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Abstract: Supersymmetric domain-wall solutions of maximal gauged supergravity are classified

in 4, 5 and 7 dimensions in the presence of non-trivial scalar fields taking values in the coset

SL(N,R)/SO(N) for N = 8, 6 and 5 respectively. We use an algebro-geometric method based

on the Christoffel–Schwarz transformation, which allows for the characterization of the solutions in

terms of Riemann surfaces whose genus depends on the isometry group. The uniformization of the

curves can be carried out explicitly for models of low genus and results into trigonometric and elliptic

solutions for the scalar fields and the conformal factor of the metric. The Schrödinger potentials for

the quantum fluctuations of the graviton and scalar fields are derived on these backgrounds and enjoy

all properties of supersymmetric quantum mechanics. Special attention is given to a class of ellip-

tic models whose quantum fluctuations are commonly described by the generalized Lamé potential

µ(µ+1)P(z)+ν(ν+1)P(z+ω1)+κ(κ+1)P(z+ω2)+λ(λ+1)P(z+ω1+ω2) for the Weierstrass func-
tion P(z) of the underlying Riemann surfaces with periods 2ω1 and 2ω2, and for different half-integer
values of the coupling constants µ, ν, κ, λ.

Recently there has been some progress to-

wards the construction of supersymmetric domain-

wall solutions of D-dimensional gravity coupled

to scalar fields taking values in the coset space

SL(N,R)/SO(N). There are three cases of par-

ticular interest in the context of maximally gauged

supergravities, namely (D, N) = (4, 8), (5, 6)

and (7, 5). In this contribution we summarize

the results obtained in the subject by reducing

the classification and construction of all such do-

main wall solutions to a problem of algebraic ge-

ometry, where Riemann surfaces arise naturally

in connection with the Christoffel–Schwarz trans-

formation in complex analysis. In the generic

case, where no continuous subgroup of the orig-

inal SO(N) gauge symmetry remains unbroken,

we find that the algebraic curve of the corre-

sponding solution is a Riemann surface of genus

N + 1 depending on N real moduli. When some

∗based on two talks presented by I.B. and K.S.

cycles shrink to zero size, by letting some of the

moduli coalesce, the symmetry group is enhanced,

whereas the genus of the underlying Riemann

surface is lowered accordingly. It is then ap-

propriate to think of the breaking of SO(N) to

its various subgroups, which remain and char-

acterize the individual solutions, as in the case

of spontaneous symmetry breaking. The explicit

construction of the domain-walls amounts to the

uniformization of the algebraic curves, which can

be easily carried out in the cases of low genus (0

or 1); as a result, the simplest solutions can be

described in terms of elementary functions (ra-

tional or trigonometric) for genus 0 surfaces or

in terms of elliptic functions for genus 1 surfaces.

A preliminary version of these results was

announced last September in the TMR meeting

on “Quantum Aspects of Gauge Theories, Super-

symmetry and Unification” held in Paris, but a

more extensive account was subsequently given
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in two recent papers [1, 2], where the reader can

find more details and a list of references to other

work on this interesting topic of research. There

are alternative ways to describe our solutions by

lifting them to the string/M-theory frame, thus

showing that they are consistent truncations of

ten- or eleven-dimensional supergravity. In par-

ticular, from an eleven-dimensional point of view,

the domain-wall solutions of D = 4 and D = 7

gauged supergravities correspond to various con-

tinuous distributions of M2- and M5-branes re-

spectively. Likewise, from the point of view of

ten-dimensional type-IIB supergravity, the do-

main wall solutions ofD = 5 gauged supergravity

correspond to the gravitational field of D3-branes

continuously distributed on hyper-surfaces em-

bedded in the six-dimensional space transverse

to the branes. Such higher dimensional back-

grounds arise in the context of the AdS/CFT

correspondence as supergravity duals of the field

theories living on M2, M5 or D3 branes on the

Coulomb branch, and therefore they have nu-

merous applications. Domain-wall solutions of

gauged supergravities are also interesting to con-

sider in relation to proposals that view our world

as a membrane embedded non-trivially in a higher

dimensional space-time, and for which there is a

normalizable graviton zero mode, like in the re-

cent scenario of Randall and Sundrum where a

resolution of the mass hierarchy problem in geo-

metrical terms was proposed.

