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Abstract: Recent progress in developing tools for E6 model building is reported. These tools are

used to illustrate a natural mechanism for Higgs mixing in E6 models.

1. Introduction

The exceptional group E6 has received consid-

eration as a unified group for over twenty years

[1, 2, 3]. The fundamental representation allows

for the possibility that an entire generation of

standard model fermions, a right handed neu-

trino and two Higgs doublet are unified into a

single representation.

27 = (3,2)1 ⊕ (3̄,1)−4
⊕ (3,1)−2 ⊕ (3̄,1)2 ⊕ (3̄,1)2
⊕ (1,2)−3 ⊕ (1,2)−3 ⊕ (1,2)3
⊕ (1,1)6 ⊕ (1,1)0⊕(1,1)0

(1.1)

Despite its potential, E6 has been exploited

to a much lesser extent than its subgroups SU(5)

and SO(10) [4, 5]. In fact, surprisingly little of

the group theory necessary to build a complete

E6 model had been explicitly worked prior to the

work reported here[6], with the notable exception

of the work by Koh, Patera and Rousseau [7].

The principle motivation for the work re-

ported here [6] was to develop a set of tools which

are currently being used to construct predictive

models of fermion masses and mixing angles in

E6 unified theories [8], but our group theoretic

results should be important and useful to any-

one seeking to build an explicit unified models

based on E6.

Model Building Considerations

Although a wealth of predictive theories based on

smaller groups like SU(5) and SO(10) have been
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proposed, theories containing at most SO(10)

unification are in several respects unsatisfactory.

First, from the point of view of supersymmet-

ric theories, the distinction between the stan-

dard model fermions and the Higgs doublets as

candidates for inclusion in a unified representa-

tion is artificial, since they are all contained in

left handed chiral superfields. A supersymmetric

extension of the one generation standard model

would require the chiral superfields listed below:

SU(5) : 10⊕ 5⊕ 5⊕ 5⊕ 1
SO(10) : 16⊕ 10
E6 : 27

(1.2)

¿From this point of view, the unification present

in SU(5) and SO(10) is seen to be incomplete.

Second, these theories do not naturally ac-

commodate the fact that

md

mu

mt

mb
� 1. (1.3)

without a loss of predictivity. Moreover, an SO(10)

model with a single 10 leads to the GUT scale

relation λt = λb = λτ [9], which implies tanβ ∼
mt/mb, which is problematic from the point of

view of electroweak symmetry breaking. In or-

der to avoid large tanβ one must mix the Higgs

doublets in the 10 with other doublet states. In

the case where we have n copies of the 10 dimen-

sional representation, the mass matrix for the n

doublet pairs HU and HD induced at the GUT

scale is an n× n matrix µ:
−L ⊃ HUµHD. (1.4)

In order to have a pair of doublets which do not

acquire GUT scale masses we require detµ = 0.
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The light HU (HD) states are the zero eigen-

vectors of µ† (µ) respectively. The most natu-
ral ways to accomplish this are to arrange fam-

ily symmetries so that a row or column vanish,

rows or columns proportional, or other symmetry

properties which include, for example, a totally

anti-symmetric matrix when n = 3. The first

and second cases are unnatural and lead to mod-

els with little predictivity while mass matrices

typical of the latter cases:

µ ∼

 X

±X Z Y

±Y


 , µ ∼


 A B

−A C

−B −C



(1.5)

mix the HU and HD sectors identically leading

to tanβ ∼ mt/mb. As argued below, E6 provides
a natural solution to this problem.

E6 Clebsch Gordon coefficients

In order to provide a complete construction of

a supersymmetric E6 theory, we have computed

all of the Clebsch-Gordon coefficients occuring in

in the renormalizable superpotential interactions

of an E6 theory containing fundamental, anti-

fundamental and adjoint representations. The

relevant renormalizable operators are listed be-

low:

Dimension Singlets

2 27 · 27 {78,78}

3 {27,27} · 27 {27,27} · 27
27 · 27 · 78 [78,78]78

In addition to the operators listed above, we

have determined several of the dimension four op-

erators in our analysis [6]. This calculation was

made using standard techniques. The algebra is

written as a set of ladder operators:

[Ha, Hb] = 0

[Ha, E±αi ] = ±αiaE±αi

[E±αi , E±αj ] =



0 α+ β not a root

αaHa α = −β
NαβEα+β otherwise

(1.6)

States in a representation are obtained by a suc-

cession of lowering operators applied to the high-

est weight in the representation:

(a1, a2, . . . , an)

?

