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Abstract: This is an informal introduction to the concept of reflexive polyhedra and some of their

most important applications in perturbative and non-perturbative string physics. Following the his-

torical development, topics like mirror symmetry, gauged linear sigma models, and the geometrical

structures relevant to string and F-theory dualities are discussed. Finally some recent developments

concerning the classification of reflexive polyhedra are mentioned.

1. Perturbative string theory and re-

flexive polyhedra

Originally the introduction of reflexive polyhe-

dra was motivated by mirror symmetry: A su-

perstring compactification whose target space is

a Calabi–Yau threefold leads, on the string world

sheet, to an N = 2 superconformal field theory

with central charge c = 9. The N = 2 superalge-

bra of this world sheet theory decomposes into a

right and a left moving part, each of which has

a U(1) R-symmetry. A change in the relative

signs of the left/right U(1) charges is a trivial

operation from the point of view of world sheet

dynamics, but it radically changes the space–

time interpretation of the model: Assuming that

the model has a geometrical interpretation before

and after the sign flip, this implies that we have

passed from a Calabi–Yau manifold to a differ-

ent Calabi–Yau manifold in such a way that the

Hodge numbers h11 and h12 are interchanged.

The conjecture that most Calabi–Yau manifolds

have mirrors of this kind was supported by the

first explicit constructions of large classes of such

manifolds as hypersurfaces in weighted projective

spaces [1]: It was found that for most of the re-

sulting Hodge pairs the mirror pair could also

be found. The completion of the classification

of Calabi–Yau hypersurfaces in weighted projec-

tive spaces [2, 3] showed, however, that not all

of the mirrors could be found within the same

class. The resolution to this problem was pro-

vided by the introduction of Calabi–Yau man-

ifolds that are constructed as hypersurfaces in

toric varieties with the help of so–called reflexive

polyhedra [4]. This generalized framework pro-

vided not only the missing mirrors but also many

completely new models.

Reflexive polyhedra are defined with respect

to a dual pair of lattices M ' Zn and N ' Zn
and the underlying real vector spaces MR ' Rn
and NR ' Rn. They are polytopes in these real
vector spaces with the origin in their respective

interiors. For any such polytope ∆ ⊂ MR one
can define the dual polytope as

∆∗ := {v ∈ NR : 〈v, w〉 ≥ −1 ∀ w ∈ ∆}. (1.1)

A lattice polyhedron ∆ is a polyhedron in MR
with vertices in M , and a reflexive polyhedron is

a lattice polyhedron ∆ with 0 in its interior such

that ∆∗ is also a lattice polyhedron.
From such polytopes, complex manifolds can

be constructed in the following simple way: One

draws rays vi through the vertices (or, more gen-

erally, through lattice points) of ∆∗ and intro-
duces a homogeneous coordinate xi for every ray

vi in a way similar to the construction of projec-

tive space. Then one must find a complete set
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Figure 1: ∆ and ∆∗ for a weighted projective space

of linear relations of the type
∑
qivi = 0 among

the lattice vectors defining these rays, and for

every such linear relation one introduces a mul-

tiplicative equivalence relation xi ' λqixi among
the homogeneous coordinates. This is most eas-

ily visualized with an example: For the reflex-

ive pair of fig. 1, the rays corresponding to the

vertices of ∆∗ fulfil 2vx + 3vy + vz = 0, so the
space described in this way is just the weighted

projective space defined as the set of equivalence

classes in C3 \ {0} with respect to the relations
(x, y, z) ' (λ2x, λ3y, λz). It is not hard to see
that this space suffers from singularities at the

points y = z = 0 and x = z = 0. In algebraic

geometry there is a procedure for turning such a

singular space into a smooth one, referred to as

‘blowing up’ singularities. In the toric setup, it

is very easy to perform this operation: It simply

corresponds to adding extra rays to the toric di-

agram; in the present example these are just the

rays through the lattice points interior to edges

of ∆∗.
In order to define hypersurfaces in toric va-

rieties, it is necessary to have equations that are

compatible with the equivalence relations among

the toric coordinates. For the case of Calabi–Yau

hypersurfaces, these homogeneous equations are

particularly simple. In terms of rays vi, corre-

sponding coordinates xi and lattice points w of

∆, a Calabi–Yau hypersurface is determined by

P (x1, . . . , xk) =
∑

w∈∆∩M
aw

k∏

i=1

x
〈vi,w〉+1
i = 0,

(1.2)

