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1. Introduction and conclusions

M-theory compactified on O7 ≡ X6 × S1/Z2,

where X6 is a Calabi-Yau (CY) three-fold, leads

to a four-dimensional theory with N = 1 lo-

cal supersymmetry. In the low-energy limit, M-

theory information can be organized as an expan-

sion in powers of the eleven-dimensional gravita-

tional constant κ11 [1, 2]. The lowest order κ
−2
11

is eleven-dimensional supergravity [3]. In a com-

pactification on S1/Z2 only, the next orders are

known to include orbifold plane contributions as

well as gauge and gravitational anomaly-cancel-

ling terms [1, 4, 2]. Similarly, the effective four-

dimensional supergravity can be formulated as

an expansion in the four-dimensional gravitatio-

nal constant κ, even if string theory rather sug-

gests to use the dilaton as expansion parame-

ter. The lowest order κ−2 is the S1/Z2 trun-
cation of eleven-dimensional supergravity on a

CY three-fold. The next order includes super-

Yang-Mills (SYM) and charged matter kinetic

and superpotential contributions. Sigma-model

anomaly-cancelling terms modifying in particu-

lar the gauge thresholds are then also involved.

These first corrections to the low-energy limit of

M-theory compactifications on O7 are identical

to those obtained from heterotic compactifica-
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tions on CY. The literature gives a detailed de-

scription of these results, with particular atten-

tion paid to the ‘strong-coupling heterotic limit’

in which the size of the CY space is smaller than

the orbifold length, supersymmetry breaking by

gaugino condensation and non-standard embed-

dings [5]–[8].

In this note, we give the structure of the four-

dimensional N = 1 wilsonnian effective super-

gravity describing the universal massless sector

of M-theory compactified on O7. We begin by

writing the theory corresponding to the reduc-

tion of the bulk eleven-dimensional supergravity

directly in terms of four-dimensional ‘M-theory

supermultiplets’. The supersymmetrized Bianchi

identities for the components of the M-theory

tensor field strength are promoted to equations

of motion using ‘Lagrange multiplets’. Within

this ‘off-shell’ approach, we can then introduce

‘source multiplets’ to take into account the con-

tributions of the S1/Z2 planes which appear as

modifications of the Bianchi identities. This for-

mulation is also particularly appropriate for the

inclusion of non-perturbative states (M-theory

five-branes, condensates, etc.).

The material presented here is detailed in

ref. [9] and a forthcoming publication [10] will

contain a direct application of our approach (the

coupling of five-branemoduli to the background).
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2. The bulk Lagrangian

In this section, we establish our basic procedure

by considering the well-known ‘bulk dynamics’,

which follows fromO7 compactification of eleven-

dimensional supergravity. The resulting Lagran-

gian is the lowest order in the κ-expansion and

describes Kaluza-Klein (KK) massless modes of

eleven-dimensional supergravity.

We will precisely describe two aspects which

may be of importance in M-theory compactifi-

cations. Firstly, we will introduce chiral, linear

or vector supermultiplets with constraints in or-

der to obtain a supersymmetric version of the

Bianchi identities satisfied by antisymmetric ten-

sors. Secondly, we will use superconformal super-

gravity in which we can keep open the choice of

gravity frame.

2.1 Superconformal formalism

We use the superconformal formulation of N = 1

supergravity with a chiral compensating multi-

plet S0 (with conformal and chiral weights w = 1

and n = 1) to generate Poincaré theories by

gauge fixing. In this formalism, a change of frame

corresponds to a different Poincaré gauge condi-

tion applied on the modulus of the scalar com-

pensator z0, which fixes dilatation symmetry. Up

to terms with more than two derivatives and up

to terms which would contribute to kinetic terms

in a fermionic background only [11, 12], the most

general supergravity Lagrangian reads1

L = [S0S0Φ]D +
[
S30W

]
F
+
1

4

[
fabWaWb

]
F
.

(2.1)

The symbols [. . .]D and [. . .]F denote the invari-

ant D- and F -density formulas given by (all fer-

mion contributions are omitted)

[V ]D = e(d+ 1
3
cR) and [S]F = e(f + f), (2.2)

where V is a vector multiplet with components
(c, χ,m, n, bµ, λ, d) and S a chiral multiplet with
components (z, ψ, f). The real vector multiplet

1Except otherwise mentioned, our notations for super-

conformal expressions are as in refs. [13], from where the

original literature can also be traced back. The appendix

of ref. [9] displays the conventions we follow through this

note.

