥ αo3(Mz) ≈ 0.126; two-
loop terms in (3.4) cannot change this result, for

the perturbation theory to be valid.

One could consider other models of assign-

ing Kaluza-Klein states to the low-energy spec-

trum. One can include Kaluza-Klein towers for

the fermions [1, 4] which will enhance the two-

loop KK contribution above the scale µ0 as men-

tioned. Other constructions motivated by spe-

cific string models [1, 16] are possible, but we

will not consider these cases here. It must be

mentioned that a good accuracy for the predic-

tion for α3(MZ) is achieved if the number of KK

states below the string scale is significant so that

eq.(2.1) is accurate. Finally, lowering the string

scale in the “TeV” region as a result of the power-

law running of the gauge couplings is affected by

fine tuning effects as emphasized in [2].

4. Conclusions

We estimated in a full two loop analysis the cor-

rection on α3(Mz) following from the condition

of gauge couplings unification in two models with

Kaluza-Klein states. Summing up the logarith-

mic individual contributions of these states to

the RGE equations gives the power-law running

of the couplings valid to all orders in perturba-

tion theory and this correctly includes the thresh-

old effects due to log’s of ratios of (physical)

masses of Kaluza-Klein states of different levels.

6



Trieste Meeting of the TMR Network on Physics beyond the SM Dumitru Ghilencea

Since the contribution of the Kaluza-Klein states

to the wave-function renormalisation of the low-

energy (MSSM) spectrum is evaluated in one-

loop only, our analysis is valid in two-loop order.

The two-loop effects above the decompactifica-

tion scale are more significant when one considers

KK states associated with the fermionic sector,

since they increase the gauge couplings and thus

the two loop contribution. Otherwise, their con-

tribution is in the region of 4% for α3(Mz) and

10% for the mass scales of the model. Lowering

the unification scale in the “TeV” region as an

effect of the power-law running is not possible

without fine-tuning effects. The results are sub-

ject to additional string threshold effects at the

high scale, not included in this work.
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ξ δ ρ = ln(Λ/µ0) Λ (GeV) µ0 (GeV) α3(MZ) αΛ

0 1 0. 3× 1016 3× 1016 0.1260 0.0433

0 1 0.2 2.512× 1016 2.057× 1016 0.1254 0.0429

0 1 0.4 1.959× 1016 1.313× 1016 0.1246 0.0424

0 1 0.6 1.400× 1016 7.687× 1015 0.1235 0.0418

0 1 0.8 9.001× 1015 4.044× 1015 0.1221 0.0410

0 1 1 5.079× 1015 1.868× 1015 0.1204 0.0400

0 1 1.2 2.445× 1015 7.365× 1014 0.1183 0.0388

0 1 1.4 9.700× 1014 2.392× 1014 0.1157 0.0374

0 1 1.6 3.037× 1014 6.132× 1013 0.1125 0.0357

0 1 1.8 7.126× 1013 1.178× 1013 0.1089 0.0339

0 1 2 1.175× 1013 1.590× 1012 0.1047 0.0318

0 1 2.2 1.261× 1012 1.397× 1011 0.0999 0.0296

0 1 2.4 8.005× 1010 7.262× 109 0.0946 0.0272

0 1 2.6 2.677× 109 1.988× 108 0.0888 0.0248

0 2 0 3× 1016 3× 1016 0.1260 0.0433

0 2 0.2 1.976× 1016 1.618× 1016 0.1246 0.0424

0 2 0.4 9.873× 1015 6.618× 1015 0.1224 0.0412

0 2 0.6 3.265× 1015 1.792× 1015 0.1191 0.0393

0 2 0.8 5.841× 1014 2.624× 1014 0.1143 0.0366

0 2 1 4.179× 1013 1.537× 1013 0.1076 0.0332

0 2 1.2 7.637× 1011 2.300× 1011 0.0989 0.0291

0 2 1.4 1.825× 109 4.502× 108 0.0882 0.0245

0 3 0 3× 1016 3× 1016 0.1260 0.0433

0 3 0.2 1.503× 1016 1.231× 1016 0.1237 0.0419

0 3 0.4 3.792× 1015 2.542× 1015 0.1195 0.0395

0 3 0.6 2.740× 1014 1.504× 1014 0.1123 0.0356

0 3 0.8 2.037× 1012 9.153× 1011 0.1009 0.0300

0 3 1 2.419× 108 8.900× 107 0.0851 0.0233

0 4 0 3× 1016 3× 1016 0.1260 0.0433

0 4 0.2 1.153× 1016 9.444× 1015 0.1229 0.0414

0 4 0.4 1.152× 1015 7.723× 1014 0.1162 0.0376

0 4 0.6 5.756× 1012 3.159× 1012 0.1032 0.0311

0 4 0.8 3.718× 107 1.670× 107 0.0824 0.0223

0 5 0 3× 1016 3× 1016 0.1260 0.0433

0 5 0.2 9.292× 1015 7.607× 1015 0.1222 0.0411

0 5 0.4 3.001× 1014 2.012× 1014 0.1126 0.0357

0 5 0.6 2.107× 1010 1.156× 1010 0.0923 0.0262

0 6 0 3× 1016 3× 1016 0.1260 0.0433

0 6 0.2 8.095× 1015 6.628× 1015 0.1218 0.0408

0 6 0.4 7.504× 1013 5.030× 1013 0.1091 0.0339

0 6 0.6 9.886× 106 5.425× 106 0.0806 0.0216

Table 1: Model B: The values of the unification scale Λ, decoupling scale µ0, the strong coupling at the

electroweak scale and the bare coupling αΛ in terms of the ratio Λ/µ0 which is related to the number of KK

states [1]. Our two-loop results are based on (2.1). The results correspond to model B, when the Higgs fields

do not have Kaluza-Klein states.
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