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Abstract:We compute the tree level 4-particle bosonic scattering amplitudes in D=11 supergravity.

By construction, they are part of a linearized supersymmetry-, coordinate- and 3-form gauge-invariant.

While this on-shell invariant is nonlocal, suitable SUSY-preserving differentiations turn it into a local

one with correct dimension to provide a natural lowest (two-loop) order counterterm candidate. Its

existence shows explicitly that no symmetries protect this ultimate supergravity from the nonrenor-

malizability of its lower-dimensional counterparts.

In the post-D=10 superstring era, D=11 su-

pergravity (SUGRA) [1] has again attracted the

attention it has always deserved, without how-

ever, becoming any easier to handle technically.

In particular, supersymmetry (SUSY) invariants

are still (absent an appropriate calculus) difficult

to verify, let alone construct. Here, we will sup-

ply (the linearized bosonic part of) one such in-

variant. Our work had two motivations beyond

its intrinsic interest within the theory. Most di-

rectly, we wanted to determine unambiguously

whether there exist local invariants that can serve

as counterterms at lowest possible, here two-loop,

order. This nontrivial exercise has a historical

basis in lower-dimensional SUGRAs, where the

existence of invariants is easier to decide; there,

no miracles occurred: counterterms were always

available. They sometimes started at higher or-

der than in pure Einstein gravity (GR) where ev-

ery loop (except, accidentally, one-loop at D=4)

is dangerous. [For a recent historical review of

divergences in gravities see [2].] However, given

all the properties unique to D=11, and the fact

that it is the last frontier – a local QFT that

is non-ghost (i.e., has no quadratic curvature

terms) and reduces to GR – it is sufficiently im-

portant not to give up hope before abandoning
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D=11 SUGRA (and with it all QFTs incorpo-

rating GR) too quickly on non-renormalizability

grounds. Our second interest is in the M-the-

oretical direction: any invariants that can be ob-

tained here might provide hints about the wider

theory that presumably reduces to D=11 SUGRA

as its “zero slope” limit.

The idea underlying our approach is that the

set of all n-particle (for fixed n) tree level scat-

tering amplitudes constructed within a perturba-

tive expansion of the action is ipso facto globally

SUSY as well as linearized coordinate- and 3-

form gauge invariant. Thus, because linearized

SUSY does not mix different powers of fields,

the 4-point amplitudes of interest to us, taken

together, form an invariant. Also, within this

lowest order framework, the bosonic amplitudes

are independent of fermions: virtual ones cannot

contribute at tree level. The above statements

together considerably lighten our task, which will

be to compute “just” the parts involving the grav-

itational and form bosonic excitations. The am-

plitudes involving fermions are not necessarily

more complicated, merely less relevant to our im-

mediate goal of reproducing terms about which

the appropriate divergence computations exist;

indeed, we hope to return to them [3]. How-

ever, in order to use the scattering amplitudes for

counterterm purposes, it will first be necessary to

strip them of the nonlocality associated with ex-

change of the virtual graviton and form particles
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(“formions”) without compromising their invari-

ances. Actually, the task here will be not only to

remove nonlocality but to add sufficient further

powers of momentum to provide an on-shell in-

variant of correct dimension that is an acceptable

(and indeed first possible) perturbative countert-

erm candidate. In this way, we will make contact

with the conclusive 2-loop results of [4], where it

was possible to exhibit the infinity of a local 4-

graviton term, one that is precisely a component

of our invariant. An earlier version of our results

was given in [5].

The basis for our computations is the full

D=11 SUGRA action [1], expanded to quartic

order in its two bosons, namely the graviton and

the formion, with three-form potentialAµνρ. The

field strength Fµναβ ≡ 4∂[µAναβ] is invariant un-
der the gauge transformations δAννα = ∂[µξνα],

square brackets denoting total (normalized) an-

tisymmetrization. The bosonic truncation of the

Lagrangian is

LB = −
√−g
4κ2

R−
√−g
48

FµνρσF
µνρσ +

2κ

1442
ε1..11A1−3F4−7F8−11. (1)

The metric signature in eq. (1) is mostly minus,

the Ricci tensor is defined by Rαβ ∼ +∂λΓλαβ ,
and the Levi–Civita symbol obeys ε0...10 = −1.
The gravitational constant κ, with dimension [L]

9
2

also appears explicitly in the topological (P, T )−
conserving metric-independent Chern-Simon (CS)

part of (1).

