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Abstract: Charge and colour breaking bounds in supersymmetric models are re-analyzed, with

special attention given to the importance of the 1-loop corrections to the tree-level potential. It is

argued that the usual way of determining these bounds over estimates their relevance, and a new

method is proposed and applied to the MSSM with universality.
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1. Introduction

In the Standard Model (SM), the Higgs field ac-

quires a non-zero vev which, this field being an

SU(2) doublet and having hypercharge +1/2,

breaks down the SU(2)L×U(1)Y symmetry. Be-
cause the Higgs boson is chargeless and colour-

less, the gauge group SU(3)C × U(1)em remains
unbroken. No other fields acquire vevs - the

Higgs is the only scalar field in the model, and

if a field with non-zero spin were to acquire a

vev angular momentum would not be conserved.

In supersymmetric models, in order to give mass

both to the up and down-type quarks (and also

to cancel chiral and SU(2) anomalies), two Higgs

doublets, H1 and H2, are required. The neutral

components of these fields have a non-zero vev

which, much in the same manner as in the SM,

breaks the electroweak gauge symmetry. How-

ever, there are now many other scalar fields in

the game, many of them carrying charge, colour

or leptonic number, and a priori there is no rea-

son why one or many of them cannot have a vev.

This problem was first addressed in ref. [1], and

used to impose restrictions on the undesirably

large parameter space of supersymmetric models.

This was done by demanding that the minimum

of the potential along CCB directions (meaning,

when fields other than H01 and H
0
2 acquire vevs)

be less deep than the so-called “real” minimum.

This implied, for a trilinear term in the poten-

tial of the form λAXY Z (where λ is an Yukawa

coupling, A the associated trilinear soft super-

symmetry breaking term andX , Y and Z generic

fields), the famous bounds on the A-parameters,

A2 < 3 (m2X +m
2
Y +m

2
Z) , (1.1)

wheremX , mY andmZ are the soft masses of the

corresponding fields. This very appealing idea

was developed by many authors [2, 3], and of

particular importance was the contribution from

Gamberini et al [4]: they showed that the one-

loop corrections to the effective potential in su-

persymmetric theories were of immense relevance

for gauge symmetry breaking, in that only at a

given renormalization scale µ - namely, µ of the

order of the most significant mass appearing in

the one-loop corrections - can their contribution

be neglected and results derived from the tree-

level potential trusted. Given that every work

on CCB is based on an analysis of the tree-level

potential only, they concluded that any bound

on supersymmetric parameters we obtain in this

way, if not evaluated at the scale µ, will lead to an

excessive constriction on the parameter space [4].

Recent use of CCB bounds in supersymmetric

phenomenology may be found in ref. [6].

2. Usual CCB bounds

The typical procedure to find a CCB bound for

a given theory consists of expressing all vevs in-

volved in terms of one of them, say, v2, the vev

of H2, so that v1 = αv2, q = βv2, . . ., where v1 is

the vev of H1 and q that of some field Q carrying
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TMR meeting, Paris, 1999 P.M. Ferreira

colour. The potential V (v2, α, β, . . .) is then min-

imised with respect to v2, keeping the remaining

parameters fixed. Finding the value of the po-

tential at this minimum, we can them compare

it with the “real” minimum - meaning, the value

of the potential when the only vevs present are

v1 and v2 - and require the latter to be smaller.

In many cases an analytical analysis is possible

and one finds a condition of the form

f(A) < H(α, β, . . .) , (2.1)

where f is some function of the parameters A

(usually only the trilinear couplings A). The

CCB bound is found by minimising H with re-

spect to α, β, . . .. The only restrictions upon

these parameters are that they are positive (in-

volving a previous choice for the phases of the

vevs) and such that the minimum of V , as found

by solving ∂V/∂v2 = 0, exists.

The superpotential of the MSSM, keeping

only the Yukawa couplings for the third gener-

ation, is given by

W = λtH2Q tR + λbH1QbR + λτ H1 L τR

+µH1H2 , (2.2)

where Q = (tL bL) and L = (νL τL) are the

quark and lepton SU(2)L doublet superfields, re-

spectively. tR, bR and τR are singlets of the same

gauge group, the λi are the Yukawa couplings

and µ is the well-known bilinear coupling.