i.e. every lattice point of ∆ determines a mono-

mial in P . For our example, which leads to a

one dimensional Calabi–Yau hypersurface which

is nothing but an elliptic curve, the correspond-

ing monomials are indicated in fig.1. In the con-

text of polyhedra mirror symmetry manifests it-

self as the exchange of (M,∆) and (N,∆∗).

Almost immediately after its introduction this

construction turned out to be important for fur-

ther applications in the context of string theory:

Witten’s gauged linear sigma models [5] are d = 2

theories with N = 2 supersymmetry. In such

a model a chiral superfield is introduced for ev-

ery toric coordinate and U(1) gauge fields im-

plement the compact parts of the multiplicative

relations. The superpotential is just the previ-

ously introduced homogeneous polynomial mul-

tiplied with an auxiliary field. At the fixed points

of the renormalization group flow, such a model

is believed to possess superconformal symmetry.

Within a certain range of the coupling constants

the following scenario takes place: The equa-

tions of motion constrain the superfields in such

a way that the noncompact part of the relations

is also fixed and the homogeneous polynomial is

forced to vanish, leading effectively to a Calabi–

Yau sigma model. For other values, one gets

a Landau–Ginzburg model or some hybrid. As

shown by Aspinwall, Greene and Morrison [6, 7]

this construction implies that the corresponding

string physics allows for physically smooth topol-

ogy changing transitions.

2



TMR meeting, Paris, 1999 Harald Skarke

2. String dualities and reflexive poly-

hedra

One of the main new insights of the second string

revolution is that there appear to be non-perturbative

dualities between seemingly different theories. Ex-

amples of this type are the dualities between het-

erotic string theory compactified on K3×T 2 and
type IIA on a K3 fibered Calabi–Yau threefold

and between heterotic string theory compactified

on Calabi–Yau n-folds and F-theory on ellipti-

cally fibered Calabi–Yau (n+1)-folds. While het-

erotic string theory has non-abelian gauge groups

in its perturbative spectrum, the dual theories

can develop them only if the compactification

manifold becomes singular. Certain singulari-

ties allow for a classification that follows exactly

the pattern of the classification of simply laced

Lie groups, and the non-perturbatively enhanced

gauge groups are just the corresponding ADE

gauge groups. Thus the two most important ge-

ometrical ingredients for making these dualities

work are fibration structures and singularities.

As we will now see, both types of structures man-

ifest themselves in simple ways in the context of

reflexive polyhedra.

A manifold has a fibration structures if there

is a projection to some other manifold called the

base manifold, and if the preimage of a generic

point of the base under this projection is iso-

morphic to another manifold which is the fiber.

In terms of reflexive polytopes, the fiber corre-

sponds to a reflexive subpolytope ∆∗fiber ⊂ ∆∗total
in a linear subspace NR,fiber ⊂ NR containing 0.
The base space is just the toric variety whose

fan (i.e., collection of rays and some other data)

is the projection of the complete fan along the

subspace NR,fiber. As an example, fig. 2 shows

the fan of a smooth elliptically fibered K3 sur-

face, with the fiber determined by the triangle

vxvyvz . The toric diagram for the base space P
1

is determined by projecting along the plane of

the triangle. It is a line segment isomorphic to

vsvt.

