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Abstract: We calculate the O(αs) corrections to longitudinal spin-spin correlations in e
+e− → qq̄.

For top quark pair production the O(αs) corrections to the longitudinal spin-spin asymmetry amount

to less than 1% in the q2-range from above tt̄-threshold up to
√
q2 = 1000GeV . In the e+e− → bb̄

case the O(αs) corrections reduce the asymmetry value from its m = 0 value of −1 to approximately
−0.96 for q2-values around the Z-peak.

Recently there has been renewed interest in

the role of quark mass effects in the production

of quarks and gluons in e+e− annihilations. Jet
definition schemes, event shape variables, heavy

flavour momentum correlations and the polariza-

tion of the gluon [1] are affected by the presence

of quark masses for charm and botton quarks

even when they are produced at the scale of the

Z-mass [2, 3, 4]. A careful investigation of quark

mass effects in e+e− annihilations may even lead
to a alternative determination of the quark mass

values [2, 3, 4, 5]. There is obvious interest in

quark mass effects for tt̄ production where quark

mass effects cannot be neglected in the envisaged

range of energies to be covered by the Next Lin-

ear Collider (NLC).

We present the O(αs) radiative corrections

to longitudinal spin-spin correlations of massive

quark pairs produced in e+e− annihilations. The
longitudinal polarization of massive quarks af-

fects the shape of the energy spectrum of their

secondary decay leptons. Thus longitudinal spin-

spin correlation effects in pair produced quarks

and antiquarks will lead to correlation effects of

the energy spectra of their secondary decay lep-

tons and antileptons. Let us begin with defin-
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ing the differential joint quark-antiquark density

matrix dσ = dσλ1λ2;λ′1λ′2 where λ1 and λ2 denote

the helicities of the quark and antiquark, respec-

tively. In this paper our main interest is the lon-

gitudinal polarization of the quark and antiquark

and in particular their longitudinal spin-spin cor-

relations. Thus we specify to the diagonal case

λ1 = λ
′
1 and λ2 = λ

′
2.

The diagonal part of the differential joint

density matrix can be represented in terms of its

components along the products of the unit ma-

trix and the z-components of the Pauli matrix

σ3 (σ3 = p̂1~σ for the quark and σ3 = p̂2~σ for the

antiquark, p̂i = ~pi/|~pi|). One has

σ =
1

4

(
dσ1l⊗ 1l + dσ(`1)σ3 ⊗ 1l

+dσ(`2)1l⊗ σ3 + dσ(`1`2)σ3 ⊗ σ3
)
. (1)

From CP invariance one knows that dσ and

dσ(`1`2) obtain contributions from the parity-even

V V - and AA-current products, whereas dσ(`1)

and dσ(`2) are contributed to by the parity-odd

VA and AV -current products. The parity-even

terms dσ and dσ(`1`2) are C-even and thus sym-

metric under q ↔ q̄ exchange, whereas the parity-
odd terms are C-odd and thus one has dσ(`1)(p1,

p2) = −dσ(`2)(p2, p1) for the single-spin depen-
dent contributions.

O(αs) radiative corrections to the rate com-
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ponent dσ have been discussed before [6, 7] in-

cluding beam polarization effects [8] and beam-

event correlation effects [8, 9]. As concerns the

longitudinal spin-spin correlation component

dσ(`1`2) the O(αs) tree graph contributions have

been determined in [10]. Here we calculate the

O(αs) radiative corrections to the fully integrated

spin-spin correlation component σ(`1`2) where we

average out beam-event correlation effects.

As before we write the electro-weak cross sec-

tion e+e− → q(p1)q̄(p2) and e+e− → q(p1)q̄(p2)
g(p3) in modular form in terms of two building

blocks [8]. Thus we write (beam polarization ef-

fects not included and beam-event correlations

averaged out)

dσ(s`1, s
`
2) =

1

4

(
g11(dσ1 + dσ

(`1`2)
1 s`1s

`
2)

+g12(dσ2 + dσ
(`1`2)
2 s`1s

`
2) (2)

+g14(dσ
(`1)
4 s`1 + dσ

(`2)
4 s`2)

)
.

The index i = 1, 2, 4 on the rate components

is explained later on. The first building block

gij (i, j = 1, 2) specifies the electro-weak model

dependence of the e+e− cross section. For the
present discussion we need the components g11,

g12 and g14. They are given by

g11 = Q2f − 2QfvevfReχZ + (v2f + a2f )Ξ,
g12 = Q2f − 2QfvevfReχZ + (v2f − a2f )Ξ,
g14 = 2QfveafReχZ − 2vfafΞ, (3)

with Ξ = (v2e + a
2
e)|χZ|2

where, in the Standard Model, χZ(q
2) = gM2Zq

2/

(q2 −M2Z + iMZΓZ), with MZ and ΓZ the mass
and width of the Z0 and g = GF (8

√
2πα)−1 ≈

4.49 · 10−5GeV −2. Qf are the charges of the
final state quarks to which the electro-weak cur-

rents directly couple; ve and ae, vf and af are

the electro-weak vector and axial vector coupling

constants. For example, in the Weinberg-Salam

model, one has ve = −1 + 4 sin2 θW , ae = −1
for leptons, vf = 1 − 8

3 sin
2 θW , af = 1 for up-

type quarks (Qf =
2
3 ), and vf = −1+ 43 sin2 θW ,

af = −1 for down-type quarks (Qf = − 13 ). In
this paper we use Standard Model couplings with

sin2 θW = 0.226 and MZ = 91.178GeV , ΓZ =

2.487GeV .