E−αj

(a′1, a′2, . . . , a′n)

a′i = ai −Aij

The Dynkin coordinates of a weight µ: are ai =

2 〈µ,αi〉〈αi,αi〉 , and the Cartan matrix is:

Aij = 2
〈αi, αj〉
〈αj , αj〉 (1.7)

This procedure proves to be technically chal-

lenging for representations with a large number

of degenerate weights. The lowering coefficients

for degenerate weights are defined by:

E±αi | µa〉 = N±αi,µa→(µ±αi)b | (µ±αi)b〉 (1.8)
These lowering coefficients satisfy the recurrence

relation:

(G(µ±α))−1dc N±α,µa→(µ±α)cN
∗
±α,µb→(µ±α)d

= ∓(Gµ)−1ba 〈α, µ〉
+G

(µ∓α)
ef (Gµ)−1bg (G

µ)−1haN±α(µ∓α)e→µg
×N∗±α(µ∓α)f→µh ,

(1.9)

where the metric on the degenerate weight space

is

Iµ = Gij | µi〉〈µj |
Gij = (M

−1)ij where Mij = 〈µi | µj〉.
(1.10)

In general, lowering through a chain of degener-

ate weights involves three metrics:

µ+ α G(µ+α)

?

E−α

µ G(µ)

?

E−α

µ− α G(µ−α)

The technical challenge is further aggravated

by the fact that it is often impossible to choose
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a single basis for all of the states of a degenerate

weight in a representation such that lowering a

particular state results in a particular state of

lower weight (as opposed to a linear combination

of weights) for all possible lowerings.

The calculation of the product of two adjoint

representation provides an example:

78 ⊗ 78 =2430⊕ 2925⊕ 650⊕ 78⊕ 1,
(000001) ⊗ (000001)= (000002)⊕(001000)⊕(100010)⊕(000001)⊕(000000).

level weight deg.

0 (000002) = (000001)(000001) 1 2430

1 (001000) = {(000001),(00100−1)}

(001000) = {(000001),(00100−1)}± 2

{
1 2430

1 2925
...

6 (100010) 8



3 2430

4 2925

1 650
...

11 (000001) 32




11 2430

15 2925

5 650

1 78
...

22 (000000) NB 185→ 36 108




36 2430

45 2925

20 650

6 78

1 1

For the degenerate (000000) weight, the 36 linearly-

independent degenerate weights of the 2430which

occur at level 22 must be formed from 185 linearly-

dependent degenerate (000000) weights which one

obtains after application of the lowering operator

to the level 21 states.

Masses and Mixings

The relevant operators for the charged fermion

masses and Higgs doublet mixing obtained from

our analysis [6], include a totally symmetric di-

mension three operator:

O{abc} = 27a 27b 27c, (1.11)

and two dimension-four operators which are re-

spectively symmetric and anti-symmetric with

respect to interchange of two fundamental rep-

resentations

O{ab}c =
1

M
{27a,27b}〈78〉27c.

O[ab]c =
1

M
[27a,27b] 〈78〉27c, (1.12)

and Frogatt-Nielsen like [10] operators which

can be generated by integrating heavy vector-like

27− 27 pairs out of the theory:

Oabc = 27a
〈78〉1
〈1,78〉1

··· 〈78〉n〈1,78〉n 27b
〈78〉n+1
〈1,78〉n+1

··· 〈78〉l〈1,78〉l
27c

(1.13)

These operators, like the analogous operators for

SO(10) [11], relate the Yukawa couplings Yu,d,e
up to possible Clebsch factors from vevs of the

adjoint representation. The larger unification in

E6 gives an additional relation between these cou-

plings, the neutrino Yukawa couplings, and the

mixing of the Higgs doublets. Below we list ex-

ample induced mixings, for {27i,27j}±27k: in-
duced by the operators above:

YF =


 0 C±F cHk ±C±F cHj
C±FHk 0 ±C±φ Hi
±C±FHj C±φ Hi 0




µ =


 0 C±H〈Sk〉 ±C±H〈Sj〉
C±h 〈Sk〉 0 ±C±S 〈Si〉
±C±h 〈Sj〉 C±S 〈Si〉 0



(1.14)

the anti-symmetric operator is seen to provide

a natural solution to detµ = 0, with unequal

mixings for HU and HD as advertised.
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