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Abstract: We review some aspects of the AdS supergravity description of RG flows. The case of a

flow to an IR CFT can be rigorously studied within the framework of supergravity. Here we discuss

various central charges of the conformal theory (included the usually neglected ones) and we compare

them with QFT expectations. The case of flows to non-conformal theories is more problematic in that

one usually encounters a naked singularity. We discuss the properties of these solutions and we briefly

comment on the fate of the singularity.

1. Introduction

The AdS/CFT correspondence has deserved some

surprises when extended outside the realm of stric-

tly conformal invariant theories. The study of

the supergravity dual of RG flows has flourished,

both in the concrete application to SYM theories

and in a general setting [1]-[14]. Asymptotically

AdSd+1 backgrounds, breaking the full O(d, 2)

invariance but preserving at least d-dimensional

Poincaré invariance, describe RG flows for a d-

dimensional CFT. These supergravity solutions

with an asymptotic AdS region have a double

QFT interpretation: deformations of an UV fixed

point versus the same theory in a different vac-

uum [15, 16]. Both cases have been extensively

studied. Many results have been obtained upon

reduction to a d+1-dimensional effective theory,

where the RG flow can be studied in terms of

a theory of scalar fields coupled to gravity. In

this simple set-up, the RG flows are identified

as domain-walls interpolating between AdSd+1
vacua (or approaching infinity on one side), and

general results are very easy to obtain. The cor-

respondence defines a holographic scheme, where

beta and c-functions have a natural definition.

A c-theorem, for example, can be easily proven

[1, 8]. Also, the quantum field theory RG equa-

tions can be obtained from supergravity [14]1.

The study of RG flows between CFTs (at

large N and strong coupling) can be rigorously

performed using supergravity. The phase space

of massive deformations of the N=4 SYM theory

have been throughly investigated and several IR

fixed points have been found [1, 2, 3, 4, 8]. The

results are on solid grounds because supergravity

is valid all along the RG flow. Still problematic

is the precise mapping of some QFT couplings to

supergravity quantities. For example, it is still

unclear what in supergravity corresponds to the

gauge coupling running.

Most of the unsolved problems arise for flows

to non-conformal theories, where supergravity is

invalidated by a (typically naked) singularity in

the IR region of the flow. Solutions flowing to in-

finity for a generic 5d-Lagrangian are certainly a

dense set in the space of solutions. The full recipe

for selecting the physical ones is still unclear 2.

The distinction between deformations and vacua

of an UV fixed point helps but does not solve the

problem. Supersymmetric and supersymmetric-

inspired solutions however are uniquely selected

1Notice that the holographic beta and c-functions do

not need to coincide with analogous functions defined in

schemes that are more natural from the QFT point of

view [17].
2A criterion for selecting physical solutions has been

recently proposed in [18].
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because the equations of motion can be reduced

to first order ones [8, 19]. N=4 Coulomb branch

solutions have been studied in [9, 10, 20] and a

flow to N=1 SYM in [11].

Since singularities are apparently unavoid-

able in interesting supergravity solutions, it is

mandatory to understand their fate in the full

string theory, where they must be resolved. Avail-

able options are the chance that the singularity

is an artifact of the dimensional reduction to 5

dimensions, mechanisms such that proposed in

[21] and, more generally, some help from string

corrections.

The supergravity solutions with an asymp-

totic AdS region certainly have many other ap-

plications. Relaxing the d-Poincaré invariance,

we have examples of RG flow due to finite tem-

perature. This is indeed the firstly proposed me-

thod for discussing non-conformal theories from

AdS [22] and the one not suffering from unpleas-

ant singularities. Cutting the AdS-boundary, we

can describe CFTs coupled to gravity and make

contact with the large extra-dimension scenario

[23]. We will not discuss this issue here, but we

simply notice that singular solutions have been

recently considered in this context.

2. RG Flow from 5d Supergravity

In general, we interpret the (d+1)-th coordinate

y of AdSd+1 as an energy scale [24, 25]: y → ∞
corresponds to the UV regime while y → −∞ to
the IR.