Φ (zero weights) is a function (in the sense of ten-

sor calculus) of the multiplets present in the the-

ory, including in general the compensating mul-

tiplet. The holomorphic functionW of the chiral

multiplets is the superpotential. The chiral mul-

tiplet W is the gauge field strength for the gauge
multiplets and fab is the holomorphic gauge ki-

netic function of the chiral multiplets. Besides

S0 andW , we will use chiral multiplets with zero
weights and neitherW nor fab will depend on the

compensator.

Using a U(1)/Kähler gauge fixing the super-

gravity Lagrangian (2.1) can also take the form

L = [S0S0Φ]D + c
[
S30
]
F
+
1

4

[
fabWaWb

]
F
,

(2.3)

with an arbitrary constant c as superpotential

and two arbitrary functions Φ and fab.

2.2 Supermultiplets with constraints

The Lagrangian of eleven-dimensional supergrav-

ity can be written as [3]

e−1LCJS = − 1
2κ211

R

− 1
4κ211

1
4! GM1M2M3M4G

M1M2M3M4

− 1
12κ211

1
4!4!3! e

−1εM1...M11GM1M2M3M4

×GM5M6M7M8CM9M10M11 + fermionic terms.
(2.4)

Omitting all fields related to the detailed geom-

etry of the CY manifold, the particle content of

the four-dimensional theory is the N = 1 super-

gravity multiplet, with metric tensor gµν , and

matter multiplets including on-shell four bosons

and four fermions. Two bosons are scalars and

correspond to the dilaton and the ‘universal mod-

ulus’ of the CY space, the massless volume mode.

Two bosons are KK modes of the field strength

G, with Bianchi identity dG = 0. Explicitly,

these two last fields and their Bianchi identities

read2

Gµνρ4, ∂[µGνρσ4] = 0,

Gµjk4 = i Tµ δjk, ∂[µTν] = 0.
(2.5)

It will prove useful to identify these fields with

the vector components of two real vector multi-

plets V (w = 2, n = 0) and VT (w = n = 0), and
2In our notations, x4 is the orbifold coordinate.
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to impose the Bianchi identities as field equations

using a chiral multiplet S (w = n = 0) and a real

linear multiplet LT (w = 2, n = 0) as Lagrange

multipliers. The bulk supergravity Lagrangian

takes then the form

LB =
[−(S0S0VT )3/2(2V )−1/2
−(S + S)V + LTVT

]
D
.

(2.6)

The various superconformal multiplets appear-

ing in this Lagrangian have the following compo-

nents expressions3

V = (C, 0, H,K, vµ, 0, d−2C − 13CR),
VT = (CT , 0, HT ,KT , Tµ, 0, dT −2CT ),
S = (s, 0,−f, if, i∂µs, 0, 0),
LT = (`T , 0, 0, 0, tµ, 0,−2`T − 13`TR),
S0 = (z0, 0,−f0, if0, iDcµz0, 0, 0).

(2.7)

The role of the Lagrange multipliers S and LT
follows from the two relations

e−1[(S + S)V ]D = −2 Im s ∂µvµ + 2dRe s
−f(H − iK)− f(H + iK) + derivative,
e−1[LTVT ]D = `T (dT −2CT )
− e2εµνρσ(∂µT ν) tρσ + derivative.

(2.8)

In the last equality, we have used the constraint

imposed to the linear multiplet LT , ∂
µtµ = 0, to

write tµ =
e
2εµνρσ∂

νtρσ. Solving for the compo-

nents of S leads to ∂µvµ = d = H = K = 0, and

V is a linear multiplet L (w = 2, n = 0). Solving

for the components of LT leads to dT − 2CT =
∂[µTν] = 0, and VT can be written as T + T ,

with a chiral weightless multiplet T 4. Since one

can always write vµ =
e
6εµνρσv

νρσ, we have gen-

erated with Im s and tµν the Bianchi identities

∂[µvνρσ] = ∂[µTν] = 0. A modification of these

3We only explicitly consider the bosonic sector of the

theory and omit all fermions in the N = 1 supermulti-

plets. We gauge-fix the superconformal symmetries not

contained in N = 1 Poincaré supersymmetry, except di-

latation symmetry. Notice also that our component ex-

pansion of vector multiplets differs in its highest compo-

nent from refs. [13].
4With components: CT = 2ReT , Tµ = −2∂µ ImT ,

HT = −2Re fT , KT = −2 Im fT .