The propagators and vertices required for our

computations are obtained by expanding in pow-

ers of κ, with gµν ≡ ηµν + κhµν and keeping all

contributions through order κ2. The propaga-

tors, from the quadratic part of the action, are

well known. In harmonic (de Donder) and Feyn-

man gauges for gravity and the 3-form respec-

tively,

Dµν;αβ(h) ≡ Gµν;αβDF (2)

withGµν;αβ =
1

2

(
ηαµηβν + ηανηβµ − 2

9
ηαβηµν

)
and

Dµνρ;αβσ(A) =
1

2
δµνραβσDF ; (3)

DF is the scalar Feynman propagator and δ
µνρ
αβσ

is totally antisymmetric in each triplet of indices.

There are three cubic vertices:

(a) Three gravitons (h3). Explicit use of

this cumbersome vertex can be avoided in deal-

ing with the four-graviton amplitudes, but not

in computing the graviton-form “Compton” scat-

tering. To minimize the complications, we write

the vertex already contracted with two on-shell

polarization tensors, since we will never need fewer

contractions:

2Vµν;αβ;ρσ(k
3, k1, k2)εα1 ε

β
1 ε
ρ
2ε
σ
2 =

(ε1 · k2)2εµ2 εν2 − (ε1 · k2)(ε2 · k1)(εµ1 εν2 + εµ2 εν1)
+(ε2 · k1)2εµ1 εν1 + (ε1 · ε2)

[
(ε1 · k2)(ε2 · k1)ηµν

−(ε1 · k2)εµ2kν2 − (ε1 · k2)εν2kµ2 − (ε2 · k1)εµ1kν1
+(εµ1 ε

ν
2 + ε

µ
2 ε
ν
1)k1 · k2 − (ε2 · k1)εν1kµ1

]
+(ε1 · ε2)2

[
kµ1 k

ν
1 + 1/2k

µ
1k
ν
2 + 1/2k

ν
1k
µ
2 + k

µ
2 k
ν
2

−3/2ηµνk1 · k2
]

(4)

Here and throughout the polarization tensor εαβ

of a graviton is represented as the product εαi ε
β
i

of two polarization vectors.

(b) Graviton-form (hFF ): this is the usual

coupling between the metric and the form’s stress

tensor. In coordinate space,

V gFF3 = κTµνh
µν =

= κhµν
(
FµαβρF

αβρ
ν − 1

8
ηµνFαβρσF

αβρσ

)
(5)

= κAαβρ∂µ

(
hν[µF αβρ]

ν − h

2
Fµαβρ

)
. (6)

Expressions (5,6) differ (onshell and for harmonic

gauge) by an integration by parts: the former is

the more suitable in the analysis of pure form

scattering, the latter for graviton-form Compton

scattering. Note that both expressions simplify

if we choose a gauge where hµν is traceless.

(c) Three formions (AFF ): Due entirely to

the (metric independent) CS term in (1), it is

usefully written as V F3 = AµναC
µνα
F with

CρστF ≡ 2

(12)4
ερστ1..8F1..4F5..8 . (7)

This vertex will produce a non-gravitational con-

tribution to 4-formion scattering and will also be

responsible for an unusual, F 3R “bremsstrahlung”,

amplitude.

Finally, to achieve gauge invariance, we must

also include the effects of two four-point contact

2
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(κ2) vertices. The first is the local 4-graviton

vertex; it will not be written out here, but is

needed for the 4-graviton amplitude calculation.