Then RG flows in QFT correspond to type II

or M-theory supergravity solutions interpolating

(along y) between these two asymptotic regions.

Flows between CFTs are given by solutions in-

terpolating between AdSd+1 ×WH vacua. Since
along the flow conformal invariance is lost, one

has to look at supergravity solutions that are

only asymptotically AdS, but that still preserve

d-dimensional Poincaré invariance.

The very first example of RG flow in the

AdS/CFT correspondence is manifest in the multi-

centre supergravity solution for D3-branes [24].

This represents the Coulomb branch of N=4 SYM.

Given two sets of N and M branes at different

points, the near-horizon geometry is AdS5 with

radius ∼ √N +M far from both sets of branes,

and AdS5 with radius ∼
√
N near one set. In

QFT this is the RG flow between the U(N +M)

N=4 CFT in the UV, where the Higgs VEVs can

be neglected, and the U(N) N=4 CFT in the

IR. A more sophisticated example was found in

[26]. A supergravity solution interpolating be-

tween AdS5 × S5/Z2 and AdS5 × T 1,1 was also
interpreted on the QFT side as a RG flow be-

tween CFTs. It is a supersymmetric massive

deformation of the N=2 SU(N) × SU(N) the-

ory corresponding to a Z2 orbifold of N=4 SYM

which flows to an N=1 IR fixed point. Many

successful checks of this interpretation have been

performed [26, 27, 28, 29].

However, interpolating 10d backgrounds are

difficult to find. Sometimes dimensional reduc-

tion to 5 dimensions helps.

The RG flow has a natural description in 5d.

Consider a certain UV CFT and suppose we have

the corresponding 5d Lagrangian and that it con-

tains all the fields/modes we are interest in. The

effective 5d Lagrangian we need is just the most

general Lagrangian for scalars coupled to gravity

L =
√−g

[
−R
4
+
1

2
gIJ∂Iλa∂JλbG

ab + V (λ)

]
.

(2.1)

The scalars λ can either be the massless modes

or Kaluza-Klein modes of the compactification to

5 dimensions. The form of the potential depends

on the particular case we are considering. We

may have, for example, N=8 gauged supergrav-

ity, which describes N=4 SYM and most of its bi-

linear relevant operators (almost all of the masses

for scalars and fermions). Or we may have an

N=4 theory describing the orbifold R4/Z2 and

the supersymmetric mass term that drives the

theory to an N=1 IR fixed point. Or else we

may have the Lagrangian for the some of the KK

modes. The interactions among the modes in

the graviton multiplet in 5d can be found using

supersymmetry. In particular, for the N=4 SYM

case, the 5d Lagrangian for the massless modes is

uniquely fixed by supersymmetry in the form of

the N=8 gauged supergravity [30]. All the mass

terms for the scalars and the fermions contained

in the KK spectrum are associated to modes in

the gauged supergravity. 5d supersymmetric La-

grangians have been discussed also for less su-

2
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persymmetry, but the uniqueness of N=8 super-

gravity is lost and interesting modes are split into

various vector, tensor and hyper-multiplets. One

needs some help from QFT intuition in identify-

ing the right potential. In principle, V (λ) can

be obtained for all modes (often with non-trivial

effort) by dimensional reduction from 10 dimen-

sions.

If the UV CFT perturbed by a particular

operator Oλ flows in the IR to another CFT, the

potential V must have a critical point for non-

zero value of the scalar field λ. Analogously, the

dual of the flow to a non-conformal field theory

is given by the flow from one minimum of the

potential to infinity.
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Figure 1: Schematic picture of the RG flow.

2.1 Flow between conformal field theories

The 5d description of the RG flow between con-

formal theories is a kink solution, which interpo-

lates between two critical points. The ansatz for

a 4d Poincaré invariant metric is

ds2 = dy2 + e2φ(y)dxµdxµ, µ = 0, 1, 2, 3. (2.2)

AdS corresponds to φ = y/R. We then look for

solutions with asymptotics: φ(y) → y/RUV,IR
for y → ±∞; λ(y)→ 0 for y →∞, while λ(y)→
λIR for y → −∞. We associate larger energies
with increasing y.

