
Heavy Flavours 8, Southampton, UK, 1999

PROCEEDINGS

Exclusive semileptonic B decays: lattice results and

dispersive bounds∗

Laurent Lellouch†

Theory Division, CERN, CH-1211 Geneva 23, Switzerland

E-mail: laurent.lellouch@cern.ch

Abstract: The current status of lattice and dispersive bound calculations for exclusive semileptonic

B decays is reviewed. Emphasis is placed on decays relevant for the measurement of the sides of the

unitarity triangle determined by |Vub| and |Vcb|.

1. Introduction

Exclusive semileptonic decays of hadrons con-

taining a b quark play an important role in test-

ing the Standard Model. They enable the mea-

surement of two of the three sides of the unitarity

triangle, determined by the Cabibbo-Kobayashi-

Maskawa (CKM) parameters |Vub| and |Vcb|. How-
ever, such measurements require a quantification

of the non-perturbative, strong interaction dy-

namics which modify the elementary coupling of

the b and resulting quark to the W boson. Lat-

tice QCD and dispersive bounds provide tools to

quantify and constrain these non-perturbative ef-

fects from first principles1. Model independence

is crucial for the unitarity-triangle tests of the

Standard Model to be meaningful. Without it,

it will be impossible to disentangle potential new

physics effects from artefacts of the models used.

The talk is divided into two main parts: lat-

tice results and dispersive bounds. I will begin

the first part with a brief introduction to the sys-

tematic uncertainties of lattice calculations and

to the different ways in which heavy quarks can
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1Lattice results relevant for leptonic decays, neutralB-

meson mixing and related topics, also useful for constrain-

ing the unitarity triangle, are covered in Shoji Hashimo-

to’s talk [1].

be studied on a discrete spacetime. I will then

turn to lattice results relevant for heavy-to-light

quark decays, including B → π`ν, B → ρ`ν and
B → K∗γ. This will be followed by a discussion
of heavy-to-heavy quark decays, focussing mainly

on B → D(∗)`ν decays2. The second part will be-
gin with a brief description of the methodology of

dispersive bounds and its applications to heavy-

to-heavy semileptonic decays. It will continue

with applications of dispersive bound techniques

to heavy-to-light decays.

2. Lattice Results

Although lattice QCD provides a means of deter-

mining non-perturbative, strong-interaction ef-

fects to arbitrary accuracy from first principles,

in practice the results suffer from a variety of

uncertainties due to limitations in computing re-

sources. The main ones are:

•Statistical errors, associated with the fact
that the QCD path integral is evaluated using

Monte-Carlo simulations. They are estimated

with standard statistical techniques.

•Discretisation errors, associated with the
fact that spacetime is a discrete mesh of points.

They are particularly important for heavy quarks

and are dealt with in a varieties of ways, as dis-

cussed in Section 2.1.

2Other recent lattice reviews of some of the subjects

covered here can be found in [2, 3]. The last Heavy

Flavour review of lattice results for semileptonic decays

is [4].
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•Finite volume errors, associated with the
fact that in lattice calculations, spacetime is a

finite box. They are not significant for the quan-

tities discussed here.

•Uncertainties associated with extrapolations
in light quark masses. On present day lattices,

light quarks (u and d) must have masses larger

than about ms/2 so that the associated pions do

not feel the edges of the box. One must therefore

extrapolate results from these larger masses to

the physical u and d quark masses.

•Matching errors, associated with the match-
ing of lattice results onto the continuum. This

matching is necessary because ultraviolet modes

are treated differently on the lattice than they

are in continuum regularisations. While it can be

performed perturbatively, with resulting pertur-

bative uncertainties, more and more it is carried

out non-perturbatively, eliminating it as a source

of systematic error. This is the case in most non-

perturbatively-improved calculations discussed be-

low.

•Quenching errors, associated with the fact
that in most calculations of semileptonic B de-

cays, the feedback of quark loops on the gauge

fields is neglected. It is not anticipated that these

effects be more than O (10%) here. They have
only very recently begun to be taken into account

for these decays [5].

2.1 Heavy-light hadrons on the lattice

Because the b quark with mass mb ∼ 5 GeV has
a compton wavelength which is small compared

to typical lattice spacings, a ∼ (2 − 3 GeV)−1,
it cannot be simulated directly as a relativistic

quark on present day lattices. This has led to a

variety of approaches, which we review now for

the case of hadrons composed of a heavy quark

and light degrees of freedom.

2.1.1 Relativistic quarks

Relativistic fermions are obtained from a discreti-

sation of the euclidean Dirac action. For heavy

quarks, the discretisation most commonly used

is that of Wilson. In modern calculations, it is

often O(a)-improved by use of a Shekholeslami-

Wohlert (SW) action. This means that for heavy

quarks Q of mass mQ, discretisation errors are

formally reduced from O (amQ) to O (αsamQ) if

the improvement is performed at tree level, and

to O ((αsamQ)2) if it is non-perturbative.
Despite these improvements, simulating the

b quark directly would lead to uncontrollable dis-

cretisation errors. Therefore, what is done is to

perform the calculations for a number of quark

masses around that of the charm, where discreti-

sation errors are under control, and then extrap-

olate the results to mb using Heavy Quark Ef-

fective Theory (HQET) as a guide. Typically,

HQET predicts that a form factor F will scale

with mQ as

F (w)mνQ = A(w)

(
1 +
B(w)

mQ
+O

(
1

m2Q

))
,

(2.1)

at fixed four-velocity recoil w ∼ 1, up to calcu-
lable logarithmic corrections. Here, ν, A and B

depend on the form factor.