The second is the hhFF vertex from expand-

ing the F 2 kinetic term in (1); it is necessary to

insure gauge invariance in the graviton-formion

Compton process. Its form, in a gauge where the

graviton is traceless, is

V hhFF≡− 1
48

δ2
∫√−g F 2/δgµνδgαβ

∣∣∣∣
g=η

hµνhαβ =

−κ
2

48

[
4hµλh

νλFµαβρF
αβρ
ν +

!3 hµνh
µνFαβρσF

αβρσ − 24 hµνhαβFµαρσF νβρσ
]

In the following we outline the explicit com-

putation of (the bosonic part of) the SUSY in-

variant amplitude and then construct the corre-

sponding local invariants. Before entering into

details, some general remarks are in order. In

momentum space, the non-locality in each scat-

tering amplitude (due to the intermediate de-

nominator of the exchanged particle) is repre-

sented by a sum of simple poles, in each of the

Mandelstam variables (s, t, u), corresponding to

the three different possible channels in four-particle

scattering; this nonlocality is easily neutralized

by multiplying the final result by the symmet-

ric polynomial stu . Since multiplication in mo-

mentum space corresponds to differentiation in

coordinate space, it becomes necessary to under-

stand how these additional derivatives are to be

spread. Suppose that we can write the amplitude

in the generic “current-current” single pole form,

as follows

M = φa1(k1)φ
b
2(k2)Vabm(k1, k2)

Gmn

s

Wmcd(k3, k4)φ
c
3(k3)φ

d
4(k4) + (stu)perm.. (8)

Then, by multiplying by stu and using the iden-

tity

tu =
1

2
(ηµνηαβ − ηµαηνβ − ηναηµβ)k1µk2νk3αk4β

≡ −1
2
Kµν;αβk1µk

2
νk
3
αk
4
β (9)

and its permutations, we can write

M = k1µφ
a
1(k1)k

2
νφ
b
2(k2)Vabm(k1, k2)K

µν;αβGmn

Wmcd(k3, k4)k
3
αφ
c
3(k3)k

4
βφ
d
4(k4) + (stu)perm..(10)

In other words, if we Fourier-transform back to

coordinate space, the net effect of this procedure

is to remove the pole and to add a derivative

to each of the four external fields. These new

derivatives are to be contracted according to the

Kαβ;µν matrix defined in (9). If the amplitude is

already expressed as a product of gauge invari-

ant currents, this procedure produces an invari-

ant that is the product of two new dressed gauge-

invariant currents. In the case of gravitationally

induced matter interactions, these currents be-

have like counterparts of the Bel-Robinson (BR)

tensors [6].

The above “dressing” procedure leaves unal-

tered an amplitude’s transformation under global

symmetries, such as the linearized supersymme-

try of interest: We are just multiplying an in-

variant by a numerical factor, the derivatives.

While there will be some exceptions in detail to

application the above remarks, the final local re-

sults achieved will be correct, i.e., we have a con-

structive procedure for transforming the guar-

anteed symmetry-preserving but nonlocal ampli-

tudes into equally invariant (on-shell) local terms.

We start with the 4-graviton amplitude Mg
4 .

The graviton exchange contributions stem from

(a) contracting two V 3g vertices (4) in all three

(s, t, u) channels via an intermediate graviton prop-

agator (2), which provides a single denominator

and (b) the local 4-point vertex V g4 . The re-

sulting Mg
4 (h) will be a non-local quartic poly-

nomial in the Riemann (Weyl, on linear shell)

tensor, whose non-locality is removable by stu-

multiplication. In D=4, most of the calculation

can be avoided because a straightforward imple-

mentation of supersymmetry allows one to fix

the amplitude completely up to normalization:

There are only two independent local scalar quar-

tics in the Weyl tensor and its dual, ∗R : the
squares of Euler (E4 ≡ ∗R∗R) and Pontryagin
(P4 ≡ ∗RR) densities. Their relative coefficient
can be determined by exploiting the special prop-

erty that ensures the supersymmetrizability of

the Einstein action, namely that it is, at tree

level, maximally helicity conserving [7]. This

constrains the amplitude to be proportional to

the combination (E4 − P4)(E4 + P4). Remark-
ably, this invariant is also, owing to identities

peculiar to D=4, expressible as the square of the

3
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(unique) BR tensor Bµναβ = (RR +
∗R∗R)µναβ .