The equations of motion for the scalars and

the metric read

λ̈a + 4φ̇λ̇ =
∂V

∂λa
,

6(φ̇)2 =
∑
a

(λ̇a)
2 − 2V. (2.3)

With the above boundary conditions and a rea-

sonable shape for the potential, a kink interpo-

lating between critical points always exists [1].

As an example of flows between conformal

field theories, we can discuss the mass deforma-

tions of N=4 SYM. These can be studied in the

context of N=8 gauged supergravity, where the

form of the potential V is known. N=8 gauged

supergravity [30] is the low energy effective ac-

tion for the “massless” modes of the compactifi-

cation of Type IIB on AdS5 × S5. It is believed
to be a consistent truncation of type IIB on S5

in the sense that every solution of the 5d theory

can be lifted to a consistent 10d type IIB solu-

tion. Five-dimensional gauged supergravity has

42 scalars, which transform under the N=4 YM

R-symmetry SU(4) as 1, 20, 10. The singlet is

associated with the margi- nal deformation cor-

responding to a shift in the coupling constant

of the N=4 theory. The mode in the 20 has

mass square M2 = −4 and is associated with
a symmetric traceless mass term for the scalars

Trφiφj , i, j = 1, ..., 6 (∆ = 2). The 10 has mass

squareM2 = −3 and corresponds to the fermion
mass term TrλAλB, A,B = 1, ..., 4, of dimension

3. Thus the scalar sector of N=8 gauged super-

gravity is enough to discuss at least all mass de-

formations that have a supergravity description3.

The scalar potential V (eq.(2.1) is known

and it turns out to have only isolated minima

(apart from one flat direction, given by the dila-

ton). Up to now, all critical points with at least

SU(2) symmetry have been classified [3].There

is a central critical point with SO(6) symmetry

and with all the scalars λa vanishing: it cor-

responds to the unperturbed N=4 YM theory.

There are three N=0 theories with residual sym-

metry SU(3)×U(1), SO(5) and SU(2)×U(1)2.
They correspond to non-zero VEV for some of

the scalars in the 10, 20, and 10 + 20 respec-

tively. Then there is N=2 point with symmetry

SU(2) × U(1), obtained giving VEV to scalars

in the 10 ⊕ 20 [3]. According to the AdS/CFT
correspondence, these other minima should cor-

respond to IR conformal field theories 4. The

3The only missing state is Tr
∑6

i
φ2i , the prototype of

a stringy states in the correspondence. Even without this

state, we can study almost all massive deformations of the

N=4 theory and all these deformations can be described

by just the Lagrangian for the massless multiplet.
4The symmetries of the field theories can be read from

those of the supergravity minima according to the cor-

respondence : gauge symmetry in supergravity ↔ global

3
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following IR CFT theories can be obtained as

mass deformations of N=4 SYM:

• Three N=0 theories with symmetry SU(3)×
U(1), SO(5) and SU(2)×U(1)2. All these
theories are unstable and correspond to non-

unitary CFTs. A natural question arises:

do all the N=0 critical points are unstable?

• A stable N=1 point with symmetry SU(2)×
U(1). It corresponds to the N=4 theory

deformed with a mass for one of the three

N=1 chiral superfields. Results and super-

gravity description [4, 8] are almost identi-

cal to the T 1,1 case, which is just a Z2 pro-

jection of this example.

2.2 Central charges

In a supersymmetric gauge field theory in 4d, the

trace anomaly and the R-symmetry anomaly are

given by [31]

T µµ =
β̃

2g2
F 2µν +

c

16π2
W 2
µνρσ −

a

16π2
R̃2µνρσ

+
c

6π2
V 2µν +

b

32π2
B2µν (2.4)

∂µ
√
gRµ = − β̃

3g2
Fµν ˜Fµν − a− c

24π2
RµνρσR̃

µνρσ

+
5a− 3c
9π2

Vµν Ṽ
µν − b

48π2
Bµν ˜Bµν .(2.5)

Here Wµνρσ and Rµνρσ are the Weyl and curva-

ture tensors for an external metric gµν that cou-

ples to the energy-momentum tensor Tµν . Simi-

larly Vµν and B
µν are the field strengths of the

external sources Vµ, Bµ that couple to the R-

symmetry currents and to the flavour currents,

respectively. Fµν is the gauge field strength and

β̃ is the denominator of the exact beta-function

[32].