The main problem with this approach is this

rather long extrapolation to mb.

2.1.2 Effective theories

The point of view here is that for heavy quarks

whose massmQ is large compared to typical QCD

scales, µQCD, an expansion of QCD in powers of

µQCD/mQ may be useful. Indeed, it reduces dis-

cretisation errors from powers of amQ to powers

of aµQCD, the latter being small on present day

lattices.

Static quarks. The first implementation of

this idea was to consider heavy quarks as static,

spin-1/2 color sources. The problem with this

approach is that accurate results for the physical

b quark require that 1/mb-corrections be taken

into account. This leads to power divergences

proportional to inverse power of the lattice spac-

ing which are difficult to subtract. It also leads

to a proliferation of operators whose matrix ele-

ments must be computed. It has the further dis-

advanted of yielding correlators with poor signal

to noise ratios.

“Non-relativistic QCD (NRQCD)”, in the con-

text of heavy-light mesons, essentially corresponds

to keeping in the action some of the leading 1/mQ-

corrections mentioned above, thereby implicitly

re-summing to infinite order their effects on the

processes studied. The problem with this ap-

2
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proach is again power divergences and operator

proliferation.

In the hybrid or “Fermilab” approach, the

goal is to find an action valid for all amq. In

practice, it is a relativistic SW action that is used

and the results are subsequently given a non-

relativistic interpretation. There is debate over

the extent to which systematics are controlled in

this approach.

2.2 Heavy-to-light decays

In heavy-to-light-quark semileptonic decays, the

light, final state hadron can have momenta as

large as |~p| ∼ mQ/2 in the parent rest frame.
For mQ = mb, and on present day lattices, such

momenta would lead to uncontrollably large dis-

cretisation effects proportional to powers of a|~p|.
Therefore, at present, only a limited kinematical

range near the zero-recoil point can be reached

without extrapolation. Even so, lattice calcula-

tions are useful, for the relevant matrix elements

are not normalised by heavy quark symmetry as

they are for heavy-to-heavy quark decays (at zero

recoil). Furthermore, experiment is beginning

to measure the corresponding differential rates

within the lattice’s kinematical reach [6], which

will allow model-independent determinations of

CKM parameters such as |Vub|. Finally, lattice
groups are investigating new ways of exploring

the region of large recoils.

2.2.1 B0 → π−`+ν
In the past two years, most studies of heavy-to-

light decays have concentrated on B0 → π−`+ν.
The relevant matrix element is

〈π−(p′)|V µ|B0(p)〉 = M
2
B −M2π
q2

qµf0(q
2)

+(p+ p′ − M
2
B −M2π
q2

q)µf+(q
2) , (2.2)

where q = p− p′ and V µ = b̄γµu.
In Figure 1, I have collected results for both

f+ and f0. Results from ELC94 [7], APE95 [8],

UKQCD95 [9] and UKQCD99 [10] were obtained

using relativistic quarks. APE95 and UKQCD95

implement tree-level improvement, while UKQ-

CD99 implements full non-perturbative improve-

ment. The FNAL99 [11, 12] results were ob-

tained with the hybrid approach while HiKEK98

[13] use NRQCD. Besides the non-perturbative

improvement of UKQCD99 and the fact that FN-

AL99 has begun exploring cutoff dependence by

performing their calculation at three values of the

lattice spacing3, another novelty is the fact that

FNAL99 and UKQCD99 were able to extrapo-

late the form factors in light quark mass to the

physical u and d masses. APE95 and ELC94 had

only performed this extrapolation for a single q2.

As indicated by the “no χ”, HiKEK98 and UK-

QCD95 have u and d quarks with masses around

that of the strange. A systematic uncertainty

has been added to these results to account for

this fact, as described in [14]. It should be noted

that UKQCD99’s error bars include a wide range

of systematics. Their results are collected in Ta-

ble 1.

Despite the wide range of approaches, results

for both form factors are generally consistent.

This is rather reassuring given the number of fits

and extrapolations involved. Also plotted in Fig-

ure 1 are the light-cone sumrule (LCSR) results

of [15] (see also [16, 17, 18, 19, 20]), including a

20% error band. In the region of overlap, agree-

ment is excellent. Furthermore, the LCSR curves

do look like natural extensions of the lattice re-

sults.

The differential decay rate is easily obtained

from the form factors, up to an overall factor of

|Vub|2. Therefore, comparison with experiment
in the range of pion momenta reached by the lat-

tice calculation will yield a model-independent

determination of |Vub|. FNAL suggest to com-
pare dΓ/d|~pπ| in the range 0.4 GeV ≤ | ~pπ| ≤
0.8 GeV, where their systematic errors are min-

imised [11, 12]. Their rate is shown in Figure

2, together with that of UKQCD99. Agreement

is good, a bit less so at the lowest value of | ~pπ|,
where sensitivity to the B∗ pole is strongest. The
results of UKQCD99 for dΓ/dq2 for 0.5 GeV ≤
| ~pπ| ≤ 1.1 GeV, with an estimate of systematic
errors, are given in Table 1.

