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ABSTRACT: We review recent results on the general structure of two- and three- point functions of

the supercurrent and the flavor current of N' = 2 superconformal field theories.

1. Introduction

This note is a brief review of the results obtained
in our recent paper [u’]}] where we analysed the
general structure of two- and three- point func-
tions of the supercurrent and the flavor current
of N = 2 superconformal field theories. Our
research was inspired by (i) similar results ob-
tained by Osborn [:2:] for N' = 1 superconfor-
mal field theories; (ii) N -extended superconfor-
mal kinematics due to Park [J], in particular the
existence of nilpotent superconformal invariants
of three points; (iii) the conjecture of Malda-
cena [4] (see [B] for a review), which relates su-
perconformal gauge theories in four dimensional
Minkowski space to extended gauge supergravi-
ties in five dimensional anti-de-Sitter space.

In A = 1 superconformal field theory, the
conserved currents are contained in two different
supermultiplets: (i) the supercurrent J. [6] con-
taining the energy-momentum tensor ©,,,, the
supersymmetry currents jma (& = «, &) and the
axial current ;5 (ii) the flavor current multi-
plet L@ [:Z:] containing the conserved flavor cur-
rent v% among its components. Both J,4 and
L% are real N' = 1 superfields, and they satisfy
the conservation equations

D%J s = D% pe =0, (1.1)
D?L* = D’L*=0. (1.2)

In A/ = 2 superconformal field theory, the
conserved currents are contained in two different
supermultiplets: (i) the supercurrent J [8, 10]
whose components include the energy-momentum

tensor O,,,, the SU(2) R-current 54 (i,5 =
1,2), the axial current jr(nR) and the N' = 2 su-
persymmetry currents j° .; (ii) the flavor current
multiplet E?j [2_1, :_l-Q‘] containing the conserved fla-
vor current v2, among its components. Both J
and L}; are real N = 2 superfields (Lij = LY),
and they satisfy the conservation equations

DYy =DY7 =0, (1.3)
DG M = Dl oM =0, (1.4)

where Dii = De(DJ) | Dii = DU D&,

Any N = 2 superconformal field theory is a
special N' = 1 superconformal model. Therefore,
it is useful to know the decomposition of 7 and
L;; into N’ = 1 multiplets. For that purpose we
introduce the N’ = 1 spinor covariant derivatives
Do = D&, D% = D¢ and define the N = 1 pro-
jection U| = U(z, 62, §£)|92:§g:0 of an arbitrary
N = 2 superfield U. Tt follows from (1.3) that J
is composed of three independent A" = 1 multi-
plets

J=J, Jo=D2J| , (1.5)
1 _ 1 _
Joa = 5 (D3, Dss) | — 8 [Dx, Da1)T|

while the A/ = 1 flavor current multiplet is iden-
tified as follows
L=iL?. (1.6)

Here J and J, satisfy the conservation equations

D?J =D*J=0, (1.7)
D*J, = D*J,=0. (1.8)
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The spinor object J, contains the second super-
symmetry current and two of the three SU(2)
currents, namely those which correspond to the
symmetries belonging to SU(2)/U(1).
the scalar J contains the current corresponding
to the special combination of the N = 2 U(1)
R-transformation and SU(2) os-rotation which

Finally,

leaves ¢; and AL invariant.

2. Superconformal building blocks

In N-extended global superspace RV parametrised

by 24 = (x*,0¢, 9};), an infinitesimal supercon-

formal transformation

24— 24 4 .24 (2.1)
£ =& =¢6%2)00 + £ (2)Di, + €, (2) Dy

is generated by a superconformal Killing vector
¢ defined to satisfy

€, Di] o Dj. (2.2)

From here it follows

i - ; _

f? = _gDmg,@a ) nggfl =0 (23)
while the vector component of £ is constrained
by

Di &ss =Dl =0,  (24)
- aa&b + abga = % Nab 8650 .

For /' < 4, the algebra of superconformal Killing
vectors is isomorphic to the A—extended super-
conformal algebra, su(2, 2|\N).

Let us introduce the parameters of gener-
alized Lorentz w,g), scale—chiral ¢ and SU(N)
transformations A;7 (AT — A = tr A = 0) gener-
ated by &

€. DY) = (D& D}
= wo” Dl —iA;' D},
1 .

- v (W =2)0+25)D5 . (25)
A primary superfield O(z), carrying some num-
ber of undotted and dotted spinor indices and
transforming in some representation of the R-
symmetry SU(N), satisfies the following infinites-

imal transformation law under the superconfor-
mal group

1 S
d0 = —§O+§w“bMab(9+iAj’RﬂO
—2(qo+qa) O. (2.6)

Here M, are the Lorentz generators, and R;7 are
the generators of SU(N). The constant parame-
ters ¢ and ¢ determine the dimension (¢+ g) and
U(1) R—symmetry charge (¢—q) of the superfield,
respectively.