The external anomaly coefficients a and c

have a straightforward interpretation in the dual

supergravity theory.

c is the central charge of the CFT, and it is

associated with the cosmological constant at the

critical points. From eq. (2.1), we can see by a

simple scaling that, at least at the fixed points,

symmetry in field theory, supersymmetry in supergravity

↔ superconformal symmetry in field theory

where ds2 = R2[dy2 + exp(2y)
∑
i dx

2
i ],

〈T (x)T (0)〉 = c

|x|8 → c ∼ R3 ∼ (Λ)−3/2. (2.6)

This scaling reproduces the known results for c

[33, 27]. More interestingly, one can prove that

for the class of field theory that have a supergrav-

ity dual a c-theorem exists. Indeed we can ex-

hibit a c-function that is monotonically decreas-

ing along the flow [1, 8]. The c-function

c(y) ∼ (Tyy)−3/2, (2.7)

is constructed with the y component of the stress-

energy tensor

Tyy = 6(φ̇)
2 =
∑
a

(λ̇a)
2 − 2V. (2.8)

At the critical points, where λ̇a = 0,

c(y) = cUV,IR ∼ (−V )−3/2UV,IR ∼ Λ−3/2UV,IR, (2.9)

and using the equations of motion (φ̈ < 0) and

the boundary conditions one can easily check that

c(y) is monotonic [1, 8].

Let us consider a. AdS computations [33]

showed that a = c for all CFTs that have an

AdS dual.

It is then natural to ask what can AdS/CFT

correspondence say about the coefficient b5. The

coefficient b is related to the two-point function

of the flavour (global) symmetry currents [31].

According to AdS/CFT correspondence the R-

symmetry and flavour currents are associated to

the gauge fields of the SUGRA Lagrangian

Jµ, Rµ ←→ Aµ. (2.10)

One should then be able to read the b (and a) co-

efficient from the kinetic terms of the correspond-

ing SUGRA modes. The generic 5d-Lagrangian

we are interested in has the following structure

L =
√−g

[
−R
4
+ Λ + fF 2µν + fRF

2
µνR

]
.

(2.11)

Here FµνR and Fµν represent the kinetic terms

for the fields corresponding to the R-symmetry

and flavour symmetry currents, respectively. At

5These results have been obtained in collaboration

with D. Anselmi, L. Girardello and M. Petrini.

4
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the critical points (or generically for a metric of

the form (2.2)), one obtains by scaling

〈J(x)J(0)〉 = b

|x|6 → b ∼ fR ∼ fc1/3. (2.12)

A similar behaviour is obtained for the R-symme-

try currents. In this case, supersymmetry 6 im-

plies b = c, and the previous equation can be used

as a check of the consistency of the procedure.

The values of the coefficients f and fR de-

pend on the particular model under considera-

tion. Consider for example the massive deforma-

tions of N=4 SYM, for which we have the dual su-

pergravity Lagrangian: that of N=8 gauged su-

pergravity. In this case, the kinetic term for the

gauge fields is expressed in terms of the vielbein

that parametrise the scalar coset-manifold [34].

To determine f and fR we have then to eval-

uate the contractions of the vielbein and there-

fore these coefficients depend on the critical point

and on the way the UV SU(4) group is bro-

ken (e.g. SU(4) → SU(3) × U(1)R, SU(4) →
SU(2) × U(1)R, ...). We now want to compute

the charge b for the global non-abelian symme-

try group preserved along the flow (e.g. SU(3),

SU(2), ...). The computation of the coefficients

f can be performed using the results of [34] for

most of the critical points. Alternatively, using

the parametrisation in appendix A of [8], it is

easy to convince themselves that

f = e4α. (2.13)

Here α is the scalar in the 20 of SU(4) corre-

sponding to a mass term for the scalars in N=4

SYM [8]. The value of the scalar α and c for the

various fixed points can be found in [3, 8, 34].