One may also attempt to extrapolate the a-

bove lattice results to the large recoil region. While

it can be done in a model-independent way as de-

scribed in Section 3.2, extrapolation of the most

3The FNAL99 results shown here are those obtained

at β = 5.9.
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Figure 1: Form factors for B0 → π−`+ν. The points are results from various lattice groups. The dashed
lines are LCSR results (see text). The solid lines are the result of the fit of UKQCD99’s central value results,

with statistical errors only, to the BK parameterisation of Eq. (2.3) [10].

q2 (GeV)2 16.7 18.1 19.5 20.9 22.3

f+(q
2) 0.9+1−2

+2
−1 1.1+2−2

+2
−1 1.4+2−2

+3
−1 1.8+2−2

+4
−1 2.3+3−3

+6
−1

f0(q
2) 0.57+6−6

+ 5
−20 0.61+6−6

+ 6
−19 0.66+5−5

+ 6
−17 0.72+5−4

+ 6
−14 0.79+5−4

+ 6
−11

1/|Vub|2dΓ/dq2 (ps−1GeV−2) 0.29+10− 9
+11
− 6 0.27+8−7

+11
− 1 0.25+7−6

+11
− 1 0.23+6−5

+11
− 1 0.20+5−5

+ 9
− 1

Table 1: Form factors and differential decay rate as functions of q2 from UKQCD99 [10].

Figure 2: Differential decay rate for B0 → π−`+ν
from FNAL99 [12] and UKQCD99 [10]. The smaller

error bars on the UKQCD99 results are statistical;

the larger ones are statistical and systematic com-

bined in quadrature.

recent results has only been performed using mod-

els. It is not, therefore, on the same firm theoret-

ical ground as the unextrapolated results. Never-

theless, it may be useful if one needs information

about the decay over the full kinematical range4.

UKQCD99 has considered fits to

f+(q
2) =

f(0)

(1− q2/M2B?)(1− αq2/M2B?)
f0(q

2) =
f(0)

(1− q2/βM2B?)
, (2.3)

with either α = 1 and f(0), β as fit parame-

ters (dipole/pole), or leaving all three parame-

ters free, as suggested by Becirevic and Kaidalov

(BK) [22]. These two parameterisations are con-

sistent with the kinematical constraint f+(0) =

f0(0), heavy-quark scaling at large q
2 (Eq. (2.1))

and light-cone (LC) scaling at small q2 (Eq. (2.6))

[21, 22]. The BK parameterisation is more phys-

ical in that it correctly takes into account the

B∗ pole contribution to f+. It is important to
use parameterisations which are consistent with

as many model-independent constraints as pos-

sible.

The result of UKQCD99’s fit to the BK pa-

rameterisation is shown in Figure 1. Agreement
4Please see [9, 21] for earlier constrained q2-

extrapolations.
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Rate f+,0(0) description

UKQCD99 [10] 9+3+3−2−4 0.30+6+4−4−9 BK fit plus many systematics

APE99 [29] 0.28(4) LC scaling at q2 = 0

UKQCD98 [21] 8.5+3.3−1.4 0.27(11) dipole/pole fit to f+/f0

APE95 [8] 8± 4 0.35(8) q2'20.4 GeV2, pole fit, mp=5.32(1) GeV
ELC94 [7] 9± 6 0.30(14)(5) q2'18 GeV2, pole fit, mp=5.29(1) GeV

Table 2: f+,0 at q
2 = 0 and total rate in units of |Vub|2ps−1. The results of APE and ELC are obtained by

extrapolation of f+ determined at a single q
2 value, as indicated in column 4. UKQCD uses results for f+

and f0 at a number of q
2 values and performs constrained fits to the parameterisations of Eq. (2.3). The final

state pion in the UKQCD98 results is composed of quarks with masses around that of the strange and include

a systematic error to account for this. The APE99 results was obtained as described around Eq. (2.6).

with the LCSR results is stunning. UKQCD99

then uses its fits to obtain the total rate. Their

result, along with older lattice results, is given in

Table 2. Agreement is good, though error bars

are large.

While the extrapolations discussed above in-

troduce model-dependence, there are many pos-

sible checks and constraints. For instance, the

residue of the B∗ pole in f+ is related to the
coupling of the pion to heavy mesons, defined in

Eq. (2.7):

fres ≡
Resq2=m2

B∗
f+(q

2)

M2B∗
=
gB∗Bπ

2fB∗
, (2.4)

where fB∗ is given by 〈0|Vµ|B∗〉 = εµM2B∗/fB∗ .
Thus, to the extent that the BK parameterisa-

tion is a valid description of f+ and f0, the direct

determination of this residue, fres = f(0)/(1 −
α), must agree with its indirect determination

through gB∗Bπ and fB∗ . The results of UK-

QCD99 yield fres = 0.55
+7+51
−7−0 while Eq. (2.4)

with fB∗ = 27
+3+0
−3−5 from [23] and g from Eq.

(2.9) give fres = 0.63
+10+17
−10−12. Error bars are large

and g from Eq. (2.9) is exploratory and was con-

verted to gB∗Bπ using Eq. (2.8) without 1/mb-

corrections. Agreement within statistical errors,

though, indicates a certain consistency of the BK

fit to the central values. Furthermore, statistical

and systematic uncertainties on the indirect de-

termination are comparable to or smaller than

those on the direct determination. This sug-

gests that some gain may result from constrain-

ing the B∗-pole residue with its indirect value.
Of course, for this to be done correctly would re-

quire a calculation of the form factors, as well as

fB∗ and gB∗Bπ, with the same lattice parame-

ters.