Unfortunately, D = 4 is highly degenerate. In

generic dimension, which in this context means

D ≥ 8, the number of invariants quartic in the
Weyl tensor is seven and the only condition given

by the above constraint is obviously not enough

to fix the relative coefficients. Nevertheless it is

still sufficient to determine the amplitude com-

pletely by considering configurations where the

helicities of the gravitons belong to the subspace

defined by their four momenta.

A further step can be taken using a very dif-

ferent property, which is not manifest from the

GR action, having a string origin: The 4-graviton

tree amplitude is proportional to the square of

“bleached” 4-gluon tree amplitudes, upon rep-

resenting the graviton polarization tensor as the

product of two vectors; this is implied by the field

theory limit of the KLT [8] relations. This addi-

tional information in fact, determines the ampli-

tude completely, because maximal helicity con-

servation fixes the (uncolored) 4-gluon amplitude

(since there are only two independent F 4 invari-

ants in any D) and consequently the gravity am-

plitude, which is its square. The conclusion that

the form of Mg
4 is

Mg
4 ∝ (stu)−1tµ1···µ88 tν1···ν88 × (11)

Rµ1µ2ν1ν2Rµ3µ4ν3ν4Rµ5µ6ν5ν6Rµ7µ8ν7ν8

follows from the gluon “square root” (in this con-

text, Fµν stands for the gluon field strength)

Mgluon
4 ∝ tµ1···µ88 Fµ1µ2 · · ·Fµ7µ8 =
(FµνF

µν)2 − 4Fµ1µ2Fµ2µ3Fµ3µ4Fµ4µ1 .
Alternatively one can follow the explicit cal-

culational steps spelled out at the beginning. The

algebra involved is quite cumbersome, and ben-

efits from a program for algebraic manipulation.

This analysis should obviously lead to the same

result and indeed it does. Still, it must be per-

formed, at least for a particular set of helicities,

in order to obtain the correct normalization of

the amplitudes. For example, by choosing a con-

figuration such that εi ·kj = 0 for all i and j, one
finds that the overall coefficient of (11) is fixed

to be 1/4. The final result (11) possesses the

same tensorial structure as the familiar super-

string zero-slope limit correction to D=10 N=2

supergravity, where the tµ···µ88 symbol originates

from the D=8 transverse subspace [9], as has

also been noted in [10] which carried out the di-

rect 4-graviton calculations as well. This reflects

the fact that maximal supersymmetry implies a

unique R4 in all dimensions. If we assume only

1/2 of the maximal supersymmetry in generic D

we find that there is room for two invariants, as

can be seen by looking, e.g. at the effective ac-

tion of the heterotic superstring where the analog

of (11) is accompanied by another R4 term.

At this point it is quite easy to write down

a combination of local R4 that represents (11).

The Lagrangian is

Lg4 =
1

4
RαβρσR λµ

αβ R νω
ρλ Rσµνω ,−

RαβρσR λ µ
α ρ R

ν ω
λ β Rµνσω ., (13)

where we have dropped a term proportional to

the 8-dimensional Euler density (ε8ε8R
4) that,

being a total divergence to leading order, does

not affect the amplitude. In many respects, the

form (11) for the contribution coming from the

4-graviton amplitude, is a perfectly physical one.

However, one might wonder whether there is a

formulation of the above Lagrangian in terms

of currents that encompasses both gravity and

matter in a unified way as in fact occurs in e.g.

N = 2, D = 4 supergravity [11]. This might also

lead to some understanding of higher spin SUSY

multiplets. One may rewrite Lg4 in various ways

involving the BR current Bµναβ ,

[RµρασR
ρ σ
ν β + (νµ)]−

1

2
gµνRαρστR

ρστ
β (14)

−1
2
gαβRµρστR

ρστ
ν +

1

8
gµνgαβRλρστR

λρστ ,

and the closed 4-form Pαβµν = 1/4R
ab
[µνRαβ]ab.