One then gets the following results for the coef-

ficient b [35]:

• N=1 point with symmetry SU(2) × U(1).
bIR
bUV
= 3
2 . This is the only case where com-

parison with field theory is possible. Con-

sider a set of N=1 chiral superfields Xi in

the representation Ri of the gauge group

and in the representation Ti of the flavour

symmetry group. Then, because of super-

6The R-symmetry currents are in the same multiplets

as the energy-momentum tensor.

symmetry, the following formula holds [31]

bUV−bIR = 3
∑
ij

(dimRi)

[(
ri − 2

3

)
T ji T

i
j

]
,

(2.14)

where ri is IR R-symmetry charge of the

field Xi and T
j
i are the generators of the

flavour group in the representation Ti. It

is straightforward to check that the super-

gravity and the field theory computations

agree.

• N=0 theories. For the SU(3)×U(1), SO(5)
and SU(2) × U(1)2 symmetric points, we

have bIR
bUV
= 2

√
2
3 ,

bIR
bUV
=
√
2 and bIR

bUV
= 2,

respectively.

In [36] it was observed that for several exam-

ples of supersymmetric gauge theory b increases

going from the UV to the IR. This was suggestive

of possible anti-b-theorem. The same authors

however pointed out that for non-supersymmetric

gauge theories b has no universal behaviour, and

that also a large class of supersymmetric theo-

ries violates the relation bIR/bUV > 1. Then it is

not possible to state any anti-b-theorem in field

theory. It is interesting to see what are the super-

gravity results. Consider first the non-supersym-

metric cases. For the point SU(3)×U(1) we have
bIR/bUV < 1, which violates the anti-b-theorem.

The situation is different for the supersymmetric

point SU(2)×U(1). In this case the coefficient b
increases along the flow. The same analysis car-

ried on for the massive flow to N=1 super Yang-

Mills (see section 4) or for the Coulomb branch

of N=4 SYM [9] seems to indicate a similar be-

haviour.

Notice that the theories that have a super-

gravity dual represent a very restricted class of

gauge theories. First of all these theories always

have a = c, which is in general not the case in

field theory. It has been argued that the require-

ment a = c simplifies the structure and OPEs of

a CFT, making it most similar to a two dimen-

sional conformal field theory [37]. Secondly it has

been suggested (see [8] and next section) that all

these theories could be characterised by having

a pre-potential. It could then be possible, and

interesting to check, whether an anti-b-theorem

5
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could hold for this particular class of gauge the-

ories.

The previous results on b could have been

obtained from the analysis of the Chern-Simons

terms of the N=8 Lagrangian, which contain all

informations about global anomalies [38, 39]. In

particular, b can be read from the SU(2)2×U(1)R
anomaly coefficient, which can be extracted from

the Chern-Simon terms. It is easy to check, us-

ing the results in [8], that the result for b coin-

cides with the previously obtained one7. Notice

that the Chern-Simon terms uniquely determine

the form of a supersymmetric gauge supergrav-

ity. From the knowledge of the global anomaly,

we should be able to reconstruct the entire AdS

Lagrangian for massless modes for a given super-

symmetric CFT fixed point [39].

2.3 Vacua and deformations

We end this section with a brief discussion of a

general point that will play an important role

in our analysis, namely the fact that supergrav-

ity solutions can represent both deformations of

a CFT and different vacua of the same theory

[15, 16]. The running of coupling constants and

parameters along the RG flow can be induced

in the UV theory in two different ways: by de-

forming the CFT with a relevant operator, or by

giving a nonzero VEV to some operators. The

asymptotic UV behaviour discriminates between

the two options. In the asymptotic AdS-region,

we just need a linearised analysis. A scalar fluc-

tuation λ(y) in the asymptotically AdS back-

ground must satisfy

λ̈+ 4λ̇ =M2λ, (2.15)

where the dot means the derivative with respect

to y. The previous equation has a solution de-

pending on two arbitrary parameters

λ(y) = Ae−(4−∆)y +Be−∆y, (2.16)

where ∆ is the dimension of the operator, M2 =

∆(∆−4) [40, 38]. We are interested in the case of
relevant operators, where ∆ ≤ 4. From the basic
prescription of the AdS/CFT, we associate solu-

tions behaving as e−(4−∆)y with deformations of
7It is crucial to pay attention to normalisations and

the definition of U(1)R , which varies from UV to IR.