When the neutral components of H1 and H2
develop vevs v1 and v2, we obtain the “real” min-

imum, and the potential V0 may be written as

V0 = m
2
1 |v1|2 + m22 |v2|2 − 2 |m23| |v1 v2|
+
1

8
(g′2 + g22) (|v2|2 − |v1|2)2 , (2.3)

where as usual m21 = m
2
H1
+ µ2, m22 = m

2
H2
+ µ2

and m23 = −B µ, and we chose the phases of the
vevs so that the m23 term is negative. It is a

trivial matter to minimise this expression with

respect to v1 and v2 and obtain the value of the

potential at the “real” minimum,

Vmin = − 1
8
(g′2 + g22) (|v2|2 − |v1|2)2 . (2.4)

We left out the one-loop corrections to the scalar

potential, given by

V1 =
∑
α

nα

64π2
M4α

(
log
M2α
µ2
− 3
2

)
, (2.5)

where the Mα are the (tree-level) masses of each

particle of spin sα and nα = (−1)2sα (2sα + 1).
As first shown in ref. [4], if we choose the scale

µ to be of order of the largest mass Mα, these

one-loop corrections will be quite small and re-

sults derived from the tree-level potential can be

trusted.

When looking for CCB minima, one tries to

select the cases which will in principle produce

smaller values of the potential: meaning, those

in which the negative terms in the potential are

large and the positive, quartic F and D-terms are

small. An excellent review on the subject may be

found in ref. [5], we will briefly go over some of

their results to emphasise the differences in our

approach. Essentially, any CCB minimum will

have to involve an extra negative term other than

them23 one present in eq. 2.3, which leads directly

to the soft breaking trilinear terms. For such

terms to have a contribution to V0, at least two

fields other than H1 and H2 must acquire a vev -

Q and tR in the case of the top trilinear term, for

example. So that that contribution is negative,

the phases of the vevs must be chosen accord-

ingly. This is not always possible, but for the

moment we will just assume it. Of course, as new

vevs enter the game, new positive contributions

appear - from the scalar masses, from F-terms in-

volving Yukawa couplings, from additional con-

tributions to the D-terms. These last ones make

it particularly difficult an analytical handling of

this subject. The SU(3) D-term, due to the size

of the strong coupling, is almost always set to

zero by choosing a CCB direction along which

the Q doublet (and colour triplet) and one of the

tR, bR singlets (and colour triplets) have identi-

cal vevs, an assumption that considerably simpli-

fies calculations. The electroweak D-terms may

be reduced in size if a lepton doublet L gains a

vev - this possibility is quite appealing, in that

it does not introduce extra F-terms. Of course,

a vev for L introduces an extra soft mass term

in the potential, so L should be the doublet from

the third generation, which has the lightest soft

mass. With a vev for Q, tR, H1, H2 and L, the

scalar potential is given by

V0 = λ
2
t (q
4 + 2 q2 v22) − 2 λt q2(At v2 + µ v1)

+m21 v
2
1 + m

2
2 v
2
2 − 2 |m23|v1 v2

2
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+ (m2Q +m
2
tR) q

2 + m2L l
2

+
1

8
(g′2 + g22) (v

2
2 − v21 − q2 − l2)2 , (2.6)

where for simplicity of writing q is the modulus

of the vev of both Q and tR, v1, v2 and l are

the modulus of the vevs of H1, H2 and L respec-

tively and At, µ are the modulus of the trilinear

and bilinear couplings. So that no undesirable

quartic F-terms are produced, Q has a vev along

the tL direction and L along the νL direction. In

the notation of refs. [3, 5], we express all vevs

in terms of v2, so that q = αv2, v1 = β v2 and

l = γ v2. The potential 2.6 becomes a quartic

polynomial in v2 and its minimisation a trivial

exercise. ∂V0/∂v2 = 0 produces

v2min =
3Â

4λt α2 F


1 +

√
1− 8m̂

2 F

9 Â2


 ,

(2.7)

where

F =
(g′2 + g22)
8 λ2t α

4
(1 − α2 − β2 − γ2)2

+
2

α2
+ 1 ,

Â = At + µβ ,

m̂2 = m22 + (m
2
Q + m

2
tR)α

2 + m21 β
2

+ m2L γ
2 − 2 |m23|β . (2.8)

The existence of the solution given by eq. 2.7

constrains the parameters α, β and γ. The value

of the potential at this minimum is then given by

V CCBmin = −1
2
v22min

(
α2 λt Â v2min − m̂2

)
.