For example if we choose the BR tensor

we can write

Lg4 = 48κ
2
[
2BµναβB

µανβ −BµναβBµναβ+(15)
6B ρ
µρα B

µσα
σ −
15

49
(Bµνµν)

2 + PµναβP
µναβ

]
.

Due to the larger number of allowed invariants

and of helicities in D=11, this representation does

not seems to share the elegance and power of the

four dimensional one. Still, it is remarkably com-

pact.

4
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We turn now to pure formion scattering. This

amplitude is quite simple to investigate because

it must be manifestly (form) gauge invariant: the

three-form potential A only appears in the oper-

ative vertices (5,7) through its curvature F ; the

relevant currents are in fact the CS CFµνα and

the stress tensor TFµν . The interactions are medi-

ated respectively by the formion and the gravi-

ton. Therefore the amplitude is already orga-

nized in terms of gauge invariant currents; indeed

we have, in terms of TF , CF of (5,7),

Mgrav−med.
F4 =

(κ
6

)2
× (16)(

TαβF (k1, k2)
Gαβ;µν

s
T µνF (k3, k4) + perm.

)
.

and

Mform−med.
F4 = −

( κ
48

)2
× (17)(

CF αβρ(k1, k2)
1

3s
CFαβρ(k3, k4) + perm.

)
,

where “perm” stands for permutation of the four

external particles. The sum of (16) and (17)

agrees with a recent calculation of formion scat-

tering from a quite different starting-point [12].

We must now multiply our totalMF4 by stu and

see how the derivatives spread. Using the simple

rule stated above, we recognize immediately that

there is an economical way of organizing LF4 in

terms of matter BR and of the corresponding CF

extensions. In fact if we define

BFµναβ ≡∂αFµ∂βFν+∂βFµ∂αFν−
1

4
ηµν∂αF∂βF,

CFρστ ;αβ ≡
1

(24)2
ερστµ1···µ8∂αF

µ1···µ4∂βFµ5···µ8 .

with ∂µBFµναβ = 0 and ∂
ρCFρστ ;αβ = 0 and where

implicit indices are summed in the obvious way,

then

LF4 =
κ2

36
BFµναβB

F
µ1ν1α1β1

Gµµ1;ν1νKαα1;β1β −
κ2

12
CFµνρ;αβC

Fµνρ
α1β1

Kαα1;β1β . (18)

Reflecting its simple “current-current” origin, the

pure matter sector has a natural (if perhaps not

unique) expression in terms of currents. There is

also a basis of scalars quartic in F ; we have not

used it here, but it is tabulated in the Appendix.

Here there is just one diagram, namely the

emission of a graviton described by the stress ten-

sor vertex (5,6), from any of the 3 formion lines

emanating out of the CS vertex (7). The analysis

of this amplitude follows the lines of the previous

one. While it is not manifestly (gravitationally)

gauge-invariant, its invariance can be verified us-

ing the following local D=11 identity

d(A ∧ F ∧ F ) ≡ Fαµ1...F...F...µ11εµ1···µ11 = 0.
(19)

This identity enables us to write the amplitude

schematically in the form

MhF 3

4 = h
µν

(
FµαβρG

αβρ
ν − 1

8
ηµνGαβρσF

αβρσ

)
(20)

plus the obvious permutations that restores the

su symmetry of the process;Gµναβ is the effective

field strength (obeying the F equation of motion)

constructed out of the “connection” defined by

(4)−1CαβρF with the CF of (7). Then the gauge

invariance of the amplitude is equivalent to the

conservation of the “energy momentum tensor”

effectively defined in (20). Next we again multi-

ply derivatives according to the rule given previ-

ously. Turning the hµν in (20) into a Riemann

tensor takes some patience and a certain number

of integration by parts, however. The final result

is

LFFFg4 = (stu)MFFFg
4 = (21)

−κ
2

3
CFµνρ;αβC

RFµνρ
α1β1

Kαα1;β1β ,

where CRFµνρ;αβ is given by

4∂λ

(
R
σ [λ
(α β)F

µνρ]
σ

)
− 2
3
R σ λ

(α β)∂λF
µνρ
σ .