the N=4 theory with the operator Oλ. On the

other hand, solutions asymptotic to e−∆y (the
subset with A = 0) are associated with a differ-

ent vacuum of the UV theory, where the operator

Oλ has a non-zero VEV
8. [15, 16].

Since in general the UV-IR interpolating so-

lution is not known, it is not even obvious whether

a particular solution corresponds to a deforma-

tion or to a different vacuum. For many prob-

lems, we may invoke supersymmetry. It helps in

finding the solution all along the flow and in un-

ambiguously identifying the UV behaviour. In

ref. [8, 19] the conditions for a supersymmetric

flow were found. As usual, a solution for which

the fermionic shifts vanish, automatically sat-

isfies the equations of motion. Moreover, this

shortcut reduces the second order equations to

first order ones. For a supersymmetric solution,

the potential V can be written in terms of a su-

perpotential W as

V =
1

8

n∑
a=1

∣∣∣∣∂W∂λa
∣∣∣∣
2

− 1
3
|W |2 , (2.17)

where W is one of the eigenvalues of the tensor

Wab defined in [34]. The equations of motion

reduce to

λ̇a =
1

2

∂W

∂λa
,

φ̇ = −1
3
W. (2.18)

It is easy to check that a solution of eq.(2.18)

satisfies also the second order equations (2.3).

It is quite plausible and generally assumed

that all the supergravity flows connecting fixed

points correspond to deformations of the UV fixed

point.

3. Confining Solutions

Solutions flowing to infinity represent RG flows

to non-conformal theories, which may exist in

various phases in the IR. These kinds of solution

are difficult to classify. In many cases the asymp-

totic IR behaviour is known, but the entire solu-

tion along the flow can not be found. Typically,

8We are not careful about subtleties for particular val-

ues of ∆ [16].

6
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we encounter a singularity somewhere along the

flow. Many solutions exhibit a logarithmic di-

vergence at finite y0 for the scalar fields λa ∼
Ba log |y − y0| and the metric φ ∼ A log |y − y0|.
There are many criteria for studying the IR prop-

erties and the phase of these solutions. One of

them, the Wilson loop, will be discussed later.

The spectrum can be determined also from two-

point functions, where physical bound states ap-

pear as poles. Poles in the two-point function

corresponding to a minimally coupled scalar, for

example, correspond to F 2 glueball masses in the

theory. The analysis of the spectrum can be re-

duced, as usual in the AdS/CFT correspondence,

to the solution of a Schroedinger problem [22, 41].

After a change of variable y → z to the confor-

mally flat metric ds2 = e2φ(z)((dz)2+(dx)2) and

a field redefinition Φk(z) = e
−3φ(z)/2ψ(z), the 5d

equation for a minimally coupled scalar Φ(x, y) =

e−ikxΦk(y) takes the Schroedinger form

(−∂2z + V (z))ψ = Eψ (3.1)

where V = 3
2φ
′′ + 9

4 (φ
′)2. The eigenvalues E

give the poles in the two-point function and the

spectrum.

A=
2

A= 1
4

1

1
z 2

Figure 2: The Schroedinger potential in various

cases.

The form of V immediately tells us whether the

theory has a mass gap and a discrete spectrum

or a continuous one, whether it confines or not.

Unfortunately, in very few examples V is known

along the entire flow. We can nevertheless ex-

tract some information from the IR behaviour.