(2.9)

The CCB bounds are then found by comparing

this with the “real” minimum of eq. 2.4. Because

vevs related to a given trilinear term of coupling

λ and coefficient A are expected to be of order

v ∼ A/λ [4, 5], for Yukawa couplings other than
the top’s the potential of eq. 2.9 is expected, if

negative, to be much deeper than that of eq. 2.4,

so that the CCB bound is found in a simpler

way: by requiring that V CCBmin be positive, that is,

Â2 ≤ Fm̂2. A simple such example is to consider
a coupling λu (from an up-quark of the second or

first generations), the vanishing of the D-terms

enforced by choosing the L vev such that γ =

1−α2−β2. If we consider an even simpler case -
that the field H1 acquires no vev - and set β = 0,

the CCB condition becomes quite simple,

A2u ≤
(
1 +

2

α2

) [
m22 + m

2
L

+ (m2Qu + m
2
u − m2L)α2

]
, (2.10)

with the obvious substitutions t → u. Then, ac-
cording to the authors of [5], the strongest CCB

constraint is found by minimising the right hand

side of this equation with respect to α. In the

case where m22 + m
2
L > 0 and 2 (m

2
2 + m

2
L) >

m2Qu + m
2
u − m2L, α = 1 is obtained and the

“classical” bound from eq. 1.1 reappears,

A2u ≤ 3 (m22 + m2Qu + m2u ) . (2.11)

3. Objections to the usual CCB pro-

cedure

At this point, we ask: how can we be sure that

there is a minimum of V0 such that α = 1 (or bet-

ter put, q = v2) when the only minimisation we

performed on the potential was that with respect

to v2? Given that the minimum of V0 should be

found by solving the equations ∂V0/∂vn = 0 -

where the derivatives are performed with respect

to each vev present in V0 -, not all values of q,

v1, l and v2 will be solutions. It seems obvious

that the solution space of this set of equations

is smaller than that which is found by requir-

ing that the potential of eq. 2.9 exists. Thus the

minimisation of the right-hand side of eq. 2.10

should be made for a more restrict range of val-

ues of α. On the other hand, as they arise from

a n-variable system of n equations, the values

of the vevs at the minimum will be closely cor-

related. What that correlation is, can only by

found by solving the afore-mentioned equations,

but we certainly cannot guarantee it is simply

linear as has been assumed until now. Further,

though the use of the parameters α, β, . . . consid-

erably simplifies the study of the CCB minima, it

is not clear that solving ∂V0(v2, α, β, . . .)/∂v2 = 0

is the same as solving ∂V0(v2, v1, q, . . .)/∂v2 = 0

- in the first case, the potential becomes a quar-

tic polynomial on v2 where the lowest term is

quadratic. The value of v2 that arises from the

minimisation is the result of solving a quadratic

3
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equation. In the second case, as we will shortly

show, v2 is far more difficult to determine, but in

most cases it is the solution of a cubic equation.

That these two values of v2 should match is not

at all obvious.

The main objection, though, relates to the

1-loop corrections to the potential - as is plain

from eq. 2.5, these corrections are defined at a

minimum of the tree-level potential, given the

fact that they boast logarithms whose arguments

are the tree-level mass matrices’ eigenvalues. To

be more accurate, these corrections are derived

under the assumption that the potential is rest-

ing at a tree level minimum. The issue of com-

plex effective potentials has been the subject of

much study [7] and understood to arise when

nonconvex classical potentials are present. In

short, these complex contributions are a signal

that the sum of one-particle irreducible diagrams,

V1PI , precisely in the case of nonconvex poten-

tials, does not give the effective potential Veff -

in those cases, Veff is given by the convex en-

velope of V1PI which, in the vicinity of the clas-

sical minimum, matches the usual loop expan-

sion. Now, following the CCB procedure de-

tailed above, one is not guaranteed to actually

find minima, only “points” of parameter space

in which the tree-level potential - evaluated at

a given scale for which one expects the 1-loop

contributions to the potential to be negligible -

is smaller than the non-CCB minimum. We will

show in a simple example that the 1-loop contri-

butions to the potential are actually quite size-

able, even if one chooses an energy scale of the

order of the largest mass in eq. 2.5.

4. An example: vevs for v1, τL, τR.

In this section we will illustrate the arguments of

the previous one and study the effective poten-

tial in a direction which is not a minimum but for

which one finds CCB. In anticipation of the next

section, we will only consider “points” of param-

eter space for which the minimisation conditions

can be solved. Due to the bilinear term in H1
and H2, for a potential like that of eq. 2.6 any

direction characterised by v2 = 0 and v1 6= 0 is
guaranteed not to be a minimum of the potential.