Bianchi identities, as induced by S1/Z2 compact-

ification or by five-brane couplings will then be

phrased as a modification of the supermultiplets

appearing multiplied by S + S or LT in Eqs.

(2.8).

The structure of the Lagrangian (2.6) reflects

the familiar duality relating scalars and antisym-

metric tensors or, for superfields, chiral and lin-

ear multiplets.

Solving in Eq. (2.6) for the Lagrange multi-

pliers S and LT leads to the ‘standard form’ of

the bulk four-dimensional Lagrangian [14, 15]

LB,l = −
[(
S0S0 e

−K̂/3)3/2(2L)−1/2]
D
, (2.9)

with the Kähler potential K̂ = −3 log(T + T )

for the volume modulus T . We will see again

below that this standard form is naturally ob-

tained by direct reduction of the Cremmer, Julia

and Scherk version of eleven-dimensional super-

gravity on O7. Clearly, theory (2.9) is also the

CY truncation of ten-dimensional N = 1 pure

supergravity [14].

Solving for V and LT in Eq. (2.6) leads to

the familiar chiral form [16]

LB,c = −3
2

[
S0S0 e

−K/3
]
D
, (2.10)

with K = − log(S + S) + K̂.

2.2.1 Choice of Poincaré frame

According to the component expression for the

D-density and the tensor calculus of superconfor-

mal multiplets [13], the Einstein term included in

the bulk Lagrangian (2.6) is [17, 15]

LE = −1
2
eR
[
(z0z0CT )

3/2 (2C)−1/2
]
. (2.11)

As they should, the terms introduced to impose

Bianchi identities do not contribute. We then

select the Einstein frame, in which the gravita-

tional Lagrangian is − 1
2κ2 eR, by the dilatation

gauge condition

κ−2 = (z0z0CT )3/2(2C)−1/2. (2.12)

It will be convenient to introduce the (composite)

real vector multiplet

Υ = (S0S0VT )
3/2(2V )−1/2, (2.13)

3
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with conformal weight two. In the Poincaré the-

ory and in the Einstein frame, its lowest compo-

nent is equal to κ−2.

2.2.2 Identification of the components

Choosing the Einstein frame, Υ = κ−2, and solv-
ing for the components of S and LT , the complete

bosonic expansion of the four-dimensional super-

gravity (2.6) is

e−1LB = − 1
2κ2R

− 1
4κ2C

−2[(∂µC)(∂µC)− vµvµ]
− 3
4κ2C

−2
T [(∂µCT )(∂

µCT ) + TµT
µ],

(2.14)

with vµ =
e
2εµνρσ∂

νbρσ since V is a linear mul-

tiplet, CT = 2ReT and Tµ = −2∂µ ImT since
VT = T + T .

This Lagrangian is to be compared with the

one we obtain from the reduction of eleven-di-

mensional supergravity (2.4). The Z2 orbifold

projection eliminates all states which are odd un-

der x4 → −x4, and the reduction of the eleven-
dimensional space-time metric is

gMN =


 e

−γe−2σgµν 0 0

0 e2γe−2σ 0

0 0 eσδij


 .
(2.15)

The surviving components of the field strength

GMNPQ are only Gµνρ4 and Gµij4, with

Gµνρ4 = 3∂[µCνρ]4, Gµij4 = ∂µCij4,

Cij4 = ia(x) δij .
(2.16)

The resulting four-dimensional Lagrangian is

e−1LCJS = − 1
2κ2R

− 1
4κ2

[
9(∂µσ)(∂

µσ) + 16e
6σGµνρ4G

µνρ4
]

− 3
4κ2

[
(∂µγ)(∂

µγ) + e−2γ(∂µa)(∂µa)
]
.