In the present work we will focus mostly on

the systematic description of the scalar and gravi-

ton field fluctuations on the domain-wall back-

grounds, apart from reviewing the general al-

gebrogeometric aspects of the corresponding so-

lutions in gauged supergravities for D = 4, 5

and 7. It turns out that the spectrum of these

quantum fluctuations can be formulated as a sim-

ple problem in one-dimensional supersymmetric

quantum mechanics, where the Schrödinger po-

tential is written in terms of a prepotential given

(up to a scale) by the conformal factor of the un-

derlying domain-wall metric. However, the exact

form of the spectrum is very difficult to obtain

beyond the WKB approximation, in particular

for those solutions that correspond to genus 1

(or higher) Riemann surfaces. Nevertheless, in

many cases corresponding to genus 0 Riemann

surfaces, the exact spectrum can be computed

explicitly. We will discuss some aspects of the

Schrödinger potentials that arise in several el-

liptic models, and which have the form of gen-

eralized Lamé potentials with half-integer char-

acteristics. Thus, finite-zone potentials, which

are familiar from the study of the KdV equa-

tion and the hierarchies of non-linear differen-

tial equations descending from it, do not arise in

theories of gauged supergravity and as a result

there is only very little known now about the ex-

act spectrum. Of course, one might construct

domain-wall solutions of D-dimensional gravity

coupled to a selection of scalar fields outside the

scope of gauged supergravities, which could yield

finite-zone potentials, but these models would

not arise as consistent truncations of ten- or eleven-

dimensional supergravity. These issues pose many

interesting questions that deserve further study.

We consider the bosonic sector of gauged su-

pergravity in D-dimensions, which contains only

scalar fields in the coset SL(N,R)/SO(N), for

the specific values of D and N that arise in con-

sistent truncations of ten- or eleven-dimensional

supergravity. Since all other fields are set to zero,

the Lagrangian assumes the form

L = 1
4
R− 1

2

N−1∑
I=1

(∂αI)
2 − P (αI) , (1)

where the potential P (αI) has the special form

P (αI) =
g2

8

(
N−1∑
I=1

(
∂W

∂αI

)2
− 2D − 1
D − 2W

2

)
.

(2)

The functionW is more easily described in terms

of N real scalar fields βi, which are constrained

to satisfy the relation

β1 + β2 + · · ·+ βN = 0 , (3)

as follows

W = −1
4

N∑
i=1

e2βi . (4)

The precise relation among the fields αI and βi
is given by

βi =

N−1∑
I=1

λiIαI , (5)

where λiI are the elements of an N × (N − 1)
matrix. Its rows correspond to the N weights of
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the fundamental representation of SL(N), and

as such they satisfy the normalization conditions

N−1∑
I=1

λiIλjI = 2δij − 2
N
,

N∑
i=1

λiIλiJ = 2δIJ ,

N∑
i=1

λiI = 0 . (6)

The coefficient g2 appearing in front of the po-

tential P (αI) defines an associated length scale

R given by the relation g = 2/R. Having said

this we will set g = 1 in the following.

The domain-wall solutions exhibit (D − 1)-
dimensional Poincaré invariance, namely

ds2 = e2A(z)(ηµνdx
µdxν + dz2)

= e2A(r)ηµνdx
µdxν + dr2 , (7)

where the metric is given in terms of a single

function A which depends on the variable z or r,

as denoted above; these coordinates are related

by the differential relation dr = −eAdz. Further-
more, we assume that the scalars depend only on

z (or r) as well. A careful analysis of the problem

shows that supersymmetric solutions of this kind

satisfy a system of first-order differential equa-

tions

dA

dr
= − 1

D − 2W ,
dαI

dr
=
1

2

∂W

∂αI
. (8)

These can be obtained either directly from the

Killing spinor equations or as a saddle point of

the action functional by the method of Bogo-

mol’nyi. In any case, it is convenient to work

with the unconstrained fields βi as functions of

z, in terms of which the first-order equations be-

come

A′ =
1

D − 2e
AW , β′i = 2

D − 2
N
A′ +

1

2
e2βi+A;

i = 1, 2, . . . , N , (9)

where the prime denotes derivative with respect

to z.

It is fairly easy to integrate the differential

equations for the scalar fields βi by introducing

an auxiliary function F (z), which is related to

the conformal factor as

eA(z) = (−F ′) N
4(D−2)+N . (10)

Then, by simple integration, we obtain the fol-

lowing result for the scalar fields,

e2βi(z) =
(−F ′)∆/N
F − bi ; i = 1, 2, · · · , N , (11)

where ∆ = 4(D−2)N/(4(D−2)+N) and bi are
integration constants. Actually, we have ∆ = 4

for all three cases of interest in gauged super-

gravity, namely (D,N) = (4, 8), (5, 6) and (7, 5).

