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Abstract: The Wilson loop in N = 4 supersymmetric Yang-Mills theory admits a dual description
as a macroscopic string configuration in the adS/CFT correspondence. We discuss the correction to

the quark anti-quark potential arising from the fluctuations of the superstring.

1. Introduction

One important ingredient of the string dualities

is the twofold description of D-branes as soli-

tonic supergravity solutions and as submanifolds

of spacetime where open strings may end. The

second description leads to a gauge field theory

on the world-volume of D-branes. Based on this

general idea is Maldacena’s conjecture[1] relat-

ing superconformal field theories to supergrav-

ity (or superstrings) living in a higher dimen-

sional space with boundary. (For a review con-

taining also a comprehensive list of references,

see [2].) For example, N = 4 supersymmetric
SU(N) Yang Mills theory in four dimensions is

dual to the type IIB string theory on adS5 × S5
space. The radii of the S5 and the adS5 are

equal and related to the Yang-Mills coupling via

R2/α′ =
√
4πg2YMN . (The string coupling g is

g = g2YM .) For supergravity to be a good ef-

fective description, we need the radius of curva-

ture to be large and also the string coupling to

be small. This means that we need gs small but

gsN large. The latter is however the ’t Hooft cou-

pling constant in the large N field theory which

is thus strongly coupled. Maldacena’s conjec-

ture provides a new possibility to gain insight

into strongly coupled gauge theory by studying

weakly coupled string theory. As an application,

∗Talk given by S. Förste.

Wilson loops have been computed in [3] and [4].

The string configuration for a quark-antiquark

pair separated by a distance L, is a long string

on adS5×S5, the ends of which are restricted to
the (four dimensional) boundary of adS5, where

they are at a distance L apart. The expectation

value of the Wilson loop is then given by the ef-

fective energy of the string. We will review this

computation in the next section. In the third

section leading corrections are discussed. As a

further application of our techniques we briefly

review in section four membrany corrections to

the Wilson surface in M5 theory. We conclude

with a short summary.

2. Review

The dual description of N = 4 super Yang-Mills
theory is a type IIB string living in adS5 × S5.
In particular the target space metric (GMN ) is

ds2 = R2
[
U2
(
− (dx0)2 + (dx1)2 + (dx2)2

+
(
dx3
)2)
+
dU2

U2
+ dΩ25

]
. (2.1)

Compared to [4] we have rescaled U → R2U , and

also set α′ = 1. In addition there is a constant
dilaton and N units of RR-4-form flux through

S5. In order to compute the Wilson loop one
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minimizes the Nambu-Goto action [4, 3] 1

SNG =

∫
d2σ

2π

√
− detGMN∂iXM∂jXN (2.2)

with the boundary condition that the ends of the

string are separated by a distance L at U = ∞.
We work in the static gauge (X0 = τ , X1 = σ)

and restrict to the case that all coordinates but

U are constant. The radial coordinate U depends

on σ. Then the (implicit) solution reads2

∂σU = ±U
2

U20

√
U4 − U40 , (2.3)

where

U0 =
(2π)

3
2

Γ
(
1
4

)2
L

(2.4)

is the minimal U -value the string obtains. The

energy of the quark-antiquark pair is the length

of the geodesic (open string) connecting them.

One finds (after subtracting an L independent

infinite contribution from the self energy of the

heavy quarks)

E = −4π
√
g2YMN

Γ (1/4)4 L
. (2.5)

This strong coupling result differs from the per-

turbative field theory computation (g2YMN small),

which predicts a Coulomb law withE ∼ g2YMN/L.
In general the numerator is a function of g2YMN

which interpolates between these two forms, and

hence there ought to be corrections to (2.5) which

is the result of a classical supergravity computa-

tion. Since adS5 × S5 is an exact string back-

ground [5, 6, 7], the first correction comes from

the fluctuations of the superstring (R2/α′ cor-
rection). In this talk we will report on work in

this direction[8]. Corrections due to string fluc-

tuations have been discussed in [9], and subse-

quently in [10, 11, 12, 13, 14]. Ref.[15] considered

corrections to the field theoretical result.

3. Fluctuations

The quantum theory of type IIB string in this

background is described by the action in [6]. It
1After switching off the world-sheet fermions, the type

IIB action reduces to the Nambu-Goto action.
2In the following we will just take the upper sign with

the understanding that the square root stands for both

branches.

is a Green-Schwarz type sigma model action on

a target supercoset. The usual sigma model ex-

pansion in R2/α′ results in a power series in
1/
√
Ng2YM . Since conformal invariance prevents

the appearance of a new scale these corrections

are not expected to change the 1/L dependence

of E on dimensional grounds. However they can

modify the ‘Coulomb charge’.