(2.17)

In this expression, κ is the four-dimensional grav-

itational coupling with κ2 = κ211/V7, V7 = V1V6
being the volume of the compact space S1 ×X6.
At this stage, the identification of the boson-

ic components C, bµν , CT and Tµ with the bulk

fields σ, Cµν4, γ and a can only be determined

up to two proportionality constants (one for each

‘M-theory multiplet’ V and VT ). These constants

can however be determined from the couplings of

C and CT to charged matter and gauge fields [9].

The result is

4κ2C = λ2

V6
e−3σ, 4κ2bµν =

λ2

V6
Cµν4,

CT = 2
λ2

V6
eγ , Tµ = −2λ2V6 ∂µa.

(2.18)

The quantity λ is the gauge coupling constant

on the Z2 fixed planes. The dimensionless num-

ber λ2/V6 actually never appears in the four-

dimensional effective theory.

2.2.3 Addition of a superpotential

The standard reduction of eleven-dimensional su-

pergravity with unbroken N = 1 supersymme-

try does not generate a superpotential. This

fact is however not a direct consequence of the

eleven-dimensional Bianchi identity or of the CY

and S1/Z2 symmetries. In principle, the Bianchi

identity ∂[MGNPQR] = 0 allows a solution

Gijk4 = 2iκ
−1hεijk, G

ijk4 = −2iκ−1hεijk,
(2.19)

where h is a real constant and εijk is the SU(3)-

invariant CY tensor. The second term in the

Lagrangian (2.4) generates then an extra contri-

bution in the effective supergravity which corre-

sponds to the addition of a superpotential term

[ihS30 ]F to the bulk Lagrangian. This contribu-

tion however breaks supersymmetry [18]. Since

we have insisted in writing Lagrangians in which

all Bianchi identities are field equations, we pre-

fer to consider

[U(W +W )]D + [S
3
0W ]F . (2.20)

In this way, the fact that the chiral multiplet W

(w = n = 0) is an arbitrary imaginary constant

is imposed by the field equation of the vector

multiplet U (w = 2, n = 0).

With the addition of a superpotential, the

bulk Lagrangian takes its final ‘off-shell’ form

LB =
[−Υ− (S + S)V + LTVT ]D
+
[
U(W +W )

]
D
+ [S30W ]F ,

(2.21)

in which the Bianchi identities of eleven-dimen-

sional supergravity are translated into field equa-

tions of the Lagrange multipliers S, LT and U .

4
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2.3 Modified Bianchi identities and κ-ex-

pansion

Compactification of M-theory on S1/Z2 is usu-

ally discussed in an expansion in powers of κ11.

Compactification on O7 can similarly be formu-

lated with κ as expansion parameter. In the up-

stairs version, Bianchi identities are modified at

the ten-dimensional planes fixed by S1/Z2. Sup-

pose now that we modify the four-dimensional

supersymmetric Bianchi identities of the bulk La-

grangian in the following way (we set h = 0):

LB −→
[−Υ− (S + S)(V +∆V ) + LT (VT +∆T )]D ,

(2.22)

with two composite vector multiplets ∆V (w = 2,

n = 0) and ∆T (w = n = 0). Solving for the

Lagrange multipliers now leads to

V = L−∆V , VT = T + T −∆T .
The Lagrangian to first order in these modifica-

tions is then

L = LB −
[
Υ

2V
∆V − 3

2VT
(Υ∆T )

]
D

, (2.23)

with V and VT respectively replaced by L and

T + T . The multiplets ∆V and Υ∆T , with ‘ca-

nonical’ dimension w = 2, appear at order Υ0 ∼
κ0, in comparison with bulk terms of order Υ ∼
κ−2. This is the relation with the expansion in
powers of κ11 of M-theory in the low-energy limit.

In M-theory compactification, the multiplets ∆V
and ∆T can thus be obtained either by consid-

ering the modified Bianchi identities on O7, for-

mulated as in Eq. (2.22), or from corrections to

the Lagrangian of eleven-dimensional supergrav-

ity on O7, as in expression (2.23).

3. Gauge and matter contributions

from the two Z2 fixed planes

In this section, we show that the introduction

of the next to lowest order corrections (gauge

multiplets and charged matter contributions) is

controlled by a simple modification of the four-

dimensional Bianchi identities, in analogy with

the appearance of Z2 fixed planes contributions

in the M-theory Bianchi identities.