Moreover, reality of the scalar fields βi requires

that for real z we have F (z) ≥ bmax, where bmax
is the maximum value of the real moduli bi; they

may be ordered as b1 ≥ b2 ≥ · · · ≥ bN with-
out loss of generality. Taking now into account

the algebraic constraint (3) imposed on the scalar

fields βi we arrive at the following non-linear dif-

ferential equation for the unknown function F (z)

(F ′(z))4 =
N∏
i=1

(F (z)− bi) , (12)

that captures the non-linear aspects of the corre-

sponding equations for the domain-walls for N =

8, 6 or 5. In fact, we will look for solutions

which are asymptotic to AdSD space with ra-

dius 4(D − 2)/N (in units where g = 2/R = 1)
as F → +∞ (or equivalently z → 0+), when the
moduli bi assume arbitrary values. In the special

case that all moduli are equal, the corresponding

solution is simply AdSD space (not only asymp-

totically) with all real scalar fields being zero.

Hence, classifying the solutions of equation (12),

which depend on N real moduli, will provide us

with the list of all supersymmetric domain-wall

solutions in question. As it turns out, this prob-

lem can be addressed systematically in the con-

text of algebraic geometry.

The underlying mathematical structure for

solving the differential equation (12), with arbi-

trary moduli bi, is that of the Christoffel–Schwarz

transformation. It is useful to think of the vari-

able z as being complex, whereas F taking val-

ues in the complex upper-half plane. Of course,

appropriate restrictions have to be made at the

end in order to ensure the reality of the vari-

able z and hence the reality of our domain-wall

solutions. We will treat the Christoffel–Schwarz

transformation in a unified way for all three cases

of interest, namely (D,N) = (4, 8) (M2-branes),

3



Quantum aspects of gauge theories, susy and unification I. Bakas, A. Brandhuber, K. Sfetsos

(D,N) = (5, 6) (D3-branes), and (D,N) = (7, 5)

(M5-branes), since there is a hierarchy of alge-

braic curves within this transformation that de-

pends on the isometry groups used for the dis-

tributions of branes in ten or eleven dimensions.

It is useful to start with N = 8 and consider an

octagon in the complex z-plane, which is mapped

onto the upper-half plane via a Christoffel–Schwarz

transformation

dz

dF
= (F − b1)−

ϕ1
π (F − b2)−

ϕ2
π · · · (F − b8)−

ϕ8
π .

(13)

This transformation maps the vertices of the oc-

tagon to the points b1, b2, . . . , b8 on the real axis

of the complex F -plane, whereas its interior is

mapped onto the entire upper-half F -plane. The

variables ϕi denote the exterior (deflection) an-

gles of the octagon at the corresponding vertices,

which are constrained by geometry to satisfy the

relation ϕ1+ϕ2 + . . .+ϕ8 = 2π. We proceed by

making the canonical choice of angles ϕ1 = ϕ2 =

. . . = ϕ8 = π/4, in which case we arrive at the

differential equation that relates dz and dF :

(
dz

dF

)4
= (F − b1)−1(F − b2)−1 · · · (F − b8)−1 ,

(14)

which is the equation we have to solve for the

case of D = 4 gauged supergravity with scalar

fields in the coset SL(8, R)/SO(8).

It is convenient at this point to introduce

complex algebraic variables

x = F (z) , y = F ′(z) , (15)

which cast the differential equation above into

the form of an algebraic curve

y4 = (x− b1)(x− b2) · · · (x− b8) . (16)

This defines a Riemann surface, which is pictured

geometrically by gluing four sheets together along

their branch cuts. The task is to uniformize the

algebraic curve by finding another complex vari-

able, call it u, so that x = x(u) and y = y(u),

which resolves the problem of multi-valuedness

of the algebraic equation above. Then, following

the definition of x and y in terms of F (z) and

its z-derivative, one can apply the chain rule in

order to obtain the function z(u) by integration

of the resulting first-order equation

dz

du
=
1

y(u)

dx(u)

du
. (17)

Finally, by inverting the result one obtains the

function u(z), which yields F (z), and hence the

conformal factor of the corresponding domain wall

solutions, together with the solution for the scalar

fields. Of course, there is an integration constant

that appears in the function z(u), but this can be

fixed by requiring that the asymptotic behaviour

of the domain-walls approach the AdS geometry

as z → 0+. We also note that there is a discrete
symmetry x ↔ −x, bi ↔ −bi that leaves invari-
ant the form of the algebraic curve. It can be em-

ployed in order to set F bigger or equal than the

maximum value of the moduli bi instead of being

smaller or equal than the minimum value, thus

insuring that z → 0+ corresponds to F → +∞
instead of −∞.
The whole procedure is straightforward, but

turns out to be cumbersome when the moduli bi
take general values. Matters simplify consider-