But we shall find that, considering non-zero vevs

for v1, τL and τR, one finds, at least for some

regions of parameter space, that the CCB poten-

tial is smaller in value than the “real” minimum.

There is no colour breaking in this case, of course,

but we will still use the abbreviation CCB as an

abuse of language. The tree-level potential along

this direction is given by

V0 = λ
2
τ (l
4 + 2 l2 v21) − 2 λτ l2Aτ v1

+m21 v
2
1 + (m

2
L +m

2
τR
) l2

+
1

8
(g′2 + g22) (l

2 − v21)2 , (4.1)

and we are considering a direction along which

the vevs for τL and τR are both equal to l (al-

lowing these two vevs to differ doesn’t actually

change the results obtained). The phases of the

vevs and signal of couplings were chosen so that

the trilinear term in the previous equation is neg-

ative, and all quantities figuring there are there-

fore positive. Minimising with respect to v1 and

l, we find that l2 is determined from[
1

8
(g′2 + g22) + λ2τ

]
l2

=

[
1

8
(g′2 + g22) − λ2τ

]
v21

+λτ Aτ v1

− 1
2
(m2L +m

2
τR
) (4.2)

and v1 is the solution of the cubic equation

0 = 2λ2τ

[
3

8
(g′2 + g22)− λ2τ

]
v31

− 3 λτ
[
1

8
(g′2 + g22) − λ2τ

]
Aτ v

2
1

+
[
λ2τ (m

2
1 −A2τ −m2L −m2τR)

+
1

8
(g′2 + g22) (m

2
1 +m

2
L +m

2
τR
)

]
v1

+
1

2
Aτ (m

2
L +m

2
τR
) . (4.3)

The procedure we follow is quite simple: solve

this equation for the value of v1 - remember v1
is supposed to be positive (or at least real - a

negative v1 would correspond to a positive value

of V0 and therefore be uninteresting for CCB),

thus determining l2 from it. A negative value

for l2 would mean that it is impossible to solve

the minimisation equations along this direction.

4
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Figure 1: Input A parameter vs. lightest chargino mass for the CCB excluded region.

When a minimum along this direction is found,

the value of the potential is compared to that of

the “real” minimum and, if smaller, the “point”

of parameter space under consideration is singled

out as possibly dangerous for CCB. As usual, we

choose to work at a renormalization scale of the

order of the largest masses induced in the poten-

tial by the non-zero vevs. We did compute those

masses, but an equally effective choice is to take

µ2 of the order of the largest of the second deriva-

tives of the potential in eq. 4.1 with respect to l

and v1.

We applied this procedure to a simple exam-

ple - the MSSM with universality, in the “low

mass” region described in the next section (val-

ues of the gaugino mass between 10 and 100 GeV,

values of the universal A parameter between -300

and 300 GeV). Out of a parameter space with

850 “points”, we found out about 200 CCB min-

ima along this direction. CCB seems to occur for

large absolute values of the A parameter, as can

be seen from figure 1. We find that the values of

v1 and l are very close - in hindsight this was to

be expected, as it causes the vanishing of the D-

terms in eq. 4.1. Also, these vevs, as one expects

from equation 4.3, are of orderM/λτ -M being
a mass scale of the order of the several soft pa-

rameters from which v1 is determined - which in

this case corresponds roughly to a scale of several

TeV. Notice how these CCB “points” correspond

to values of the mass of the lightest chargino al-

ways inferior to 45 GeV - that is, inferior to the

current experimental bound on that variable [8].

Now, these results arise from calculations of

the tree level potential, at an energy scale for

which one argues the 1-loop contributions to the

potential are negligible. We tested this assump-

tion, by computing those contributions, which

involved the calculation of the mass matrices of

all the particles of the theory 1. As expected

since we are not at a minimum of the potential,

several of the eigenvalues of these matrices are

negative - largely so, in fact - and we are thus

left with a complex effective potential. We know

from refs. [7] that this is the result of a break-

down of the usual loop expansion for the effec-

tive potential, which is valid only in the vicin-

ity of classical minima. At this point, we may

assume two positions: one, more extreme, argu-

ing that the results of refs. [7] seem to apply to

cases where, despite non-convexity of the effec-

tive potential, one is still in the vicinity of min-

ima. In the example we are studying the poten-

tial is not in a minimum, and in fact may be

quite far from one (a v2 = 0 minimum implies

1These are not, of course, the usual mass matrices of

the MSSM, which can be found in references like [9], but

those that arise when non-zero vevs for H01 , τL and τR
are present.