For the logarithmically divergent flows discussed

above, if A < 1, the singularity is mapped to a

finite z0 and we have

V ∼ 3A(5A− 2)
4(1−A)2(z − z0)2 . (3.2)

This behaviour looks potentially dangerous, but,

as discussed in all quantum mechanics textbooks,

V ∼ k/z2 has a discrete spectrum bounded from
below, provided k ≥ −1/4. It is easy to check
that, for the logarithmically divergent flows, this

condition is always satisfied. The value k = −1/4
is obtained for A = 1/4. This is the value that

appears in many solutions where the supergrav-

ity potential is irrelevant in the IR [6], but also

in one of the examples of N=4 Coulomb branch

in [9]. If A > 1, the singularity is mapped to

z = ∞, the potential goes to zero and we may
expect portions of continuous spectrum. Clearly,

the full knowledge of V is requested for all sen-

sible predictions about the spectrum. The above

Schroedinger equation is also the one to be con-

sidered in looking at generalisations of the RS

scenario.

3.1 Supersymmetric and non-supersymmet-

ric examples

We now briefly discuss few examples in the liter-

ature.

In [6], the class of non-supersymmetric solu-

tions where the potential can be neglected in the

IR have been discussed. They all have A = 1/4.

It was argued that they may exhibit a variety

of IR behaviours, from confinement to screen-

ing, depending on the values of the constants

Ba. Since we can not follow the solution from

UV to IR, it is difficult to make more meaningful

claims. We do not even know whether these solu-

tions correspond to deformations or to different

vacua of the UV fixed point.

In the N=4 Coulomb branch solutions dis-

cussed in [9], A assumes various values. There

is one solution with A = 1/5, one with A = 1/4

and all the other have A > 1/4. The UV be-

haviour can be unambiguously determined using

the first-order equations (2.18). All these so-

lutions correspond to different vacua (Coulomb

branch) of the UV fixed point.

The supersymmetric massive flow from N=4

to N=1 SYM was discussed in [11]. It has A =

1/2. The qualitative properties of the solution

7
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agree with QFT expectations. They are briefly

reviewed in the next section.

Due to the IR singularity, not all the previous

solutions are expected to be physical. A possible

criterion for selecting the physical solutions has

been proposed in [18]. According to this crite-

rion, the supergravity potential must be bounded

above along the flow. This seems to eliminate all

solutions with A < 1/4. The case A = 1/5 in

the examples of N=4 Coulomb branch is indeed

known to correspond to a singular 10d solution

with negative tension branes. The criterion can

be also understood as follows. It selects solu-

tions for which the IR ambiguities noticed in [6]

are absent. The action for a (canonically nor-

malized) scalar S =
∫
e4φ(∂λ)2 predicts an IR

contribution to the condensate

< Oλ >=
δS

δλ
∼ e4φ∂λ ∼ |y − y0|4A−1 (3.3)

for all logarithmic flows. This IR ambiguities di-

verges when A < 1/4. The case A = 1/4 is

borderline. It is possible that, as noticed in [18],

only the A = 1/4 solutions representing vacua

have a physical interpretation.

3.2 The flow to N=1 SYM

We now briefly discuss the example of a holo-

graphic RG flow from N=4 SYM to pure N=1

SYM in the IR [11]9. It is a supersymmetric an-

alytic solution of the supergravity equations of

motion for the two scalar fields m and σ. m rep-

resents the diagonal supersymmetric mass term

for the three chiral fields of N=4 SYM and σ the

N=1 gaugino condensate. The solution depends

on two parameters C1 and C2, determining the

position y0 where the two scalar fields m and σ,

respectively, become singular. For C2 ≤ 3C1, m
becomes singular first at y = C1 with metric

ds2 = dy2 + |y − C1|dxµdxµ. (3.4)

corresponding to A = 1/2. At this point, σ is still

finite and its magnitude determines the gaugino

condensate. We can study the UV behaviour and

check that m corresponds to a true deformation

of the N=4 Lagrangians while σ corresponds to a

9This example is discussed in details in M. Petrini’s

talk at this conference.

condensate. The interpretation of the solution is

therefore the following: upon perturbation with

a mass term for the three chiral fields, the N=4

SYM theory flows in the IR to pure N=1 SYM in

a vacuum with a non-zero gaugino condensate.