ably when certain moduli are allowed to become

equal, which effectively reduces the genus of the

algebraic curve and leaves some of the isometries

unbroken. In general we will have models for

each continuous subgroup of the maximal isom-

etry group SO(8), in which case the associated

Riemann surface becomes

y4 = (x− b1)k1 (x− b2)k2 · · · (x− bk)kr , (18)

with k1+k2+· · ·+kr = 8, and SO(k1)×SO(k2)×
· · · × SO(kr) as isometry group. These surfaces
will not be in an irreducible form if all the expo-

nents ki have a common divisor with 4. To calcu-

late the genus, and also proceed with their uni-

formization, we first bring the algebraic curves

into the irreducible form (when this is necessary)

ym = (x − b1)a1(x− b2)a2 · · · (x− bn)an , (19)

where the integer exponents (with n ≤ 8) satisfy
the relation a1 + a2 + · · · an = 2m. Then, we
write down the ratios

a1

m
=
d1

c1
, · · · , an

m
=
dn

cn
;
a1 + · · ·+ an

m
=
d0

c0
(20)

4
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in terms of relatively prime numbers and use the

Riemann–Hurwitz relation

g = 1−m+ m
2

n∑
i=0

(
1− 1
ci

)
(21)

to compute the genus g (it should not be confused

with the symbol used for the inverse length scale

g = 2/R, which has already been normalized to

1).

We present below the list of all Riemann sur-

faces that classify the domain-wall solutions of

four-dimensional gauged supergravity with non-

trivial scalar fields in the coset SL(8, R)/SO(8)

by giving their genus according to the Riemann–

Hurwitz relation, their irreducible form (since in

certain cases the exponents have common factors

and the curve might be reducible when written

in its original form), as well as the corresponding

isometry groups that determine the geometrical

distribution of M2-branes in eleven dimensions.

We have 22 models in total, namely:

g = 9

y4 = (x − b1)(x − b2) · · · (x − b7)(x − b8) having
no isometry group.

g = 7

y4 = (x − b1)(x − b2) · · · (x − b6)(x − b7)2 with
isometry group SO(2).

g = 6

y4 = (x − b1)(x − b2) · · · (x − b5)(x − b6)3 with
isometry group SO(3).

g = 5

y4 = (x − b1) · · · (x − b4)(x − b5)2(x − b6)2 with
isometry group SO(2)2.

g = 4

y4 = (x − b1)(x − b2)(x − b3)(x − b4)2(x − b5)3
with isometry group SO(2)× SO(3).
g = 3

y4 = (x − b1) · · · (x − b4)(x − b5)4 with isometry
group SO(4);

y4 = (x−b1)(x−b2)(x−b3)(x−b4)5 with isometry
group SO(5);

y4 = (x− b1)(x− b2)(x− b3)3(x− b4)3 with isom-
etry group SO(3)2;

y4 = (x − b1)(x − b2)(x − b3)2(x − b4)2(x − b5)2
with isometry group SO(2)3.

g = 2

y4 = (x − b1)(x − b2)2(x − b3)2(x − b4)3 with
isometry group SO(2)2 × SO(3).

g = 1

y4 = (x−b1)(x−b2)(x−b3)6 with isometry group
SO(6);

y4 = (x− b1)(x− b2)(x− b3)2(x− b4)4 with isom-
etry group SO(2)× SO(4);
y4 = (x − b1)(x − b2)2(x − b3)5 with isometry
group SO(2)× SO(5);
y4 = (x − b1)2(x − b2)3(x − b3)3 with isometry
group SO(2)× SO(3)2;
y2 = (x−b1)(x−b2)(x−b3)(x−b4) with isometry
group SO(2)4.

g = 0

y4 = (x−b1)(x−b2)7 with isometry group SO(7);
y = (x− b)2 with maximal isometry SO(8);
y2 = (x−b1)(x−b2)3 with isometry group SO(2)×
SO(6);

y4 = (x − b1)(x − b2)3(x − b3)4 with isometry
group SO(3)× SO(4);
y4 = (x − b1)3(x − b2)5 with isometry group
SO(3)× SO(5);
y = (x−b1)(x−b2) with isometry group SO(4)2;
y2 = (x−b1)(x−b2)(x−b3)2 with isometry group
SO(2)2 × SO(4).
It is interesting to note that the classifica-

tion of domain-walls of five-dimensional gauged

supergravity with non-trivial scalar fields in the

coset SL(6, R)/SO(6) follows immediately from

above by restricting our attention to models with

an SO(2) factor in the isometry group. It is clear

that in this case the classification of solutions re-

duces to the list of all algebraic curves

y4 = (x − b1)(x − b2) · · · (x− b6) , (22)

depending on the values of the six real moduli

bi. But such curves can be viewed as special

cases of the N = 8 curves when b7 = b8 =

−∞; the limiting point is taken to be −∞ rather
than +∞ in order to keep the ordering b1 ≥
b2 ≥ · · · ≥ b8 that is usually made. In other
words, using the geometrical framework of the