In A = 1 superconformal theory, the super-
current J,4 and the flavor current L are primary
superfields with the superconformal transforma-
tions

0Jns = —&Jaa — 3 ((T —+ (7) Jas
+(wa85” + @"0a") T g5, (2.7)

L =—¢L—2(c+5)L. (2.8)

In N' = 2 superconformal theory, the supercur-
rent J and the flavor current £;; are primary
superfields with the superconformal transforma-
tions

0J =-€£J—-2(c+0)T, (2.9)

6Lij = —§Lij —2(0+5) Li;

(2.10)

Correlation functions of primary superfields,
(O1(21) O2(22) ... On(zy) ), involve some univer-
sal building blocks which we are going to describe
briefly. Associated with any two points z; and 2z
in superspace are (anti-)chiral combinations s,
(912 and élg :

14y = —x5; =2 — a8, + 200" 0} ,
% = 2 +16,0%0" ;
912 = 01 — 92 s élg = él — ég s (211)

which are invariant under Poincaré supersym-
metry transformations (the notation ‘ry,
cates that xj, is antichiral with respect to 2z
and chiral with respect to z2) but transforms
semi-covariantly with respect to the supercon-

’ indi-

formal group (see, e.g. [b]). In extended super-
symmetry, there exist primary superfields with
isoindices, and their correlation functions generi-
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cally involve a conformally covariant N x N uni-
modular matrix® [3

Ui (z12) = (2—12> ui’ (z12) ,

_pi
912i$12912

uij(zu) = 5ij —4i B} s

2.12
T2 ( )

with the basic properties

(2.13)

and the transformation rule

507 (212) = 10" (z1) 7 (212)
— 10" (212) Ak (22) -

Given three superspace points 21, 22 and zs3,

(2.14)

one can define superconformally covariant bosonic
and fermionic variables Z;, Zs and Zj, where
Z, = (X1, O}, ©1;) are [2, 3]

Xy = F5 '@3¥a1
O =i (3 "0, — T3 '0i3) ,
X, =Xl =X, -4i6!6,,,

éu‘ = (éi)T (2.15)

and Zo, Z3 are obtained from here by cyclically
permuting indices. These structures possess re-
markably simple superconformal transformation
rules:

0X10a = (wa’(21) — 6" 0(21)) X1 e
+ X1 ap ( a(z1) — 6% ar(2’1)) ;
001, = waP(21)0% 5 —10] A (z1)

_ %((N* 2)0(21) +20(21)) 014

and turn out to be essential building blocks for
correlations functions of primary superfields. The
variables Z with different labels are related to
each other, in particular:

B3 X3 ¥y = —Xi T,
P13 04 uid (231) = —X;1710] . (2.16)

1We use the notation adopted in [ﬁ_f- 'IZ:] When the
spinor indices are not indicated expllc1tly, the following
matrlx—hke conventions are used [52] P =), Y = Ya),

= (¥%), U) (Pa), T = (Taa), & = (z%%); but 22 =

x"‘za = 7; tr (#z), and hence #~1 = —x/22.

With the aid of the matrices u(z,s), r,s = 1,2,3,
defined in (2.12), one can construct unitary ma-
trices 0(Z,) [8], in particular

0(Zs3) = a(z31)a( 212 ti(z23) (2.17)

&)

transforming at z3 only. Their properties are

- 4ié3iX3—1ég>

al(Zz) =a"YZ3), detiu(Zs)=1. (2.18)

The above general formalism has specific fea-
tures in the case A/ = 2 that is of primary interest
for us. Here we have at our disposal the SU(2)-
invariant tensors e;; = —e;; and el = —git
normalized to e12 = e3; = 1.
used to raise and lower isoindices: C* = ()},
C; = €;;C7. For N' = 2, the condition of uni-

modularity of the matrix defined in (2.12) can

e

They can be

be written as

Uji(221) = — Qy5(212) - (2.19)

The importance of this relation is that it implies
that the two-point function
Uiy i, (212)
1
(z12%72:2)2
Tiyi, (221)

Ai1i2 (Zlv '22) =

=" (2.20)
(z12272,2)2
is analytic [:_1-3] in z1 and zo for z; # 29,
Doy Aiyyis(21,22) = 0,
Dld(lei1)i2(zl7z2) =0. (221)

As we will see later, A;i,(21,22) is a building
block of correlation functions of analytic primary
superfields like the A/ = 2 flavor currents. For
N = 2, the fact that G(Z3) is unimodular and
unitary, implies

tr af(Zs) = tr a(Zs) ,

0l (Zs) = —1;(Zs) - (2.22)

3. Correlation functions of NN = 2
currents

According to the general prescription of [:ii, 3], the
two-point function of a primary superfield Oz,
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which is a Lorentz scalar and transforms in a rep-
resentation T' of the R-symmetry group SU(N),
with its conjugate O reads

7 (ﬁ(zw))
(21227 (23,2)7
where C» is a normalization constant.