We start by considering the well-known de-

pendence on charged matter (in chiral multiplets

collectively denoted by M , with w = n = 0) and

gauge multiplets (vector multiplet A, in the ad-

joint representation, with w = n = 0) of the ef-

fective N = 1 four-dimensional supergravity for

CY compactifications of heterotic strings [16, 19,

20]. The Lagrangian in the chiral formulation

(2.10) becomes

Lc = − 32
[
S0S0e

−K/3]
D
+
[
S30W

]
F

+ 14 [SWW ]F ,
(3.1)

with

K = − log(S+S)−3 log(T+T−2MeAM) (3.2)

and W = αM3. The superpotential should be

understood as a gauge invariant trilinear inter-

action with coupling constant α defined as an

integral over the CY space. The chiral multiplet

W (w = n = 3/2) is the gauge field-strength for

A. The gauge group is in general not simple, and

WW =
∑
a

caWaWa, (3.3)

with a real coefficient ca for each simple or abe-

lian factor. In the linear equivalent version of the

theory, the Lagrangian (2.9) reads now [14, 15]

Ll = −
[
(S0S0e

−K̂/3)3/2(2L̂)−1/2
]
D

+ [αS30M
3]F ,

(3.4)

where the new modulus and matter Kähler po-

tential is

K̂ = −3 log(T + T − 2MeAM). (3.5)

The linear multiplet L is replaced by

L̂ = L− 2Ω, (3.6)

with the Chern-Simons vector multiplet Ω (w =

2, n = 0) defined by5

Ω =
∑
a

caΩa, Σ(Ωa) =
1

16
WaWa. (3.7)

5In global Poincaré supersymmetry, Σ(Ω) = − 1
4
DDΩ.

5
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Insisting as before on Bianchi identities, both

forms (3.1) and (3.4) are equivalent to

L = [−Υ− (S + S)(V + 2Ω)
+LT (VT + 2MeAM)

]
D

+
[
U(W − αM3) + c.c.

]
D
+
[
S30W

]
F

=
[−Υ− (S + S)(V + 2Ω)
+LT (VT + 2MeAM)

]
D
+
[
S30(ih+ αM

3)
]
F
.

(3.8)

Supersymmetric vacua have h = 0. As before,

solving for S and LT imposes respectively V =

L−2Ω = L̂ and VT = T+T−2MeAM , leading to

Eq. (3.4). Alternatively, with the tensor calculus

identity (and up to an irrelevant total derivative)

−2[(S + S)Ω]D = 1
4

∑
a

ca[SWaWa]F , (3.9)

the resolution for V and LT leads back to the

chiral form (3.1).

This reformulation of the gauge invariant La-

grangian suggests some remarks. Firstly, it en-

hances the importance of gauge and matter Che-

rn-Simons multiplets in superstring effective ac-

tions. Secondly, the Chern-Simons vector multi-

plet Ω(A) is not gauge invariant: its variation is

a linear multiplet. The variation of [(S+S)2Ω]D
is then a derivative and V remains gauge in-

variant. When solving for S, it simply follows

that L̂ is gauge invariant and that the linear

multiplet transforms as δL = 2δΩ. Finally, ex-

pression (3.8) shows that all gauge and chiral

matter contributions can be viewed as the su-

persymmetrization of modified Bianchi identities

imposed by S, LT and U . This observation pro-

vides the link to the approach based on M-theory

on O7, in which the Z2 fixed planes carrying the

Yang-Mills fields induce because of supersymme-

try modifications to the Bianchi identity of the

four-form field strength of eleven-dimensional su-

pergravity.

In the effective supergravity of M-theory on

O7 (‘upstairs formulation’), the various compo-

nents of the Lagrangian (3.8) have the follow-

ing origin. The first term is the bulk super-

gravity contribution. The second term, [(S +

S)(V +2Ω)]D, is the supersymmetrization of the

Bianchi identity verified by the componentGµνρ4

of the field G, modified by gauge contributions

on the fixed planes. Similarly, the two last terms,

[LT (VT +2MeAM)]D and [U(W−αM3)+c.c.]D,

are respectively the supersymmetric extensions

of the Bianchi identities of Gµjk4 and Gijk4. All

the fixed plane contributions are then given at

this order by the supersymmetrization of Bianchi

identities, as obtained by direct O7 truncation of

the eleven-dimensional identities [1, 2].