Christoffel–Schwarz transformation, we consider

that the octagon in the complex z-plane degen-

erates by shrinking one of its sides to zero size

(in which case the corresponding deflection an-

gle becomes π/2) and the resulting double ver-

tex is mapped to −∞ on the real F -line. There-
fore, by comparison with the list above, we ob-

tain immediately the table of all domain-walls

5
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of five-dimensional gauged supergravity, which

correspond to various continuous distributions of

D3-branes in ten dimensions. We have 11 such

models in total, as follows by inspection, which

maintain the genus of their “parent” N = 8 al-

gebraic curves; g is ranging now from 7 to 0 de-

pending on the isometry groups of the individual

models.

Finally, the algebraic classification of all do-

main wall solutions of seven-dimensional gauged

supergravity with non-trivial scalar fields in the

coset SL(5, R)/SO(5) (which by the way pro-

vides the full scalar sector in this case) follows

by considering all Riemann surfaces of the form

y4 = (x− b1)(x− b2) · · · (x− b5) , (23)

for various values of the five real moduli bi. As

before, these surfaces can be viewed as special

cases of the N = 8 algebraic curves where three

of the moduli are taken to infinity, i.e. b6 = b7 =

b8 = −∞, whereas the remaining are free to vary.
As before, in terms of the Christoffel–Schwarz

transformation, the original octagon in the com-

plex z-plane degenerates to an exagon with one

of its deflection angles becoming now 3π/4, and

the resulting triple vertex is mapped to −∞ on
the real F -line. Put differently, we may com-

pose the list of all domain-walls that correspond

to various continuous distributions of M5-branes

in eleven dimensions by considering all N = 8

models with a SO(3) isometry factor. Thus, we

have 7 such models in total, which follow by in-

spection from the list above, all having the same

genus as their “parent” N = 8 algebraic curves;

g is now ranging from 6 to 0 depending on the

isometry group. We note for completeness in this

latter case that the invariance of the curves un-

der the discrete symmetry x ↔ −x, bi ↔ −bi is
not present any more, because the corresponding

algebraic equations contain only an odd number

of factors.

In summary, for generic values of the moduli

parameters bi, the domain-wall solutions of D-

dimensional gauged supergravity are described

by a Riemann surface of genus N+1 in the pres-

ence of non-trivial scalar fields in the coset space

SL(N,R)/SO(N). As certain cycles shrink to

zero size by letting some of the moduli coalesce,

the genus of the algebraic curve becomes smaller

and the corresponding domain-wall solutions have

as symmetry the appropriate subgroups of SO(N).

The explicit construction of the solutions requires

to perform the uniformization of the associated

Riemann surfaces, which can be easily done for

the cases of low genus, namely 0 or 1. For genus

0, one has to employ bi-rational transformations

from x, y to new variables v(x, y), w(x, y), so that

the algebraic curve assumes the unicursal form

that can be easily uniformized using a complex

variable u as v = w = u. Then, the domain-wall

solutions can be expressed as rational or trigo-

metric functions in u, and hence z, when u(z)

is invertible in closed form. For genus 1, suit-

able bi-rational transformations to new variables

v(x, y), w(x, y) will cast the curve into its stan-

dard Weierstrass form

w2 = 4v3 − g2v − g3 , (24)

which can be uniformized using the Weierstrass

function P(u), with complex variable u in the
fundamental domain defined by the two periods

2ω1 and 2ω2 of the surface, so that v = P(u) and
w = P ′(u). Then, the corresponding domain-
wall solutions can be described explicitly in terms

of elliptic functions, at least when u(z) can be

found in closed form. We will present some ex-

plicit examples of this type later. For models

that correspond to higher genus surfaces, g ≥ 2,
the uniformization is mathematically much more

involved and will not be addressed here.

The application that we intend to consider

in some detail in the following concerns the spec-

trum of the quantum fluctuations for the gravi-

ton as well as the scalar fields on the domain-wall

backgrounds of gauged supergravity, which they

turn out to coincide. Using the ansatz

Φ(x, z) = exp(ik ·x)exp
(
−D − 2
2
A

)
Ψ(z) (25)

for a massless scalar field or any of the compo-

nents of the graviton tensor field, which repre-

sents plane waves propagating along the (D −
2)-brane with an amplitude function that is z-

dependent, we find that the spectrum of fluctua-

tions is described by a one-dimensional quantum

mechanical problem. Setting M2 = −k · k for
the mass-square, we obtain a time-independent

6
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Schrödinger equation for the function Ψ(z), namely

−Ψ′′(z) + V (z)Ψ(z) =M2Ψ(z) . (26)

The potential is determined by the conformal fac-

tor of the metric of the domain-wall background,

A(z), by

V =
(D − 2)2
4

A′2 +
D − 2
2
A′′ , (27)

which is of the form appearing in problems of

supersymmetric quantum mechanics.