The leading order correction is obtained by

expanding around the classical configuration (2.3)

to second order in fluctuations. We parameterize

the bosonic fluctuations by normal coordinates[16]:

ξa on adS5 × S5, (here a = 0, · · · , 4; 5, · · · , 9 are
local (flat) Lorentz indices; ξ4 is in the U direc-

tion). Using the normal coordinate expansion

one ensures that the functional measure for the

fluctuations is translation invariant. This takes

care of potential problems due to the curved tar-

get space. Ref. [14] has an extensive discussion

on additional subtleties in the functional mea-

sures due to a curved world sheet.

At second order, the bosonic fluctuations in

adS5 and S
5 directions and the fermionic fluctu-

ations decouple. Before writing their action, we

define the combinations

ξ‖ =
U20
U2

ξ1 +

√
U4 − U40
U2

ξ4,

ξ⊥ = −
√
U4 − U40
U2

ξ1 +
U20
U2

ξ4, (3.1)

which parameterize fluctuations along the longi-

tudinal and perpendicular directions of the back-

ground string in the one-four plane. Now the

adS5 part of the action becomes

S
(2)
adS =

1

4π

∫
d2σ
√−h

[
hij


 ∑
a=2,3,⊥

∂iξ
a∂jξ

a




+ 2
(
ξ2
)2
+ 2

(
ξ3
)2
+ 2

U4− U40
U4

(
ξ⊥
)2 ]
(3.2)

where hij is (up to a factor of R
2) the classical

induced world-sheet metric3

ds2 = −U2 (dσ0)2 + U6

U40

(
dσ1
)2
. (3.3)

3For our purpose it is more convenient to work with the

induced metric rather than the standard (conformally)

flat one on the world-sheet.
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Observe that ξ0 and ξ‖ do not appear in (3.2)
(total derivatives have been dropped). Hence a

natural choice to fix world-sheet diffeomorphisms

is

ξ0 = ξ‖ = 0. (3.4)

The action quadratic in fluctuations in S5 direc-

tions comes out to be

S
(2)
S5 =

1

4π

∫
d2σ
√−hhij

9∑
a=5

∂iξ
a∂jξ

a. (3.5)

The fermionic part of the action is given by

plugging in the background (2.4) into the action

of [6] and keeping terms quadratic in fermions.

This action has local fermionic κ-symmetry which

has to be fixed for the one-loop calculation. There

is a proposal in the literature[17] to this end. For

our purpose, however, it turns out that the fol-

lowing choice is most convenient.4 We will set

(in the notation of [6])

(
γ−
)α
β
θ1ββ

′
= 0 ,

(
γ+
)α
β
θ2ββ

′
= 0 (3.6)

where γ± = γ0±γ‖ with γ‖ = U20
U2 γ

1+

√
U4−U40
U2 γ4

(Cf. (3.1)). With this choice the target space

spinors ‘metamorphose’ into world-sheet spinors,

and the action is found to simplify substantially.

The corresponding equations of motion are most

compactly written for the ‘two-component’ world-

sheet spinors

(
θ1

θ2

)
:

[
i (ρm∇m)αβ − δαβ ρ3

]( θ1βα′
θ2βα

′

)
= 0. (3.7)

The notation needs explanation. Firstly, the co-

variant derivatives act as

(∇±θI)αα′ =[
δαβ

(
∂± ± ω±

2

)
+ (A±)

α
β

]
θIβα

′
,(3.8)

where the tangent space derivatives

∂± =
1

U
∂τ ± U20

U3
∂σ (3.9)

are defined with the help of a (inverse) zweibein

εm of the metric (3.3), ω
01
m = ετmω

01
τ being the

4We will comment on a different choice below.

corresponding spin connection. There is an ad-

ditional gauge field

A± = ±U
2
0

U2
γ14 (3.10)

for local rotations in the tangent one-four-plane.

Finally, the matrices

ρ+ =

(
0 0

γ0 0

)
, ρ− =

(
0 γ0

0 0

)
(3.11)

satisfy a two dimensional Clifford algebra, and

ρ3 = [ρ+, ρ−]. The fermionic action is easily in-
ferred from the equations of motion (3.7).