For the N = 2 supercurrent 7 and the flavor

a
current L7,

(0z(21) 07 (22)) = Co

the above prescription gives

1
(T (21) T(22)) = c7 m , (3.1)
(L5, (21)L£727252 (2)) = 2¢p 69172
« ﬁil(iz (212) ’l:lejZ)(Zlg) . (32)

2.2

T127T21
The relevant conservation equations prove to be
satisfied at z; # 2o,

Dy (T (1) T (22))
D1 oy (Liyjy)(21) L7272 (22)) =

According to the general prescription of EZ,

0,
. (33)

;3'], the three-point function of primary superfields

-(’)(Ill), (’)(122) and (’)&33) reads
(0 (21) 0P (20) OF) (23))
_ TWg 7 (a213) T®) 1,72 (a(223))
(7132)7 (231%)9 (225%)% (232%)92

X HJIJZIS(ZB) .

Here H g, 7,7,(Z3) transforms as an isotensor at
23 in the representations T, T2 and T®) with
respect to the indices J1, J> and Z3, respectively,
and possesses the homogeneity property

Hjljzz3(AA X,A0,A0)
= APAYH; 7.7.(X,0,0),
P—2D=q1+q— g3,
D—2p=q1+q—3q5 -

In general, the latter equation admits a finite
number of linearly independent solutions, and
this can be considerably reduced by taking into
account the symmetry properties, superfield con-
servation equations and, of course, the superfield
constraints (such as chirality or analyticity [13]).
Below we shall present the most general expres-
sions for three-point functions of the N’ = 2 su-

percurrent J and the flavor current E?j, which

are compatible with all physical requirements.
Details can be found in [ik].

The three-point function of the A/ = 2 su-
percurrent is

(T (21) T (22) T (23)) (3.4)
1
w1323, 20952032

1 1
{A (%7 + %)
05" X305X35;05"
(X3?)? ’

X

where

o5’ = 6" = 5’6}, ,

o’ = ") = 64,05,  (35)
and A, B are real parameters. The second struc-
ture is nilpotent and real.

The three-point function of the A" = 2 flavor
current reads

<‘C?1j1 (21) ‘C?ng (22) ‘Cfgjg (23)> (3'6)
03,1 (213)5, " (213) i, "2 (225 ), ™ (225)
3170137032733

ave | is(k01y) (12 (Z3)ERy) s . ,
% abc 3( 2 4 + (i3 &
f { (X32X32)5 ( 3 33)

with fabe = flabdl o completely antisymmetric
real tensor being proportional to the structure
constants of the flavor group.

For mixed correlation functions of the A/ = 2

supercurrent and the flavor current, we get
(T (21) T (22) L§;(23)) =0, (3.7)
(L85, (21) £2,5,(22) T (23)) =d 6 (3.8)
o Uiy M (213) 015, (213) i, "2 (223) 85, (223)
r31%013% 2357 2337
o Ehaln )iz (Z3) + E1a (0 Wiy )is (Z3)
(X32X32)3

)

with d a real parameter which can be related, via
supersymmetric Ward identities, to the parame-
ter ¢, in the two-point function (3.2),

1
d = m Cr . (39)

It is worth pointing out that eq. @-_-?l) is one of
the important consequences of N' = 2 supercon-
formal symmetry and has no direct analog in the
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N =1 case. In a generic N' = 1 superconformal
theory with a flavor current L, the correlation
function (Jag Jy5 L) is not restricted by N = 1
superconformal symmetry to vanish [Z]

4. Reduction to N' = 1 superfields

From the point of view of ' = 1 superconformal
symmetry, any N/ = 2 primary superfield con-
sists of several N' = 1 primary superfields. Hav-
ing computed the correlation functions of N = 2
primary superfields, one can read off all correla-
tors of their A" = 1 superconformal components.
Since any N = 2 superconformal theory is a par-
ticular A/ = 1 superconformal theory, one can
then simply make use of N' = 1 superconformal
Ward identities [2] to relate the coefficients of
various correlators.

Using the explicit form (3.1) of the N = 2
supercurrent two-point function, one can read off
the two-point functions of the A" = 1 primary
superfields contained in 7, in particular?