The potential V (z) can be determined ex-

plicitly once the uniformization of the underly-

ing algebraic curve has been carried out in detail.

The form can be rather complicated, depending

on the specific models, but for all of them the

potential has the asymptotic form

V (z) ' D(D − 2)
4

1

z2
, as z → 0+ , (28)

since the space approaches AdSD in the limit

z → 0+ (or equivalently F → +∞). This means
that the potential is unbounded from above. Its

behaviour close to the other end, namely F →
bmax, depends on the multiplicity of bmax in the

algebraic form of the curve. A careful analysis of

the problem shows that if bmax appears n times

(and so the model has an isometry group with an

SO(n) factor), the potential will behave (includ-

ing a subscript n to distinguish among various

cases) as

Vn ' f
1/2
0

64
(3n2 − 8n)(F − bmax) 12n−2 ,

as F → bmax , (29)

where f0 =
∏N
i=n+1(b1−bi) (choosing b1 ≡ bmax)

is a constant. Hence, for n > 4, the potential

goes to zero at the other end and consequently

the spectrum is continuous. For n = 4, the po-

tential approaches a constant value, f
1/2
0 /4, and

so the spectrum is again continuous but there

is a mass gap whose squared value is given by

f
1/2
0 /4. In both cases above, namely when n ≥ 4,
the range of z necessarily extends from 0 to +∞.
For n < 4, on the other hand, the spectrum is

discrete and z extends from 0 to some maximum

(but finite) value zmax, which is determined by

the algebraic equation F (zmax) = bmax. In fact

we find in this case that

Vn '
(
(n− 2)2
(n− 4)2 −

1

4

)
1

(z − zmax)2 ,
as z → z−max (30)

and the potential goes there to +∞ for n = 3
and to −∞ for n = 1, 2. The latter two cases
are not pathological since the coefficient of the

1/(z − zmax)2 term is larger or equal to −1/4
as required from elementary quantum mechanical

considerations. Equivalently, since the potential

has the form (27) appearing in supersymmetric

quantum mechanics, the spectrum always has to

be bounded from below by zero. This completes

the brief qualitative discussion of the spectrum

in all cases of interest.

In supersymmetric quantum mechanics there

is a superpotentialW (z) and a pair of Schrödinger

potentials associated to it

V− =W 2 −W ′ , V+ =W
2 +W ′ . (31)

Their spectrum are closely related to each other,

and the same is true for the corresponding eigen-

functions, although there are some technical is-

sues depending on whether supersymmetry is bro-

ken or not. In our case the superpotential is pro-

vided by the conformal factor of the metric, up

to a scale,

W (z) =
D − 2
2
A′(z) (32)

and the potential of the Schrödinger equation

that describes the quantum fluctuations of the

scalar and graviton fields on the domain-wall back-

grounds of gauged supergravity (for D = 4, 5 or

7) is given by the form V+. The partner poten-

tial V− sometimes turns out to be easier to anal-
yse quantum mechanically, although generically

it does not itself correspond to the Schrödinger

potential of a domain-wall solution of gauged su-

pergravity. Note at this point that if A → −A
the superpotential will also flip sign and there

will be an interchange V+ ↔ V−. However, as
z → 0, the AdSD asymptotic behaviour of the
domain-walls is not preserved under this inter-

change, and hence it can only be of mathemat-

ical interest for computing the spectrum using

V− instead of V+. We will return to this later

7
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with specific examples. Finally, we mention that

it is possible to apply the WKB approximation,

which works very well in supersymmetric quan-

tum mechanics, in order to get results for the

spectrum of quantum fluctuations on domain-

wall backgrounds. Here, we will focus attention

on the possibility to describe the spectrum ex-

actly, in particular for domain-walls associated to

genus 1 Riemann surfaces where the Schrödinger

potential is expressed via the Weierstrass func-

tion in a generalized Lamé form. We will see that

unlike other problems in physics, where Lamé po-

tentials with integer characteristics become rel-

evant, the characteristics turn out to be half-

integer in gauged supergravity. Consequently,

the spectrum is not of finite-zone type, and hence

much more difficult to study exactly. Thus, a

number of questions will be left open for future

study.