(22)

To prove this result, we used the following gen-

eralization of the identity (19)

∂α∂βFαµ1µ2µ3∂
αFµ4···µ7∂

βFµ8···µ11ε
µ1···µ11 ≡ 0.

While it is clear that a “CRF current” must ex-

ist since CF factorizes the amplitude, [?] is not

unique and we claim no special significance for

it.

The most complicated amplitude is that for

graviton-formion scattering. It involves two classes

of diagrams. The first consists of the TFµν stress

5
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tensor turning into two gravitons via graviton ex-

change between the vertices hµνTFµν of (6) and

the h∂h∂h of (4) along with the mixed quartic

contact term required to preserve gauge invari-

ance. The second set is more Compton-like: the

gravitons scatter off formion lines, via two TFµν
currents through virtual formion exchange (in di-

rect as well as crossing versions). The schematic

expression for the total amplitude should look

like MggFF
4 ∼ κ2R2F 2 up to derivatives and the

exchange pole. [There is no simple D=4 reduc-

tion available here since a 4-form is a constant

in D=4.] To perform the detailed calculations

it proved useful to employ the program FORM

[13].

As yet we can only give the amplitude in

semi-final form, before the graviton polarizations

have been converted into curvatures, but with

the formions entirely expressed in terms of their

field strengths. The eventual “FFRR” form is

guaranteed by the (verified) invariance of M un-

der graviton gauge transformations. The ampli-

tude MggFF
4 , before (stu) multiplication, reads

1

6s

(
Fµ1ν112 ε1µ1ε2ν1ε2.p2ε1.p1 −

3Fµ1µ2ν1ν212 ε2µ1ε1µ2k2ν1ε2ν2ε1.p1 −
3Fµ1µ2ν1ν212 k1µ1ε1µ2ε1ν1ε2ν2ε2.p2 −
6Fµ1µ2µ3ν1ν2ν312 k1µ1ε2µ2ε1µ3k2ν1ε1ν2ε2ν3 +

3Fµ1µ2ν1ν212 k1µ1ε1µ2k2ν1ε2ν2ε1.ε2

)
+

+s↔ uperm.

1

6t
Fµ1ν112

(
ε2µ1ε1ν1ε2.k1ε1.k2 + ε1µ1ε2ν1ε2.k1ε1.k2

−1
2
k1µ1k2ν1(ε1.ε2)

2 − 1
2
k2µ1k1ν1(ε1.ε2)

2

−Fµ1α11 ε2α1Fν1α11 ε2α1 −Fµ1α12 ε1α1Fν1α12 ε1α1

)

+
1

12

(
Fµ1ν112 ε2µ1ε1ν1ε2.ε1 + F

µ1ν1
12 ε1µ1ε2ν1ε1.ε2

+6Fµ1µ2ν1ν212 ε1µ1ε2µ2ε1ν1ε2ν2 +
1

8
F12(ε1.ε2)

2

)
.(23)

The last, local, term includes the 4-point ver-

tex as well as local contributions from the other

graphs. The notation is as follows: ki, pi denote

respectively the graviton and formion momenta,

Fµ1,···µiν1,···νi12 is the product of the field strengths

of formions 1 and 2, with the last 4 − i indices
contracted, while Fµ1µ2i stands for the invariant

combinations kµ1i ε
µ2
i − kµ21 ε

µ1
i . As in Sec. 2,

the polarization tensor of each graviton is rep-

resented as the product of two polarization vec-

tors, εi. With these conventions, the amplitude is

symmetric under s− u interchange, correspond-
ing to interchange of the (1-2) gravitons, while

the 1/t term is then separately invariant under

(1-2).