At this point, the gauge coupling constant

for each simple or abelian factor a in the gauge

group appears to be

1

g2a
= caRe s. (3.10)

At this order, ga is the tree-level wilsonnian and

physical6 gauge coupling.

It is clear, as already observed [5]–[7], that

as far as the structure of the four-dimensional

effective supergravity is concerned, the same in-

formation follows from O7 compactification of

M-theory at the next to lowest order in the κ-

expansion and from CY compactifications of the

heterotic strings, at zero string loop order.

4. Anomaly-cancelling terms

In the ten-dimensional heterotic string, cancel-

lation of gauge and gravitational anomalies is a

one-loop effect in string or effective supergrav-

ity perturbation theory. In four space-time di-

mensions, the nature of the cancelled anoma-

lies is known from studies of (2, 2) compactifica-

tions of heterotic strings in the Yang-Mills sector

[21, 12, 22]: target-space duality of the modulus

T has a one-loop anomaly which is cancelled by a

counterterm in the one-loop Wilson Lagrangian

L(1)W 7, in a generalization to sigma-model anoma-

lies of the Green-Schwarz mechanism [23]. The

derivation of the complete counterterm requires

a calculation to all orders in the modulus T [21].

However, at the present stage of understanding,

the M-theory approach should be regarded as a

large-T limit in which T-duality reduces to a shift

symmetry in the imaginary part of T .

6The coefficient of− 1
4
F aµνF

aµν in the generating func-

tional of one-particle irreducible Green’s functions.
7The expressions given in the previous sections were

for L(0)
W
, or for the tree-level standard effective Lagrangian

LΓ.
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In the large-T limit, the T -dependent correc-

tions to gauge kinetic terms are of the form (see

ref. [9] and citations therein)

1

4

∑
a

βa [TWaWa]F , (4.1)

where the coefficients βa are in principle calcula-

ble in heterotic strings. Taking also into account

the D-density
[
LT (VT + 2MeAM)

]
D
present in

Lagrangian (3.8), we can rewrite expression (4.1)

in terms of the ‘M-theory multiplets’:

[
(LT − 2

∑
a

βaΩa)(VT + 2MeAM)
]
D
. (4.2)

The correction (4.1) to the SYM Lagrangian

is independent of the matter fields and can be

seen as a correction to the holomorphic gauge ki-

netic function fab. A possible matter-dependent

contribution to gauge kinetic terms is the gauge

invariant real density8:

−2δ
[
MeAM(L− 2

2∑
a=1

Ωa)
]
D
, (4.3)

or

−2δ
[
MeAM V

]
D
, (4.4)

using the ‘M-theory multiplet’ V .

The M-theory anomaly-cancelling terms gen-

erate a further contribution of the form [9]

ε
[
V |αM3|2

]
D
. (4.5)

In summary, the Wilson Lagrangian up to string

one-loop order is expected to become

L = [−Υ− (S + S)(V + 2Ω)
+ (LT − 2

∑2
a=1 β

aΩa)(VT + 2MeAM)
]
D

+
[
U(W − αM3) + c.c.

]
D
+
[
S30W

]
F

+
[
V (ε|αM3|2 − 2δMeAM)

]
D
.

(4.6)

Each of the one-loop corrections, with coefficients

β1, β2, ε and δ is related to a well-defined coun-

terterm which can be easily identified in the KK

8For simplicity, we consider the standard embedding

with a gauge group E6×E8, with the notation Ω = Ω1+
Ω2, and with a matter multipletM transforming as (27,1)

of E6 × E8.

reduction of the ten-dimensional Green-Schwarz

counterterms arising from M-theory on S1/Z2
[1, 2, 24]. An explicit computation predicts in

particular the relations β1 = −β2 = δ [9].
From the general expression (4.6), we can de-

rive various equivalent forms. For instance, solv-

ing for S, LT and U gives the version of the ef-

fective supergravity in which the dilaton is de-

scribed by a linear multiplet:

Ll =[
−(S0S0)3/2

(
T + T − 2MeAM

)3/2
(2L̂)−1/2

]
D

+
[
S30(ih+ αM

3)
]
F
+ 14

[
T
∑2
a=1 β

aWaWa)
]
F

+
[
L̂
(
ε|αM3|2 − 2δMeAM

)]
D
.