We proceed with the presentation of some

explicit examples of elliptic type using the alge-

braic classification of domain-walls in terms of

Riemann surfaces and isometry groups. In all

these cases the Schrödinger potentials will as-

sume the common form

V (z) = µ(µ+ 1)P(z) + ν(ν + 1)P(z + ω1)
+ κ(κ+ 1)P(z + ω2)
+ λ(λ + 1)P(z + ω1 + ω2) (33)

for different values of the coupling constants µ,

ν, κ, λ that will be determined in each case sep-

arately.

SO(2)× SO(2)× SO(2) in D = 5: The irre-
ducible form of the algebraic curve is written di-

rectly in (hyper)-elliptic form

y2 = (x − b1)(x − b2)(x− b3) (34)

and it can be brought into the standard Weier-

strass form w2 = 4v3 − g2v − g3 by the simple
transformation

y = 4w , x = 4v +
1

3
(b1 + b2 + b3) , (35)

in which case we find that

g2 =
1

36

(
(b1 + b2 − 2b3)2 − (b2 + b3 − 2b1)
×(b1 + b3 − 2b2)) ,

g3 = − 1
432
(b1 + b2 − 2b3)(b2 + b3 − 2b1)
× (b1 + b3 − 2b2) . (36)

Then, performing the uniformization in terms of

the Weierstrass function P(u) of a complex pa-
rameter u, we find that z = 4u. The conformal

factor of the metric turns out to be

e2A(z) =

(
1

16
P ′(u)

)2/3
(37)

and so the corresponding domain-wall solution

approaches AdS5 (with radius 2) as z → 0+. On
the other hand, since the uniformizing parameter

u assumes real values from 0 to ω1 (real semi-

period), we have that z varies from 0 to 4ω1.

In this case, the corresponding potential in

the Schrödinger differential equation for the vari-

able u is

V (u) =
1

4
(15P(u)− P(u+ ω1)− P(u+ ω2)

− P(u+ ω1 + ω2)) (38)

and so it has the generalized Lamé form (33) with

half-integer coupling constants µ = 3/2, ν = κ =

λ = −1/2. Using the identity
4P(2u) = P(u) + P(u+ ω1) + P(u+ ω2)

+ P(u+ ω1 + ω2) , (39)

it can be written into another form that we present

here together with the partner supersymmetric

potential

V−(u) = 3P(2u) , V+(u) = 4P(u)− P(2u) .
(40)

It is interesting to note in this case that the part-

ner potential V− defines a simpler Schrödinger
problem in the variable ũ = 2u having V (ũ) =

n(n+ 1)P(ũ) with n = 1/2.
SO(3)× SO(3) in D = 5: In this case the al-

gebraic curve of the model has the form

y4 = (x − b1)3(x− b2)3 , (41)

which can be brought into the Weierstrass form

w2 = 4v3 − g2v − g3 using the transformation

x = b1 +
1

v

(
v +
1

4
(b2 − b1)

)2
,

y =
w3

8v3
, (42)

where

g2 =
1

4
(b1 − b2)2 , g3 = 0 . (43)

8
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Performing the uniformization in terms of the

Weierstrass function P(u) of a complex variable
u, we find that z = −8u. Moreover, the con-
formal factor of the domain-wall metric is given

by

e2A(z) =

( P ′(u)
8P(u)

)2
. (44)

Clearly, this conformal factor approaches 4/z2 as

z → 0, which is the asymptotic AdS5 limit of the
solution (with radius 2). In this case z ranges

from 0 to 8ω1.

The Schrödinger potential for the correspond-

ing differential equation written using the vari-

able u turns out to be

V (u) =
1

4
(15P(u) + 3P(u+ ω1) + 3P(u+ ω2)

+ 15P(u+ ω1 + ω2)) , (45)

which also has the generalized Lamé form (33)

with half-integer coupling constants µ = λ = 3/2

and ν = κ = 1/2. Its supersymmetric partner

can be easily determined and turns out to be of

the generalized Lamé form with µ = λ = 1/2

and ν = κ = 3/2. These potentials exhibit a

special invariance under u→ u+ ω1 + ω2 due to
the SO(3) × SO(3) symmetry of the underlying
domain-wall solution.