5
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Figure 2: Value of v1 versus the ratio (V0 + V1)/V0.

v1 = 0, whereas we have values of v1 of the TeV

order). We therefore would have to accept that

the 1-loop potential is simply not defined along

this direction, which puts in question any results

derived from V0. A second position, more mod-

erated, would consist of trying to estimate the

1-loop contributions to the effective potential as-

suming that, even along this direction, Veff is

given by the real part of the 1-loop potential (a

la Weinberg and Wu [7]) or by the convex enve-

lope of the classical potential (Fujimoto et al [7]

- with so many fields involved, building the con-

vex envelope is nigh impossible, but we believe a

good estimation is obtained by simply setting to

zero the contributions of the negative eigenval-

ues to V1). Both approaches, however, produce

similar results. In figure 2 we plot v1 versus the

ratio of the full one loop and the tree level po-

tentials. By choosing the renormalization scale

of the order of the largest masses present in V1,

we expected to make its contributions negligible,

but we see that is not the case - for over half of

the CCB “minima”, V1 is at least as large as V0
and in many cases much larger. The conclusion?

Even with this moderated viewpoint, the 1-loop

contributions are too large and cast doubt over

the results obtained from the tree level potential.

5. Determining the vevs from the

minimisation conditions

To address these objections, we propose taking

the (somewhat) brute-force approach: for a given

CCB scenario, where n fields gain vevs, solve the

n minimisation conditions and calculate the po-

tential at the new minimum. If this is found

to be smaller in value that the “real” minimum

of eq. 2.4, this “point” in the MSSM parame-

ter space will be rejected. The undesirable fea-

ture of this approach is that it will not gener-

ate analytical expressions for the bounds such as

eq. 2.10. Nevertheless, it produces remarkably

simple equations (in most cases) for the vevs and

the minimum of the potential, and seems a more

correct approach to CCB - determining minima

we are assured that the 1-loop contributions are

defined and the correct choice of renormalization

scale renders them small. But notice that we are

going from solving a simple quadratic equation

(that which determines v2min , eq. 2.7) to solving

a set of n non-linear equations - we may expect

that solving this set of equations is impossible for

a great deal of the parameter space, and in fact

this is what we will find shortly. For illustration,

consider the potential of eq. 2.6. Minimising it

with respect to the vev l, we find there are two

6
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solutions, l = 0 and

l2 = v22 − v21 − q2 −
4m2L
g′2 + g22

. (5.1)

Notice how in this expression the only positive

term is that of v22 , so that negative values of l
2

are likely. This is far from being the only such

case - with l = 0, and assuming an SU(3) D-flat

direction, q2 is given by[
1

8
(g′2 + g22) − λ2t

]
v22 −

1

8
(g′2 + g22) v

2
1

+λt (At v2 + µ v1) − 1
2
(m2Q +m

2
tR)

=

[
1

8
(g′2 + g22) + λ

2
t

]
q2 . (5.2)

The large size of λt will almost certainly drive the

v22 term negative. Also, the soft masses have a

sizeable and negative contribution. v1 and v2 are

the solutions of a set of two cubic equations and

are determined numerically, and the potential at

this extremum is given by the simple expression

Vext = − 1
8
(g′2 + g22) (v

2
2 − v21)2

+ q2
[
1

2
(m2Q +m

2
tR) − λ2t v22

+
1

8
(g′2 + g22) (v

2
2 − v21)

]
. (5.3)

Again, the soft mass terms work against the pos-

sibility of CCB - even if it is possible to solve

the minimisation conditions, these terms have a

sizeable positive contribution to V0.

We applied these considerations to a simple

case, that of the MSSM with universality - that

is, common values of the soft parameters mi, Mi
and Ai at the unification scale MU . We consid-

ered two different regions of the MSSM parame-

ter space. The first is a “low mass” region, char-

acterised by small values for the gaugino mass.