In summary, the set of scattering amplitudes

(13,16,17,21,23) displayed here represents the bosonic

part of the advertised linear 4-point SUSY invari-

ant.

Above, we first constructed and then local-

ized the (bosonic) four-point tree amplitudes to

obtain the bosonic part of a linearized SUSY

invariant quartic in the field strengths (F,R).

Here we discuss some consequences of this invari-

ant’s existence on the issue of renormalizability

of D = 11 SUGRA. In this connection a brief re-

view of the general SUGRA divergence problem

as it applies to D=11 may be useful. For clarity,

we work in the framework of dimensional regu-

larization, in which only logarithmic divergences

appear and consequently the local counterterm

must have dimension zero (including dimensions

of the coupling constants in the loop expansion);

the generic gravitational loop expansion proceeds

in powers of κ2 (we will separately discuss the ef-

fect of the additional appearance of κ in the CS

vertex). It should also be stated (in connection

with another κ2 counting) that while the present

discussion really proceeds at lowest order in an

expression about flat space, with linearized cur-

vatures, etc, the “covariantly dressed” quantities

enter through including additional graviton lines

at each graviton vertex; this will not alter the di-

vergence countings, although it can be extremely

complicated to achieve. Indeed, the same can be

said of the whole process of reaching the fully lo-

cally SUSY invariant version of our 4-point am-

plitudes: it must exist just because it comes from

the underlying action (1), as the physical expres-

sion of scattering among asymptotically defined

states, though that does not make the perturba-

tive resummation very obvious!

6



Quantum apects of gauge theories, supersymmetry and unification, TMR99 D. Seminara

At one loop (omitting the overall “infinite”

1/ε factor), the counter-action would be 4I1 ∼
κ0
∫
dx114L1. But there is no candidate 4L1

of dimension 11, since odd dimension cannot be

achieved by a purely gravitational4L1. [“Gravi-
tational”∼ εΓR4 or “form-gravitational”∼ εAR4
(respectively parity odd and even) CS-like terms

[14] cannot arise perturbatively i.e., with integer

powers of κ.] Possible invariants involving odd

powers of κ arising from the CS vertex also can-

not give rise to 1−loop diagrams. These candi-
dates, consisting of a polygon (triangle or higher)

with form/graviton segments and appropriate emer-

ging external bosons at its vertices, have as sim-

plest example a form triangle with three exter-

nal F−lines ∼ κ3
∫
d11x∂9εAFF . However, this

odd number of derivatives clearly cannot yield a

scalar. The same counting also excludes the one-

loop polygon’s gravitational or form extensions

such as F 2R, FR2 or even F 3R at this κ3 level.

At two loops, 4I2 ∼ κ2
∫
d11x4L2, so that

4L2 ∼ [L]−20 which can be achieved (to lowest
relevant, 4th, order in external lines) by (for the

pure graviton contribution)4L2 ∼ ∂12R4, where
∂12 means twelve explicit derivatives spread among

the 4 curvatures. There are no relevant 2−point
∼ ∂16R2 or 3−point ∼ ∂14R3 terms because the
R2 can be field-redefined away into the Einstein

action in its leading part (to h2 order, E4 is a

total divergence in any dimension) while R3 can-

not appear by SUSY. This latter fact was first

demonstrated in D=4 but must therefore also ap-

ply in higher D simply by a direct dimensional

reduction argument. Thus the terms we need are,

for their 4-graviton part, Lg4 of (13) with twelve

explicit derivatives. The companions of Lg4 in

Ltot4 will simply appear with the same number of

derivatives. It is easy to see that the additional

∂12 can be inserted without spoiling SUSY ; in-

deed they appear as naturally as did multiplica-

tion by stu in localizing the M4 to L4: for ex-

ample, ∂12 might become, in momentum space

language, a combination of (s6 + t6 + u6) and

(stu)2, spread according to rules similar to those

presented in the text. This establishes the struc-

ture of the 4−point local counterterm candidate
we are considering.