Another constraint comes from a soft pion

theorem for f0 which states that

f0(q
2
max) =

fB

fπ
, (2.5)

in the chiral limit [24, 25]. There is some contro-

versy as to whether the theorem is upheld by the

lattice results (see, for instance, [2, 30, 5]). This

issue should be resolved within the coming year.

Further constraints, as we have already men-

tioned, come from the scaling of heavy-to-light

form factors with the mass of the heavy quark

and the energy of the final state meson (in the

heavy-meson frame), in the combined heavy-quark

and large-energy limit [26, 27, 28]. For fixed

q2 ∼ 0, this scaling becomes a universal scaling
of all form factors with the heavy-meson mass:

F (q2)M
3/2
B = A(q2)

(
1 +
B(q2)

MB
+O

(
1

M2B

))
,

(2.6)

where F (q2) is a generic heavy-to-light form fac-

tor. APE99 [29] has used the parameterisation of

Eq. (2.6) to extrapolate f+,0(0) in heavy-quark

mass from around the charm, where the lattice

yields the form factors for a range of q2 that

encompasses zero, up to the b. This extrapo-

lation is shown in Figure 3 and the resulting

value given in Table 2. Of course, higher-order

1/MB-corrections in Eq. (2.6) can be taken into

account, as shown in the figure. The value re-

ported is consistent with the one obtained from

the results of UKQCD99 as well as with older

results, as shown in Table 2. This is very en-

couraging, for it suggests that B-to-light form

5
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factors could be reconstructed in the large recoil

region from the lattice D-to-light form factors,

in a model-independent way. A couple words of

warning, however: LCSR estimates [28, 20], as

well as the figure, suggest that pre-asymptotic

corrections in Eq. (2.6) are large, even at MB,

and one may worry about the convergence of the

expansion in the region where lattice results are

available. Theoretical work is also needed to un-

derstand the expansion of Eq. (2.6) better.

0.4 0.6 0.8 1 1.2 1.4 1.6
                                                             1/MH

0.2

0.4

0.6

0.8

1

F0,+(0) MH

3/2

B
D

APE − Preliminary results
       (π − final state)

Figure 3: APE99’s LC scaling of f+,0(0) from heavy

hadron mass MH ∼ MD to MB , according to Eq.
(2.6) [29]. The points are the simulation results.

The curves are the result of a linear (solid) and a

quadratic (dashed) fit to Eq. (2.6).

Before closing this section, it should be men-

tioned that preliminary results of a calculation

for B → π form factors with two flavours of dy-
namical quarks (partial unquenching) were pre-

sented very recently [5].

2.2.2 First lattice determination of the B∗Bπ
coupling

Another novelty since the last Heavy Flavour

conference is a first lattice determination of the

B∗Bπ coupling, defined as the q2 → m2π limit of
gB∗Bπ(q

2) in

〈B0(p)π+(q)|B∗+(p′)〉 =

−gB∗Bπ(q2)q · η (2π)4δ(p′ − p− q) . (2.7)

As we have already seen in Eq. (2.4), it is related

to the residue of f+ at the B
∗ pole. Furthermore,

it determines the coupling, g, of B, B∗ and π in

Heavy Meson Chiral lagrangians through

gB∗Bπ(q
2 → 0)× fπ

2MB

mb→∞−→ g . (2.8)

LSZ reduction and PCAC relate the matrix

element of Eq. (2.7) to 〈B0(p)|Aµ|B∗+(p + q)〉.
The authors of [31] compute the latter, and do

so in the static quark limit. This exploratory

study, performed with a rather large lattice spac-

ing, yields

g = 0.42(4)(8) , (2.9)

which compares favourably with the combined

estimate of [32], g ' 0.38(8) and is roughly con-
sistent with the value, g = 0.27+4+5−2−2, obtained
from an analysis of the experimental measure-

ment of D
∗(0,+)
(s) → D(0,+)(s) π

0 and the correspond-

ing radiative decays [33]5. It can also be com-

pared to the value of g obtained from the direct

determination of the residue of f+ given below

Eq. (2.4). Using Eq. (2.8) at finite mb and us-

ing the value of fB∗ given after Eq. (2.4), I find

g = 0.37+7+34−7−7 , consistent within statistical er-
rors.

JLQCD are undertaking an indirect deter-

mination of g as part of their NRQCD study of

B → π`ν decays, from the residue of the B∗ pole
[2]. There are also determinations of g from the

residue of the B∗ pole from older lattice results
in [14].

2.2.3 B → ρ`ν and B → K∗γ
Although no new lattice results for these decays

have been obtained since the last Heavy Flavour

conference, it is worth reviewing a few results.

The definitions of the form factors discussed be-

low can be found, for instance, in [34].

UKQCD [34] proposed obtaining |Vub| from
a comparison of lattice and experimental results

for the differential rate for B0 → ρ−`+ν decays
for q2 >∼ 12 GeV2. To that effect, they parame-
terised this rate as

dΓ

dq2
=
G2F |Vub|2
192π3M3B

q2
√
λ(q2)a2(1 + b(q2 − q2max))

(2.10)

5The author excludes a second possible solution, g =

0.76+3+2−3−1, at the two-sigma level with the experimental
limit, ΓD∗+ < 13 MeV.