We tookM equal to 10, 20, 40, 80 and 100 GeV,

m equal to 10, 20, 40, 80, 160 GeV, A equal

to -300, -150, 0, 150 and 300 GeV, and values

of tanβ between 2.5 and 10.5 (smaller values of

tanβ cause problems with the running of the soft

β-functions - the two-loop terms become more

significant than the one-loop ones and Landau

poles appear, in the running of mQ, for exam-

ple). The second region includes the same val-

ues for tanβ, values of M from 50 to 300 GeV in

leaps of 50 GeV, values ofm from 50 to 500 GeV,

also in leaps of 50 GeV, values of A from -300 to

300 GeV, in leaps of 30 GeV. The first region

includes about 850 “points”, the second, some

15000 after we imposed experimental bounds on

the sparticles’ masses (as quoted in ref. [8]). We

analysed the cases of CCB breaking from the tri-

linear couplings involving the top, bottom and

tau couplings, in a variety of cases - with and

without l vevs (to try reducing the size of the D-

terms), accounting for the different possibilities

in the choice of phases of the vevs, even consider-

ing some SU(3) non-flat directions (for the case

of the top, for instance, that consists in taking

different vevs for tL and tR; a large SU(3) D-

term then appears).

Scanning all this parameter space, we found

no dangerous CCB minima. For the majority of

“points”, solving the minimisation conditions re-

veals itself impossible - and when an extremum

of the potential does exist, it is found to be larger

than the “real” minimum of eq. 2.4. This is, in

great measure, due to the soft masses’ contribu-

tions to the potential - they are large and posi-

tive. Of course, had we found any CCB minima,

we would have to have taken into account the

possibility of metastable vacua - that is, if the

standard, non CCB vacuum is a metastable one

with a lifetime larger than the current age of the

universe, the new CCB minimum would not be

dangerous [10].

6. Discussion

In these proceedings we touched the main fea-

tures of this subject. More details may be found

in ref. [11]. Ever since the classic work of ref. [4]

we know that failing to take into account the

1-loop corrections to the effective potential can

lead to an overestimation of CCB bounds. Also,

these corrections can have quite drastic effects on

predictions from the tree-level potential. When

studying CCB, one usually tries to minimise the

1-loop contributions by an appropriate choice of

renormalization scale. But a global minimum of

the potential is not searched, instead a strategy

of finding regions of parameter space where the

CCB tree-level potential has a value inferior to

that of the “real” minimum is followed. The

7
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argument is that if that if that point is not a

minimum, a valid minimum, or an unbounded

from below (UFB) direction, exists surely some-

where. But as we discussed in section 4, away

from a minimum, even with a judicious choice

of renormalization scale, the 1-loop corrections

are not guaranteed to be small, and indeed are

not. And this, of course, if one ignores the rather

uncomfortable fact that in such regions the 1-

loop contributions are complex - notice that this

is a rather different situation from that found

in ref. [4], where a small displacement from the

minimum caused the appearance of small neg-

ative squared masses for the Goldstone bosons.

In our example, the negative squared masses we

found were very sizeable.

We argued that the sensible way to follow is

to take a Socratic approach: in those parts of pa-

rameter space where a tree-level minimum can-

not be found, the 1-loop corrections cannot be

handled in the usual way and, even if the poten-

tial happens to be smaller than the “real” mini-

mum, no CCB statements can be made. We ap-

plied this philosophy to the MSSM with univer-

sality, for a wide range of parameters, and found

that no dangerous CCB minima could be found.

Is this the last word on CCB bounds? Hardly.

One must consider that the parameter space

we studied was vast, but by no means exhaus-

tive. Also, we studied only an universal model -

universality, despite its simplicity and appeal, is

but one possible scenario. Non-universal models

could possibly exhibit dangerous CCB minima,

but notice that our arguments are not dependent

on universality - again, the full minimisation con-

ditions should be considered. We hope to have

convinced the reader that great care must be ex-

ercised in considering the problem of the 1-loop

contributions to the potential in the case of

CCBminima, and a re-evaluation of CCB bounds

is in order. Finally: we have been trying our very

best to limit the study of CCB to the tree-level

potential, understandingly, given its simplicity.

However, maybe we have reached a point where

that is no longer possible - our strategy has been,

choose a value of µ such that V1 is minimal, and

study V0. That strategy fails if V0 does not have a

minimum; and, as we saw, solving the minimisa-

tion equations can be very difficult. Perhaps then

we should follow a different approach: choose µ

such that the minimisation of V0 is possible, thus

ensuring the integrity of the 1-loop potential. If

at this scale V1 is not negligible, then we will

have no alternative than to compute the 1-loop

corrections to the vevs of the different fields. We

hope to be able to explore this possibility soon.

Acknowledgments

I thank Giovanni Ridolfi and Tim Jones for very

useful discussions. This work was supported by

the European Commission TMR program ERB

FMRX-CT96-0045.

References
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