ADE singularities manifest themselves in a

particularly elegant way in terms of reflexive poly-

hedra: As Candelas and Font observed [8], under

favourable circumstances the Dynkin diagrams

of non-perturbative gauge groups can be seen in
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Figure 2: The polyhedron ∆∗ corresponding to a
smooth elliptically fibered K3 surface
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Figure 3: The polyhedron ∆∗ corresponding to the
heterotic string with unbroken gauge symmetry

the polyhedra corresponding to the blow-up of

the singular space. As an example fig. 3 shows

the reflexive polytope that provides the F-theory

dual of heterotic string theory compactified to

eight dimensions with an unbroken gauge group

of E8 × E8. The horizontal triangle represents
the elliptic fiber, and the diagram obtained by

considering the lattice points of ∆∗ above it and
the edges connecting them is nothing but the ex-
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tended Dynkin diagram of E8 (the other E8 is

visible in the same way below the triangle). Us-

ing this polytope for constructing threefolds with

the corresponding K3 manifold as a fiber, it was

possible to obtain theories in six dimensions with

gauge groups like E8× (E8×F4×G22×A21)16 [9].
This was actually the ‘record gauge group’ un-

til Aspinwall and Morrison constructed a model

with the group

SO(32)× Sp(24)× SO(80)× Sp(48)× SO(128)
×Sp(72)×SO(176)×Sp(40)×Sp(52)×SO(64),
using SO(32) heterotic string theory. This pre-

sented the challenge of finding the F-theory dual

of the SO(32) heterotic string. Remarkably, it is

represented again by the polytope of fig. 3 [10].

This time the fibration structure is determined

by the vertical triangle and the lattice points to

the right of it are connected by the edges into the

extended Dynkin diagram of SO(32).

3. Classification of reflexive polyhe-

dra

Given all these interesting properties of reflexive

polyhedra, one may certainly wonder how many

of them exist in a given dimension d. Until 1998,

this was known only for the case of d = 2 with

16 reflexive polygons. This situation has changed

with the development of a classification scheme

that works (in principle) in arbitrary dimensions

[11, 12]. The main ideas of this scheme are as

follows: Clearly it is enough to find a finite set of

polyhedra that contain all reflexive polytopes as

subpolytopes. By duality, ∆1 ⊂ ∆2 ⇔ ∆∗2 ⊂ ∆∗1,
so this task is equivalent to finding a set of poly-

hedra such that every reflexive polytope contains

one of them. In this spirit we define a minimal

polyhedron∇ ⊂ NR as a polyhedron with 0 in its
interior such that the convex hull of any proper

subset of vertices of ∇ fails to have 0 in its in-
terior. It can be shown that the vertices of min-

imal polyhedra always belong to (possibly lower

dimensional) simplices with 0 in their respective

interiors, and the different simplex structures can

be classified. In the same way as in the first sec-

tion, these simplices determine weight systems

corresponding to the linear relations of the ver-

tices. The weight systems of the simplices in

a minimal polytope together form a combined

weight system which uniquely specifies the linear

structure of ∇, but not the lattice. The addi-
tional restrictions that∇ should be a lattice poly-
tope and that the convex hull of the intersection

of ∇∗ withM should have 0 in its interior lead to
finite numbers of combined weight systems. Thus

all reflexive polyhedra can be obtained as sub-

polyhedra of the convex hulls of ∇∗ ∩M , where
∇ is given by some combined weight system.
There are certain subtleties in this approach:

One should take into account that the lattice is

not always uniquely determined by the weights,

but there are methods to deal with sublattices

of the finest possible M lattice which is dual to

the lattice generated by the vertices of ∇. Given
the fact that two polytopes should be considered

equivalent if they are related by lattice isomor-

phisms it is necessary to define normal forms of

polyhedra that take this difficulty into account.

Finally, in the case of four dimensional reflex-

ive polyhedra one nearly encounters the limits

of today’s available computer power: Unless nu-

merous tricks are used, there will be numerical

overflows, lack of RAM and disk space, and an

enormous computation time.

Nevertheless, the algorithm works and has

produced the following results: In d = 3, there

are 4319 reflexive polyhedra corresponding to K3

surfaces [13] which can be produced by a mod-

ern PC within 8 seconds. For the case of d = 4,

the programs were still running at the time this

talk was given and had produced around 300 mil-

lion polyhedra. At that time I estimated the to-

tal number to be around 0.5 ± 0.1 GCY (Giga–
Calabi–Yau). This estimate was confirmed by

the recent accomplishment of this project after

a computation time of more than half a year on

several processors: There are 473,800,776 reflex-

ive polyhedra giving rise to 30,108 distinct pairs

of Hodge numbers for Calabi–Yau threefolds [14].
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