Collecting our results (3.2), (3.5) and (3.7)

one can write a formal expression for the 1-loop

contribution to the effective action as a ratio of

determinants of two dimensional generalized Laplace

operators[8]. These determinants suffer from di-

vergences and can be regularized by, say, the heat

kernel technique[18]. The quadratic divergences

cancel, but naively a logarithmic divergence re-

mains, which may be absorbed in the (infinite)

mass of the external quarks[8]. As unsatisfactory

as it may be, it does not affect our result for the

correction to the Coulomb charge. More recently

the authors of [14] have argued that this diver-

gence should, as in flat space, actually cancel. As

far as the corrections to the Coulomb charge are

concerned the results of [14] and ours [8] are actu-

ally equivalent. In the following we demonstrate

that the apparently different expressions for the

fermionic operators in [8] and [14] are related to

each other by a local Lorentz rotation5. To this

end, define

θI = SψI , (3.12)

where we suppressed target space spinor indices.

For the matrix S we choose the one given in

Ref.[14], Section 6.3,

S = cos
α

2
− sin α

2
γ14, (3.13)

where

cosα =
U20
U2

, (3.14)

sinα =

√
U4 − U40
U2

, (3.15)

5From the sigma model point of view this is just a field

redefinition with unit Jacobian.
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implying that

∂σα = 2U. (3.16)

The Dirac operator for ψ is given by conjugation

by S from the one for θ. Using the fact that S

commutes with the ρm and using ((3.9), (3.10))

S−1A±S = −S−1∂±S = ±U
2
0

U2
γ14, (3.17)

we find that the Dirac operator acting on the

fields ψI (3.12) takes again the form (3.7), but

now the connection A± has been gauged away.
It is also easy to show that for the redefined

spinors ψI the kappa-fixing condition takes the

form (3.6), but with

γ‖ → S−1γ‖S = γ1, (3.18)

which is the same as (6.35) in [14]. This shows

that the results in [14] are equivalent to ours.

4. Wilson surface in M5 theory

The Maldacena conjecture also applies to the

case of M-theory living on adS7 × S4 being dual
to the field theory on a stack of M5 branes[1].

The metric of adS7 × S4 is

ds2 = l2pR
2

[
U2ηµνdx

µdxν + 4
dU2

U2
+ dΩ24

]
,

(4.1)

where we have rescaled the five-brane coordinates

xµ by R3/2 as compared to[1], dΩ24 is the metric

on S4. In the limit that the eleven dimensional

Planck length lp goes to zero M-theory on adS7×
S4 is conjectured to be dual to the field theory

on N M5-branes, where the adS radius and the

number of five-branes are related,

R = (πN)
1
3 . (4.2)

Higher curvature corrections will be small as long

as N is taken to be large. In analogy to the pre-

viously discussed Wilson loop one can study a

Wilson surface in M5-theory. The set up is a

membrane extending along the x0,1,2 and the U

direction ending in two parallel lines separated by

a distance L at the boundary of adS7[4]. In the

following we will recall this set-up (with slightly

changed conventions) and thereafter study cor-

rections due to fluctuations of the membrane.

This will be a brief summary of the work pre-

sented in[19]. The classical background corre-

sponding to the Wilson surface is obtained by

minimizing the world volume of the membrane

S =
1

2π

∫ √
− det (GMN∂aXM∂bXN) (4.3)

with appropriate boundary conditions. The in-

dices M,N label the eleven target space coor-

dinates and a, b are world volume coordinates

(τ, σ, φ). By choosing the static gauge X0 = τ ,

x1 = σ, X2 = φ and assuming all other coordi-

nates but U = U (σ) to be constant one finds the

solution,

∂σU = ± U2

2U30

√
U6 − U60 . (4.4)

Requiring that the membrane ends in two paral-

lel strings at distance L determines the integra-

tion constant

U0 =
2

3L
B

(
2

3
,
1

2

)
, (4.5)

where B denotes Euler’s beta-function. Com-

puting the vacuum energy density of this config-

uration one obtains (again after subtracting an

L independent infinite contribution to the self-

energy of the strings) the potential between the

two strings living on the M5-branes,

εpot = −2R
3

27π
B

(
2

3
,
1

2

)3
1

L2
. (4.6)

This result is reliable for largeN where the geom-

etry is not corrected and the classical approxima-

tion dominates. In [20] it was argued that there

are no corrections to the geometry due to finite

N . Another potential source for corrections are

fluctuations of the membrane around its classical

background described above. Again we expand

in normal coordinates[16] and obtain the action

quadratic in bosonic fluctuations. We trade the

fluctuations in one- and six-direction6 for normal

and parallel ones,

ξ‖ =
U30
U3

ξ1 +

√
U6 − U60
U3

ξ6 (4.7)