Before the present construction of the com-

plete counterterm was completed, the actual co-

efficient of its 4-graviton part was computed [4]

by a combination of string-inspired and unitarity

techniques. The structure of infinities in the four-

graviton sector for all maximal supergravities up

to two loops was extensively studied there, and

conjectures on higher loops were presented as

well. [Very recently, a parallel analysis of type I

supergravities has been carried out in [15]]. Here,

for completeness we state the methods and rel-

evant final results of [4]: Begin by computing

the tree supergravity amplitudes by means of the

KLT relations. Next, use these tree amplitudes

as input for the cutting rules to obtain the ana-

lytic structure of the one-loop amplitudes at any

D. This information, because of the high de-

gree of supersymmetry, is enough to reconstruct

the one-loop amplitudes. Now iterate the pro-

cedure and go to two loops. [What makes the

procedure quite cumbersome beyond two loops

is the increasing number of n−particles cuts that
one has to examine to reconstruct the amplitude

.] Finally compute the eventual divergences; in

D = 11 as we saw on general ground there is no

4-point one-loop divergence, while at two loops

the calculation yields the explicit infinite result

4I2(g)|pole =
(κ
2

)6 1

48ε (4π)11
π

5791500
×(

438(s6 + t6 + u6)− 53s2t2u2
)
(stuMg tree

4 )(24)

for the local 4-graviton divergence, dimensionally

regularized to D=11-2ε, with (stu)Mg tree
4 ≡ Lg

of (11). The results discussed previously then

embody the extension of (24) to the complete

bosonic sector counterterm.

We have succeeded in constructing explicitly

the tree level nonlocal 4-point scattering ampli-

tudes involving the two bosons of D=11 SUGRA,

namely the graviton and formion, as well as ob-

taining the corresponding local invariant in a SUSY-

preserving way. Extending the result to the rest

of the amplitude, involving two or four graviti-

nos, is not that difficult in terms of the techniques

employed here [3]: the gravitino primarily inter-

acts with the graviton through its stress tensor

∼ kµνTµν(ψ), and with the formion through a

simple (nonminimal) coupling term ∼ (ψ̄ΓψF ).
The (complicated) 4-fermion contact terms are

needed, but only for the 4-fermion part of the

7
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amplitude, where they insure the SUSY invari-

ance, not for the 2-gravitino to 2-boson ampli-

tudes. In any case the bosonic part alone, if

SUSY-transformed, will provide a complete lin-

earized SUSY invariant. In addition to its in-

trinsic interest as a example of a “physical” pro-

cess in D=11 SUGRA, the result was of primary

interest to us as confirmation of the existence

of an invariant that, (in its localized version)

has the dimension of a candidate counterterm for

(dimensionally regularized) 2-loop infinities. In-

deed, its 4-graviton part agreed completely with

the coefficient of the 2-loop infinity recently cal-

culated in that sector in [4], while its 4-formion

part agreed with a very different matrix-theory

motivated scattering calculation [12]. The exis-

tence of infinities in this ultimate local SUGRA

model, while not unexpected from a purely power

counting field theoretical point of view, is impor-

tant in showing that no hidden symmetry rescues

this most unique theory. Of course such a puta-

tive symmetry could still suppress all higher loop

infinities beyond a certain order, but this seems

unlikely given the concrete result of [4], together

with the obvious constructibility of higher order

candidate counterterms e.g., using the scatter-

ing approach. We can at least conclude that the

case for underlying finite extended (M-)theories

is thereby strengthened. In this connection, we

emphasize that the invariant found here has a

further interest as another example (see also [16,

17]) of possible local corrections to M-theory whose

leading term is presumably the action (1). This

might teach us something about this underlying

model, just as the corrections to the Einstein ac-

tion in slope expansion of the various D=10 su-

perstring models could be understood from the

latters’ properties; persistence in D=11 of the

“t8t8” D=10 string theory hallmark is perhaps

one first hint about the M-string connection.
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