6
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where λ(q2) = (M2B +M
2
ρ − q2)2 − 4M2BM2ρ and

where the parameters a and b are determined by

fitting to lattice results obtained for q2 >∼ 14 GeV2.
They find

a = 4.6+0.4−0.3 ± 0.6 GeV (2.11)

b = (−8+4−6)× 10−2 GeV−2

where a includes a 6.5% systematic uncertainty

associated with light spectator mass dependence

and a 10% uncertainty associated with discreti-

sation effects. a, here, plays the role of FD∗(1)
in the determination of |Vcb| from B → D∗`ν
decays, and b the role of FD∗ ’s slope at w = 1.
For ρ = K∗, heavy-quark spin symmetry

predicts that the form factors V and A1 for B →
ρ`ν and T1,2 for B → K∗γ are related as [35]

V

2T1
(w) = 1 +O

(
1

mb

)
A1

2iT2
(w) = 1 +O

(
1

mb

)
, (2.12)

for w = vB · vρ,K∗ ∼ 1. Results for these ra-
tios are shown in Figure 4, for different values of

the initial heavy-meson mass and for a ρ and K∗

composed of quarks slightly more massive than

the strange. Both relations are well satisfied in

the infinite heavy-quark-mass limit. The surpris-

ing result is that the ratio A1/2iT2 still satis-

fies the heavy-quark prediction, even at the D

mass. One can further include all 1/mb cor-

rections from kinematics [35, 36, 37] in the ratios

of Eq. (2.12). With these corrections the rela-

tion between V and T1 is improved by a factor

of about two while the relation between A1 and

T2 is not significantly changed. Similar relations,

including the 1/mb corrections from kinematics,

have been considered with LCSR, but for large

recoils (1.7 <∼ w <∼ 3.5), and are found to hold to
good accuracy [28, 38].

As already discussed for B → π`ν decays, it
may be of interest to abandonmodel-independence

in favour of a simple description of the relevant

form factors over the full kinematical range. UK-

QCD [21] thus considered combined fits of lat-

tice results for the form factors relevant for B →
ρ`ν and B → K∗γ decays, obtained at high
q2. The parameterisations used are consistent

with heavy-quark scaling at small recoils (Eq.

Figure 4: Ratios V/2T1 and A1/2iT2 for five values

of w and three values of the initial heavy-meson mass

[34]. The horizontal lines are the heavy-quark limit

values.

(2.1)) and light-cone scaling at large recoils (Eq.

(2.6)), as well as with the kinematical constraint

at q2 = 0, T1(0) = iT2(0)
6. For degenerate ρ and

K∗, leading order HQET predicts that the seven
form factors required to parameterise the rele-

vant matrix elements are related to four Isgur-

Wise functions [35, 37]. Keeping only one of

these functions, which is fixed by parameteris-

ing A1(q
2) by a pole form with free pole position

and residue, the authors of [21] obtain a two-

parameter description of the seven form factors.

The results of the fit to this parameterisation are

shown in Figure 5 for a final state ρ7. Also shown

are the lattice points of APE [8] and ELC [7]

as well as the LCSR results of [38]. Agreement

6They also consider B → π`ν decays, but the fits dis-
cussed around Eq. (2.3) are performed with improved lat-

tice results.
7A2(q2) and T3(q2) are not included in the fit. T3(q2)

has not yet been calculated.
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Figure 5: B → ρ form factors. The solid curves are fits of the UKQCD results to the constrained pa-

rameterisation described in the text [21]. The dashed curves are the LCSR results of [38] with a 15% error

band.

with the lattice results in the region of overlap

is encouraging as is the agreement at smaller q2,

with the lattice-constrained parameterisation. It

is worth pointing out that the error bars on the

UKQCD results are statistical only. As discussed

in [34], one may assign a 10% uncertainty for dis-

cretisation errors and a 5-20% uncertainty, de-

pending on the form factor, associated with light

spectator mass dependence. We also emphasise

that the extrapolated form factors are no longer

model independent, though models related to the

one used have recently received theoretical sup-

port from the formalism developed in [26].

Similar results are obtained for a final state

K∗ and agreement with LC sumrules is also good.
These results enable a determination of T1(0)

which determines the rate for B → K∗γ. In Ta-
ble 3 we compare T1(0) from the combined fit

of [21] to older results obtained with less con-

strained extrapolations. The UKQCD value yields

RK∗ = Γ(B → K∗γ)/ Γ(b → sγ) = 16+3−4%, to
leading order in αs and up to O

(
1/m2B

)
correc-

tions [39]. Errors are statistical only. This result

is consistent with the experimental result from

CLEO [40], RK∗ = 13(4)%.

2.2.4 Other decays

APE [29] is also considering the penguin induced

matrix elements for B → K(π)`+`− decays.