1
r19%23,%

(J(21) J(22)) = cg

(Jaa(21) Jg5(22)) = %CJ %

(4.1)

Similarly, the two-point function of the NV = 1
flavor current follows from (8.2)

(L% (1) L% (22)) = ex

We now present several A/ = 1 three-point
functions which are encoded in that of the A/ = 2
supercurrent, given by eq. (g_zl»:)

A
2. 2. 2. 2
T13°T31°%33°T32

X ! + ! (4.3)
X352 X3%) .

(J(21) J(22) I (23)) =

1
(J(21) I (22) Jac(23)) = =15 (84— 3B)
1
T13°731 2237307
y 2(P3 - X3) X304 + X3°P3aa
(X52)?
2Here and below, all building blocks are expressed in
N = 1 superspace.

X

+ (X5 o xg)} , (4.4)

4

<Jad(Z1)JﬁB(32)J(ZS)> = 9(8A+3B)

(213) a4 (T31)va (T23) 55 (T32) 53
(715°731 27257 2352)?
X3WX355
{ (X3?)?

1 g7 ?s
9 (X32)2

+ (X3 —X3)} ) (4.5)

with P, defined by [2]

X,-X,=iP,, P,=200,0. (4.6)

The most interesting correlator and by far the
most laborious to compute is

(Jaa (21) Jg4(22) Jy5(23)) (4.7)
 (13)ae (T31)0a(23) 55 (T33) 55
(z132731°723%T35%)?
x H0 (X5, Xs) ,
HO79 (X5, X5) = ho% 4 (X5, X3)
+ W09 i (~ X5, ~Xs)

where
_ 1 s
h(X,X) = =2 (0%)aa ()5 (5)
xhif? (X, X) (48)
16 9 i
= -2 (26A— -B) ——
o7 (264 - 18) X2
% (XaT]bC 4 anac _ chab + iEadeXd>

8 1
~ 57 84-9B) 53

X {2 <X“Pb + XbP“)XC

_3xoxb (PC +2 (PXZX ) XC>

—(P . X) (3(Xa1’]bc 4 anac) _ 2chab>
1
—|—§X2 (PaT]bC 4 anac + Pcnab> } .

Our final relations (4.7) and (4.8) perfectly agree
with the general structure of the three-point func-
tion of the supercurrent in A/ = 1 superconformal
field theory [2].
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Using the results of EZ], one may express A
and B in terms of the anomaly coefficients [14]

= (5 +n)
a = 24 ny ng),
1
c = E(an +nmg), (4.9)

where ny and ny denote the number of free
N = 2 vector multiplets and hypermultiplets,
respectivley. We get?

3
A= @(4&*30) 5

1
B = —(4a—5¢) .

o (4.10)

In N = 1 supersymmetry, a superconformal
Ward identity relates the coefficient in the two-
point function of the supercurrent (4.1) to the
anomaly coeflicient ¢ as follows Eﬂ]

3

Cg =
In terms of the coefficients A and B this relation
reads

2

57 =84-3B. (4.12)

Let us turn to the three-point function of the
N = 2 flavor current given by eq. (3.6). From
it one reads off the three-point function of the
N =1 flavor current

(L(21) L*(22) L*(23))
1

2. 2. 2. 2
4 T13°T31°%33°T32

y 1 1
X32 X32 '

It is worth noting that the Ward identities al-
low one to represent f‘igé as a product of ¢, and
the structure constants of the flavor symmetry
group, see [}_Z] for more details.

In A/ = 1 superconformal field theory, the

(4.13)

abe 1

three-point function of the flavor current super-
field L contains, in general, two linearly indepen-
dent forms [2:

(L%(21) L*(22) L (23))
1
T132231 205322352

30ur definition of the N = 1 supercurrent corresponds
to that adopted in [12] and differs in sign from Osborn’s
convention [:g]

T 1 1
: rlabc
. {lf[ (25
- 1 1
d(abc) - _— .
+ X7t %2

The second term, involving a completely sym-
metric group tensor dagé, reflects the presence of
chiral anomalies in the theory. The field-theoretic
origin of this term is due to the fact that the
N = 1 conservation equation D> L = D?>L = 0
admits a non-trivial deformation
D2 (La> p” daEé WEa Woc:

when the chiral flavor current is coupled to a
background vector multiplet. Eq. @:1:3) tells
us that the flavor currents are anomaly-free in
N = 2 superconformal theory. This agrees with
the facts that (i) M = 2 super Yang-Mills mod-
els are non-chiral; (ii) the N' = 2 conservation
equation (1.4) does not possess non-trivial defor-
mations.
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