SO(2)× SO(3) in D = 7: The genus 1 curve
of this model is given by

y4 = (x− b1)2(x− b2)3 . (46)

It can be brought into the standard Weierstrass

form w2 = 4v3−g2v−g3 using the transformation

x =
b2 − b1
4

w2

v3
+ b1 ,

y = (b2 − b1)w
v

(
w2

4v3
− 1
)
, (47)

where it turns out that

g2 =
1

4
(b1 − b2) , g3 = 0 . (48)

We find that the uniformizing parameter u is re-

lated to z via

u = ω1 + ω2 − z
2
, (49)

whereas the conformal factor of the metric turns

out to be

e2A(z) =

(
(b1 − b2)2
16

P ′(u)
P3(u)

)2/5
. (50)

The real variable z ranges from 0 to 2ω1 if b1 >

b2 and from 0 to 2(ω1 + ω2) if b1 < b2. The

domain-wall solution approaches asymptotically

AdS7 (with radius 4) as z → 0+.
The Schrödinger potential takes again the

generalized Lamé form (33), after rescaling z by

a factor of 2, i.e. z → 2z,

V (z) =
1

4
(35P(z)− P(z + ω1)− P(z + ω2)

+ 3P(z + ω1 + ω2)) (51)

with coupling constants µ = 5/2, ν = κ = −1/2,
λ = 1/2. Its supersymmetric partner is easily

determined to be of the generalized Lamé type

with coupling constants µ = λ = 3/2 and ν =

κ = 1/2, which concides with the Schrödinger

potential for the quantum fluctuations on the

SO(3) × SO(3) domain-wall model in D = 5
gauged supergravity.

SO(2)× SO(2)× SO(2)× SO(2) in D = 4:
Another notable example is the genus 1 model

described by the algebraic curve in (hyper)-elliptic

form

y2 = (x − b1)(x− b2)(x− b3)(x − b4) . (52)

Setting b4 = 0 without loss of generality, we em-

ploy the transformation

x =
1

1
3 (b
−1
1 + b

−1
2 + b

−1
3 )− v

,

y =

√
b1b2b3

2

w(
1
3 (b
−1
1 + b

−1
2 + b

−1
3 )− v

)2 (53)
to bring the curve into its standard Weierstrass

form w2 = 4v3 − g2v − g3 with

g2 =
2

9

(
(b−11 + b

−1
2 − 2b−13 )2

+ (b−12 + b
−1
3 − 2b−11 )2

+ (b−13 + b
−1
1 − 2b−12 )2

)
,

g3 =
4

27
(b−11 + b

−1
2 − 2b−13 )(b−12 + b−13 − 2b−11 )

×(b−13 + b−11 − 2b−12 ) . (54)

Then, uniformizing the curve, as usual, in terms

of the Weierstrass function P(u) of a complex
variable u, we find that z is related to it by

u =

√
b1b2b3

2
z + c ; where

P(c) = 1
3
(b−11 + b

−1
2 + b

−1
3 ) . (55)

9
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Also, the conformal factor of the corresponding

domain-wall solution turns out to be

e2A(z) =
b1b2b3

4
(P(u− c)− P(u+ c)) , (56)

which approaches the AdS4 limit 1/z
2 as z → 0+.

It also turns out in this case that z ranges from 0

to a maximum value given by 2(ω1− c)/
√
b1b2b3.

The Schrödinger potential is calculated to be

V (z) =
b1b2b3

4
(2P(u+ c) + 2P(u− c)− P(2u))

(57)

and it appears to be different from the general-

ized Lamé form above. It is instructive, however,

to work out the supersymmetric partner poten-

tial. We find in this case, when the Schrödinger

equation is written in terms of the variable u,

that the partners are

V− = 3P(2u) ,
V+ = 2P(u+ c) + 2P(u− c)− P(2u) (58)

and so by an appropriate scaling of variable, ũ =

2u, the partner Schrödinger problem has again

the special Lamé potential V (ũ) = n(n+1)P(ũ)
with n = 1/2. The only difference from the

previous case, where the n = 1/2-Lamé poten-

tial makes its appearence, is that the variable ũ

ranges from 2c to 2ω1, instead of the interval 0

to 2ω1.

It will be interesting to revisit in future work

the spectral properties of the generalized Lamé

potentials with half-integer coupling constants,

in view of their relevance in theories of gauged

supergravity. There is only very little work on

this problem, which dates back to last century,

and apparently turns out that such potentials are

of infinite-zone type. Their structure becomes

tractable when the underlying genus 1 Riemann

surfaces degenerate by shrinking their a- or b-

cycles to zero size, in which case the exact spec-

trum is known and coincides with the spectrum

of the quantum Calogero system. In this limit

the potential becomes trigonometric and hence

the states are given in terms of elementary func-

tions. For the elliptic models that arise here,

however, only the results from the WKB approx-

imation are presently known to the authors.

Finally, another interesting problem is the

systematic construction of solutions in the sector

of gauged supergravity that also contains gauge

fields. The methods of algebraic geometry might

prove again useful for studying such generaliza-

tions.
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