2.3 Heavy-to-heavy decays

The recoils involved in semileptonic heavy-to-hea-

vy quark decays are much smaller than those in

heavy-to-light decays: the lattice can cover the

full kinematical range. Heavy quark symmetry

is also much stronger, here, in that it normalises

the relevant matrix elements at zero recoil and

applies to the full kinematical range. Neverthe-

less, the lattice can provide interesting informa-

tion on the behaviour of these matrix elements

away from zero recoil as well as provide tests of

heavy quark symmetry. Attempts are also being

made to quantify deviations from heavy-quark

8



Heavy Flavours 8, Southampton, UK, 1999 Laurent Lellouch

T1(0) T2(q
2
max)

UKQCD98 [21] 0.16+2−1 0.25(2)

LANL96 [41] 0.09(1)

APE96 [42] 0.09(1)(1)

BHS94 [43] 0.101(10)(28) 0.325(33)(65)

Table 3: T2(q
2
max) is obtained using heavy-quark scaling from around the charm region to the b. For T1(0) =

iT2(0), only results from extrapolations consistent with LC scaling (Eq. (2.6)) are given.

normalisations for physical quark masses at the

zero-recoil point.

2.3.1 B → D(∗)`ν: form factors at zero re-
coil

To extract |Vcb| from B → D(∗)`ν decays, one
traditionally extrapolates the differential decay

rates to the zero-recoil point, w = vB · vD(∗) = 1,
obtaining |Vcb|FD(∗)(w = 1). One then uses the
fact that the form factors FD(∗)(1) are equal to
1 in the heavy quark limit to obtain |Vcb|. A
precise determination of |Vcb|, however, requires
calculation of the corrections to this limit. Apart

from calculable, perturbative corrections, there

are non-perturbative corrections proportional to

inverse powers of the heavy quark masses, mc,b.

Uncertainties on these power corrections currently

limit a more precise determination of |Vcb|.
It was proposed recently that these correc-

tions be obtained by studying the heavy-quark-

mass dependence of the relevant form factors on

the lattice [44], instead of evaluating, for instance,

the contributions of subleading HQET operators

in the 1/mc,b expansion. In [44], this idea is ap-

plied to the determination of power corrections

to FD(1). In [45], the same authors present pre-
liminary results for the corrections to FD∗(1).
Since their method requires measuring small de-

viations from 1, excellent control of both statisti-

cal and systematic errors is necessary. Thus, they

suggest studying the mass dependence of double

ratios of three-point functions which at asymp-

totic times reduce to a double ratio of zero-recoil

matrix elements8:

RB
(∗)→D(∗)
Jµ

−→ 〈D
(∗)|Jcbµ |B(∗)〉〈B(∗)|Jbcµ |D(∗)〉

〈B(∗)|Jbbµ |B(∗)〉〈D(∗)|Jccµ |D(∗)〉
,

(2.13)
8To determine zero-recoil, power corrections in the

form factor h−(w), relevant for B → D`ν decays, they

use slightly different ratios.

where Jqq
′

µ = q̄γµq
′ or q̄γµγ5q′.

For instance, RB→DV0
yields |h+(1)|2 up to a

multiplicative renormalisation, where h+(w) is

the usual B → D`ν, heavy-quark form factor.
The dependence of the square root of this ratio

on 1/mc is shown in Figure 6. Statistical errors

are indeed very small, and the deviation from 1

is significant statistically, which is certainly very

encouraging. However, the tuning of the action

and operators and the analysis of systematics in

the hybrid approach is complex, and the results

of [44, 45] should be confirmed by other groups.

0.0 0.4 0.8 1.2 1.6 2.0 2.4
1/amc

0.96

0.97

0.98

0.99

1.00

1.01

1.02

|h
+
(1

)|

Figure 6: RB→DV0
of Eq. (2.13) as a function of

1/amc for an initial heavy quark with mass amb =

2.11 [44]. The light quark’s mass is that of the

strange.

2.3.2 B → D(∗)`ν: recoil dependence
While the shapes of B → D(∗)`ν form factors ob-
tained from the lattice are not required for deter-

mining |Vcb| from these decays9, it is informative
to compare these shapes to those determined by

experiment. Such a comparison enables one to

9Extrapolation of the experimental data for the differ-

ential decay rate to the zero-recoil point with the help of

a dispersive parameterisation such as the ones presented

in Section 3.1 is adequate.

9
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verify the reliability of the extrapolation of ex-

perimental data to the zero-recoil point as well

as to check the lattice method.

UKQCD [46] has presented preliminary re-

sults of a non-perturbatively O (a)-improved cal-
culation of a candidate Isgur-Wise function rele-

vant for B → D(∗)`ν decays:

“ξ(w)” ≡ (1 + β+(1))
(1 + β+(w))

hlat+ (w)

hlat+ (1)
, (2.14)

where β+(w) are the radiative corrections which

match the QCD vector current, c̄γµb, to its HQET

counterpart and where hlat+ is the heavy-quark

form factor h+ up to a multiplicative renormal-

isation. The ratio of Eq. (2.14) enforces non-

perturbative lattice to continuum matching and

should lead to cancellations of discretisation er-

rors as well as subtract some zero-recoil power

corrections to the heavy quark limit. Following

[47, 48], they study the heavy-quark mass de-

pendence “ξ(w)” for heavy-quark masses around

the charm and find that it is consistent with 0,

in the range 1 ≤ w ≤ 1.2. Thus, “ξ(w)” is to
a good approximation the Isgur-Wise function

ξ(w), at least in the above range of w, confirm-

ing the earlier results of [47, 48]. The calculation

is performed at two values of the lattice spacing,

β = 6.2 (finer) and 6.0 (coarser). Results for

the Isgur-Wise function relevant for semileptonic

B → D(∗) decays are shown in Figure 7. Depen-
dence on lattice spacing is small suggesting that

discretisation errors are small. These results are

compatible, yet more accurate than previous de-

terminations (see [3]).