For C2 > 3C2, σ diverges first with a value

A = 1/6 which does not satisfy the criterion in

[18]. For this and other reasons, we regard these

solutions as unphysical.

Despite the presence of a singularity that in-

validates the supergravity approximation in the

IR, the qualitative properties of the solution agree

with the QFT expectations: quarks confine, mono-

poles are screened, and there is a gaugino conden-

sate [11]. In supergravity, we have two indepen-

dent parameters C1 and C2. We have a chirally-

symmetric vacuum and a continuous degeneracy

of vacua with arbitrary small condensate. We

certainly expect that the correct treatment of

the singularity and its resolution in string theory

fixes the relation between C1 and C2 in agree-

ment with field theory expectations. Strong cou-

pling QFT results for N=1 SYM have been re-

cently obtained and differ considerably from the

weak coupling ones [43]. At weak coupling, the

spontaneous breaking of the chiral symmetry ZN
gives N vacua that only differ for the phase of

the gaugino condensate < λλ >∼ e2πik/NΛ3N=1.

In the large N limit, we obtain a circle of vacua.

The magnitude of the gaugino condensate is fixed

in terms of the SYM scale ΛN=1 ∼ me−1/3Ng
2

.

At strong coupling instead, it was shown in [43]

that there is, at least for θ = 0, a distribution of

vacua with condensate < λλ >∼ m3x3/j2, j =

1, 2, ... with zero phase. The weakly coupled cir-

cle is lost, the condensate magnitude is not fixed

and the vacua have an accumulation point at the

origin (zero condensate). We may identify the

solution with C2 = 3C1 with the j = 1 vacuum

in [43] and the other solutions with C2 < 3C1
with the j 6= 1 vacua. To see how the continuum
of vacua in supergravity is reduced to a discrete

numerable set, we should understand how to in-

clude string corrections in our computation. No-

tice that the solution with σ = 0, which is not

appealing on the ground of weak coupling intu-

ition, could be nevertheless used as a (reasonable

?) approximation for the many vacua with small

condensate at strong coupling.

8
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It was proposed in [18] to fix the relation be-

tween C1 and C2 by considering the finite tem-

perature version of our solution, where condi-

tions to be imposed at the horizon fix the pa-

rameters. One finds C2 = 3C1. This is the only

special value for our parameters, since, exactly

for C2 = 3C1, the two scalars m and σ diverge

at the same point in y. In SYM the breaking

of supersymmetry will select the vacuum with

minimal energy. At weak coupling, where all the

vacua have a condensate with the same magni-

tude, this procedure should give us also the value

of the N=1 condensate. At strong coupling, with

condensates of almost arbitrary magnitude, this

would give information at most about one par-

ticular vacuum (j = 1?).

3.3 The fate of the singularity

The knowledge of the full 10 dimensional solution

would greatly help in understanding the prop-

erties of the RG flow and in studying possible

resolutions of the singularity. It may even hap-

pen that the singularity is an artifact of the di-

mensional reduction and disappears in 10d. This

happens, for example, in the case of the Coulomb

branch of N=4 SYM [9], where the 10 dimen-

sional background is just a regular continuous

distribution of D3-branes. However, even in this

context, some other equally nice10 5d solutions

have a lift to still singular 10d solutions, repre-

senting D3-branes with negative tension. The

complete ansatz for the 10d lifting of 5d solu-

tions is known only for a subset of scalars, the

20, coming from the KK modes of the internal

metric. This is sufficient to lift all solutions rep-

resenting the Coulomb branch [9], but it is not

of help with the N=1 SYM solution [11], where

the modes 10 from the anti-symmetric tensors

are excited. A ten dimensional interpretation of

the N=1 SYM solution in terms of a background

with also D5-branes has been proposed in [42].

Finally, we mention that a mechanism for

resolving singularities in distributions of branes

which may help, after the 10d lifting, has been

proposed in [21].

10But not satisfying the criterion in [18].
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