(4.7)

The threshold corrections are the holomorphic

T -dependent terms controlled by β1 and β2.

We can also solve for V , LT and U in Eq.

(4.6) to get the version with a chiral dilaton mul-

tiplet:

Lc = − 32
[
S0S0 e

−K/3]
D
+
[
S30(ih+ αM

3)
]
F

+ 14

[∑2
a=1 (S + β

aT )WaWa
]
F
,

(4.8)

with the Kähler potential

K = − log (S + S + 2δMeAM − ε|αM3|2)
−3 log (T + T − 2MeAM

)
,

(4.9)

and the gauge kinetic functions fa = S + βaT .

The term with coefficient δ has been obtained in

direct CY reductions of M-theory on S1/Z2 (see

for instance [6, 7]). The charged matter contribu-

tion with coefficient ε was not included in these

analyses. Observe however that an ambiguity ex-

ists because of the possibility to perform a holo-

morphic redefinition of the two chiral multiplets

S and T . To remove this ambiguity, we can use

information from M-theory compactification [9],

or choose the unequivocal linear version.

The gauge contributions appearing in Eq.

(4.6) read

−2
2∑
a=1

[(
S + S + βa(VT + 2MeAM)

)
Ωa
]
D
,

7
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so that the gauge coupling constants are given by

1

g2a
= Re s+

1

2
βa
(
CT + 2MM

)
. (4.10)

This expression becomes harmonic once the Bi-

anchi identity imposing CT +2MM = 2ReT has

been used.
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73; P. Hořava, Phys. Rev. D 54 (1996) 7561; I.

Antoniadis and M. Quirós, Phys. Lett. B 392

(1997) 61, Nucl. Phys. B 505 (1997) 109, Phys.

Lett. B 416 (1998) 327; H.-P. Nilles and S.

Stieberger, Nucl. Phys. B 499 (1997) 3; E. Du-

das and C. Grojean, Nucl. Phys. B 507 (1997)

553; Z. Lalak and S. Thomas, Nucl. Phys. B

515 (1998) 55; A. Lukas, B. A. Ovrut and D.

Waldram, Phys. Rev. D 57 (1998) 7529; E. A.

Mirabelli and M. E. Peskin, Phys. Rev. D 58

(1998) 065002; J. Ellis, Z. Lalak, S. Pokorski

and W. Pokorski, Nucl. Phys. B 540 (1999)

149; J. Ellis, Z. Lalak, S. Pokorski and S.

Thomas, hep-th/9906148.

[6] H.-P. Nilles, M. Olechowski and M. Yam-

aguchi, Phys. Lett. B 415 (1997) 24, Nucl.

Phys. B 530 (1998) 43.

[7] A. Lukas, B. A. Ovrut, D. Waldram, Nucl.

Phys. B 532 (1998) 43.

[8] Z. Lalak, S. Pokorski and S. Thomas, Nucl.

Phys. B 549 (1999) 63; A. Lukas, B. A. Ovrut

and D. Waldram, Phys. Rev. D 59 (1999)

106005.

[9] J.-P. Derendinger and R. Sauser,

hep-th/0003078.

[10] J.-P. Derendinger and R. Sauser, in prepara-

tion.

[11] E. Cremmer, S. Ferrara, L. Girardello and A.

Van Proeyen, Phys. Lett. B 116 (1982) 231.

[12] J.-P. Derendinger, S. Ferrara, C. Kounnas and

F. Zwirner, Nucl. Phys. B 372 (1992) 145.

[13] T. Kugo and S. Uehara, Nucl. Phys. B 226

(1983) 49; see also: Nucl. Phys. B 222 (1983)

125.

[14] S. Cecotti, S. Ferrara and M. Villasante, Int.

J. Mod. Phys. A 2 (1987) 1839.

[15] J.-P. Derendinger, F. Quevedo and M. Quirós,

Nucl. Phys. B 428 (1994) 282.

[16] E. Witten, Phys. Lett. B 155 (1985) 151.

[17] S. Ferrara, L. Girardello, T. Kugo and A. Van

Proeyen, Nucl. Phys. B 223 (1983) 191.

[18] J.-P. Derendinger, L. E. Ibáñez and H.-P.
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