GOK are pursuing an NRQCD study of heavy-

to-heavy decays [49]. In addition to B → D, they
are also considering decays of the B to radially

excited D mesons.

2.3.3 Other decays

UKQCD has investigated Λb → Λc`ν and Ξb →
Ξc`ν decays and determined the relevant Isgur-

Wise functions [50].

3. Dispersive bounds

The second part of my talk is concerned with the

constraints obtained on weak matrix elements

from the polarisation function

ΠµνJ (q
2) = i

∫
d4x eiq·x〈0|T {Jµ(x)Jν†(0)} |0〉 ,

(3.1)

where Jµ is chosen to be the operator which me-

diates the weak transition under consideration10.

I will further concentrate on two applications:

• model-independent constraints onB →D(∗)`ν
form factors used to eliminate the uncer-

tainty in the extrapolation of experimental

data to w = 1 in the extraction of |Vcb|.
• model-independent extrapolations of heavy-
to-light lattice results obtained in a limited

q2 range.

3.1 B → D(∗)`ν
I will briefly summarise the methodology of dis-

persive constraints in the context of B → D`ν,
with Jµ = V µ = c̄γµb. One first decomposes

the polarisation function of Eq. (3.1) according

to helicity as

ΠµνV (q
2) = (qµqν−gµνq2)Π1−(q2)+qµqνΠ0+(q2) ,

(3.2)

paralleling the decomposition of the matrix ele-

ment 〈D|V µ|B〉 in terms of the form factors f+
and f0. To constrain f0, one writes down a (once

subtracted) dispersion relation for Π0+ :

χ0+(q
2) =

∂

∂q2
(
q2Π0+(q

2)
)

=
1

π

∫ ∞
0

dt
t ImΠ0+(t+ iε)

(t− q2)2 , (3.3)

where the imaginary part of Π0+ is essentially

obtained by inserting a complete set of hadronic

states between the vector currents in Eq. (3.1):

· · · qµqν)ImΠ0+(q2 + iε) =
1

2

∑
Γ

(2π)4δ(4) (q − pΓ) 〈0|V µ|Γ〉〈Γ|V ν†|0〉 .
(3.4)

The scalar states which couple to V µ are |Γ〉 =
|Bc(0+)〉, |Bcπ〉, · · ·, |BD〉, · · ·, of which |BD〉 is
the state of interest. The obvious positivity of

the spectral function of Eq. (3.4) enables one to

10While the subject of inclusive heavy-quark sumrules

is a fascinating one, it would take us too far afar.

10
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Figure 7: Candidate Isgur-Wise function relevant for B → D(∗)`ν decays at two values of the lattice spacing
(finer to the left) [46]. The curves, with statistical error bands, and the values of the zero-recoil slope, ρ2, are

the result of fits to ξ(w) = 2
w+1

exp
[
(2ρ2 − 1) 1−w

1+w

]
. The second error bar on ρ2 is an estimate of discretisation

errors as in [48].

write an upper bound on the weighted integral

of the form factor f0 along the cut induced by

|BD〉 in Π0+ :

χ0+(q
2) ≥

∫ −1
−∞
dw k(w, q2) |f0(w)|2 , (3.5)

where k(w, q2) is a kinematical function and where

w = (M2B +M
2
D − t)/(2MBMD). This bound is

interesting because the function χ0+(q
2) can be

computed in QCD in terms of an expansion in

αs and condensates, for q
2 � m2b (i.e. well be-

low the lowest |Bc(0+)〉 state). Of course, the
more states |Γ〉 one can include in Eq. (3.4) in
a model-independent way, the better the bounds

on the form factor f0. In particular, one can use

heavy-quark-spin symmetry to include the con-

tributions of |B∗D〉, |BD∗〉11 and |B∗D∗〉, in the
semileptonic domain.

Translating the bound of Eq. (3.5) into a

bound on f0 in the semileptonic region is an ex-

ercise in complex analysis. For convenience, one

performs the conformal transformation

z(w, a) =

√
w + 1−√2a√
w + 1 +

√
2a
; a > 0 , (3.6)

which maps the cut plane in w onto the unit

disc12. Then the bound of Eq. (3.5) becomes

χ0+(q
2) ≥

∮
dz

2πiz
|φ(z, q2)f0(z)|2 , (3.7)

11|BD∗〉 does not actually contribute to the 0+ channel.
12For a = 1, the zero-recoil point w = 1 gets mapped

onto the origin z = 0.

where φ(z, q2) is the conformally mapped version

of k(w, q2), with kinematical singularities inside

the unit disc removed. This bound implies:

• elliptic constraints on the slope, curvature
and higher derivatives of f0(z) at z = 0; we show

such constraints on f+(z), related to f0(z) by

heavy-quark-spin symmetry near z = 0, in Fig-

ure 8;

• that the remainder of the expansion of φf0(z)
in z, once subthreshold singularities are accounted

for, can be bounded and that the expansion con-

verges rapidly, as was first remarked in [51].