ξ⊥ = −
√
U6 − U60
U3

ξ1 +
U30
U3

ξ6. (4.8)

6The fluctuations are labeled by Lorentz indices; ξ6 is

in the U direction.
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The contribution from the adS directions is

S
(2)
adS =

1

4π

∫
d3σ
√−h

[
hij

5,⊥∑
a=3

∂iξ
a∂jξ

a

+
3

4

5∑
a=3

(ξa)
2
+

(
9

4
−R(3)

)(
ξ⊥
)2]
(4.9)

where hij is (up to a factor of R
2) the induced

metric,

ds2 = −U2dτ2 + U8

U60
dσ2 + U2dφ2, (4.10)

and R(3) is the corresponding scalar curvature,

R(3) =
3

2

U6 + U60
U6

. (4.11)

Again the three longitudinal directions 0, 2, ‖ drop
out of the action and we gauge them to zero. The

bosonic fluctuations in S4 direction have a simple

action,

S
(2)
S =

1

4π

∫
d3σ
√−hhij

10∑
a=7

∂iξ
a∂jξ

a. (4.12)

In order to discuss the fermionic fluctuations we

take the κ symmetric action of[21]. For our back-

ground the part quadratic in fermions consists

out of terms containing Γa (a = 0, . . . , 6), where

Γa is an eleven dimensional gamma matrix. These

can be written as Γa = γa ⊗ γ5′ where the lower
case gammas are gamma matrices in the tangent

spaces of adS7 and S
4, respectively. We split

the 32-component spinors into two 16-component

spinors (θ1, θ2) according to their eigenvalue with

respect to γ5
′
. (γ5

′
θI = −(−)IθI .) A convenient

kappa-fixing condition turns out be(
1− (−1)Iγ0‖2

)
θI = 0, (4.13)

where now γ‖ = U30
U3
γ1 +

√
U6−U60
U3

γ6 . Impos-

ing the kappa-fixing condition we find that the

equations of motion for e.g. θ1 are

ρaeia

(
∂i +

1

4
ωbci ρbc +Ai

)
θ1 = −3

4
θ1, (4.14)

where eia and ωbci are the vielbeine and spin-

connections computed from (4.10) (for details see

[19]). The matrices ρ are

ρ0 = γ0, ρ1 = γ02, ρ2 = γ2 (4.15)

satisfying a 3d Clifford algebra. The field Aσ =
3U
4 γ

16 is a background value for a gauge connec-

tion belonging to local rotations in the 1-6 plane.

(For θ2 one obtains the same result but with a

minus sign in the definition of ρ1.) Note that the

Dirac operator appearing in (4.14) is covariant

from a world volume perspective. Collecting the

results (4.9), (4.12) and (4.14) one can express

the contribution to the energy density in terms of

determinants of covariant operators. These can

be analyzed using for example the heat-kernel

method[18]. In difference to the previously dis-

cussed string case one finds divergent contribu-

tions as well to the self-energy density as to the

potential energy density[19]. It would be inter-

esting to investigate whether one can extend the

arguments of [14] to cancel those divergences.

(Since the discussion in [14] is quite heavily based

on conformal invariance and 2d calculus this is

not straightforward.) Finally, let us point out

that also in the membrane case one can gauge

away the connection appearing in (4.14). This

can be achieved by a field redefinition θI = SψI

with

S = cos
α

2
− sin α

2
γ16, (4.16)

where

cosα =
U30
U3

,

sinα =

√
U6 − U60
U3

. (4.17)

The kappa-fixing condition is again (4.13) but

with γ‖ replaced by γ1. This coincides with the
kappa-fixing condition advertised in[22].

5. Summary

In this talk we presented techniques for com-

puting stringy corrections to the Wilson loop in

N = 4 supersymmetric Yang-Mills theory. The
final result can be expressed in terms of deter-

minants of 2d covariant operators. A result for

the leading correction to the Coulomb charge in

terms of a number is still missing (a rough esti-

mate can be found in [14]). We commented on

the relation between our results and those ob-

tained in [14]. In the end we reviewed the appli-

cation of our techniques to the case of a Wilson
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surface in M5-theory. There the result is less sat-

isfactory as divergences also affect the Coulomb

charge.
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