The two most complete analyses are those of

[53] and [52]. In the former, Λb → Λc`ν decays
are also analysed. One of the upshot of these

analyses is that the form factors for B(∗) → D(∗)
vector and axial transitions can each be described

with an accuracy better than 2% with one pa-

rameter and an overall normalisation.

For instance, [52] gives for the form factor

which determines B → D`ν decays,
FD(w)
FD(1) =

f+(w)

f+(1)
≈ 1− 8ρ21z + (51.ρ2 − 10.)z2

−(252.ρ2 − 84.)z3 , (3.8)

with −0.17 < ρ2 < 1.51 and z = (√w + 1 −√
2)/(
√
w + 1+

√
2). The bounds on ρ2 are slighlty

stronger than those given in Figure 8 as detailed

in [52]. Similar parameterisations were given for

FD∗(w).

11
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Figure 8: Bounds on the parameters ρ2 and c which

appear in f+(w) = f+(1)(1− ρ2(w− 1)+ c(w− 1)2+
· · ·) [52]. Only points within the ellipses are al-
lowed. The bounds were obtained in the 0+ chan-

nel. They take into account contributions, amongst

others, from the |BD〉, |B∗D〉 and |B∗D∗〉 states,
including (solid) and not including (dashed) correc-

tions to heavy-quark spin symmetry.

These dispersive parameterisations have been

tried by experimental collaborations [54] and de-

scribe the data very well. They eliminate the un-

certainty in the extrapolation of the differential

decay from w 6= 1 to the zero-recoil point.

3.2 B → π`ν and related work
The first application of dispersive bounds to B →
π`ν was performed in [55] where it was argued

that these techniques could be used to eliminate

certain models for the relevant form factors. In

[14], these techniques were extended to extrap-

olate, to the full kinematical range, lattice re-

sults for B → π`ν form factors obtained at high
q2. The resulting lattice-constrained bounds are

shown in Figure 9, along with LCSR results. The

agreement is excellent.

Similar bounds were obtained for the total

rate and are summarized in Table 4. Since the

systematic uncertainties added to the lattice re-

sults of [9] were generous, the 50% bounds may

be a reasonable representation of the constraints

given by the dispersive method.

The results of [14] are rather old and can

presumably be improved with the lattice results

and additional constraints. For instance, the au-

Figure 9: Dispersive bounds for f0(|t|) and f+(t)
in B0 → π−`+ν decays [14]. The points are the
lattice results of [9] with added systematic errors.

The pairs of fine curves are, from the outermost to

the innermost, the 95%, 70% and 30% bounds, where

percentages represent the likelihood that the form

factor take a value between the corresponding pair

of curves at the given t. The dashed curves are the

LCSR results of [15].

Γ
(
B0 → π−`+ν) f+(0) CL

4.8→ 10 0.18→ 0.49 30%

4.4→ 13 0.10→ 0.57 50%

3.6→ 17 0.00→ 0.68 70%

2.4→ 28 −0.26→ 0.92 95%

Table 4: Bounds on the rate in units of |Vub|2 ps−1
and on f+(0) [14].

thors of [56] discuss the inclusion of soft-pion

constraints. The authors of [57] discuss the im-

proved constraints brought about by consider-

ing higher moments of the dispersion relations

discussed above, as well as the inclusion of the

B∗ → π`ν through the use of heavy-quark spin
symmetry.

The application of these techniques to B →
ρ`ν and B → K∗γ decays is investigated in [58]
and [59], respectively.

4. Conclusion

4.1 Lattice

Many new lattice results for semileptonic decays

of the B have or are about to appear. They

12
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have significantly higher statistics than first gen-

eration calculations. This additional statistical

accuracy has enabled some groups to perform

the difficult extrapolation to the physical pion

mass in B → π`ν decays, and reconstruct the
q2-behaviour of the physical form factors without

SU(3)-flavour assumptions, for q2 >∼ 15 GeV2.

Moreover, some of these calculations are non-

perturbativelyO (a)-improved indicating that they
have reduced discretisation and matching errors.

Others have been performed for many lattice spac-

ings, which will enable extrapolations to the phys-

ical continuum or, at least, a better quantifica-

tion of discretisation errors. Most of these re-

sults, unfortunately, are still obtained in the un-

physical quenched approximation. However, a

number of groups are beginning to partially in-

clude the effect of fermion loops on these decays

and preliminary results were presented at Lattice

99. Furthermore, more and more theoretical con-

straints on the q2-behaviour of the relevant form

factors, such as those described in Section 2.2.1,

are being taken into account. This should enable,

an extension of the kinematical range covered by

lattice calculations.

Many new results are also appearing for semi-

leptonic D decays [60, 61, 30, 12, 29]. These en-

able a calibration of the lattice method through

comparison with experiment. As suggested in

[60], the ratio of partial widths for D → π`ν and
D → K`ν is also a good way to reduce the un-
certainty on |Vcd|/ |Vcs|, currently ∼ 17%. Fur-
thermore, the ratio of differential decay rates for

B → ρ(π)`ν to those for the corresponding D
decays may provide a means of determining |Vub|
with reduced theoretical uncertainties [12].

4.2 Dispersive bounds

Dispersive bounds for heavy-to-light decays have

not been worked on in a while and can presum-

ably be improved with new lattice results and

additional constraints.

For B → D(∗)`ν decays, dispersive bounds
are quite mature and improvement on current

results seems difficult.
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