The second building block is determined by

the hadron dynamics, i.e. by the current-induced

production of a quark-antiquark pair which, in

the O(αs) case, is followed by gluon emission. In

the O(αs) case one also has to add the one loop-

contribution. We shall work in terms of unpo-

larized and polarized hadron tensor components

HU+L, H
(`1)
U+L, H

(`2)
U+L and H

(`1`2)
U+L . In the two

body case e+e− → qq̄ the unpolarized rate com-
ponents are given by

σi =
πα2v

3q4
HiU+L. (4)

In the three-body case e+e− → qq̄g the unpo-
larized differential rate components and the un-

polarized hadron tensor components HiU+L are

related by

dσi

dydz
=

α

48πq2
HiU+L(y, z) (i = 1, 2). (5)

As kinematic variables we use the two energy-

type variables y = 1 − 2p1q/q2 and z = 1 −
2p2q/q

2.

The index i = 1, 2 in Eqs. (4) and (5) speci-

fies the current composition in terms of the two

parity-even products of the vector and the axial

vector currents according to (dropping all further

indices on the hadron tensor)

H1µν =
1

2
(HV Vµν +H

AA
µν ) H

2
µν =

1

2
(HV Vµν −HAAµν ).

(6)

The notation closely follows the one in [8]. Thus

the nomenclature (U +L) in Eqs. (4) and (5) de-

notes the total rate (U : unpolarized transverse,

L: longitudinal) after averaging over the relative

beam-event orientation.

Let us begin with listing the Born term con-

tributions to the various polarized and unpolar-

ized two-body hadron tensor components. One

has (ξ = 4m2q/q
2, v =

√
1− ξ)

H1U+L(Born) = (4− ξ)NCq2,
H2U+L(Born) = 3ξNCq

2,

H
1(`1`2)
U+L (Born) = −(4− 3ξ)NCq2,
H
2(`1`2)
U+L (Born) = −ξNCq2, (7)

H
4(`1)
U+L(Born) = 4vNCq

2,

H
4(`2)
U+L(Born) = −4vNCq2.

2
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The O(αs) spin dependent hadronic three-

body tensor

Hµν(p1, p2, p3, s1, s2) =
∑
G spin

〈qq̄g|jµ|0〉〈0|j†µ|qq̄g〉

(8)

can easily be calculated from the relevant Feyn-

man diagrams. The (U + L)-component is then

obtained by contraction with the four-transverse

metric tensor (−gµν + qµqν/q2). Finally, the lon-
gitudinal spin components of the quark and an-

tiquark can be projected out with the help of the

respective longitudinal spin vectors. They read

(s`1)
µ =

s`1√
ξ
(
√
(1 − y)2 − ξ; 0, 0, 1− y) (9)

(s`2)
µ =

s`2√
ξ
(
√
(1− z)2 − ξ; (1 − z) sin θ12, 0,

(1− z) cos θ12) (10)

with

cos θ12 =
yz + y + z − 1 + ξ√

(1− y)2 − ξ√(1− z)2 − ξ . (11)
The resulting spin-independent and single-spin

dependent components of the hadron tensor have

been given before (see e.g. [6, 8, 7]). Here we list

the spin-spin dependent piece. One has (vy :=√
(1− y)2 − ξ, vz :=

√
(1− z)2 − ξ)

H
1(`1`2)
U+L (y, z) =

1

vyvz

[
− 4(12− 10ξ + ξ2)

+(1− ξ)(4 − 3ξ)ξ
(
1

y2
+
1

z2

)
+ (4− 3ξ)×

(8 − 7ξ)
(
1

y
+
1

z

)
+ 2(12− 5ξ)(y + z)

−2(4− ξ)(y2 + z2)− (4− 3ξ)ξ
(
y

z2
− y

2

z2
+

+
z

y2
− z

2

y2

)
− 2(1− ξ)(2 − ξ)(4 − 3ξ) 1

yz

−(4− ξ)(6 − 5ξ)×
(
y

z
+
z

y

)

+2(4− 5ξ)
(
y2

z
+
z2

y

)
+ 4ξyz

]
, (12)

H
2(`1`2)
U+L (y, z) =

ξ

vyvz

[
− 4ξ + (1− ξ)ξ

(
1

y2
+
1

z2

)

+(8− 7ξ)
(
1

y
+
1

z

)
− 6(y + z)− 2(y2 + z2)

−ξ
(
y

z2
− y

2

z2
+
z

y2
− z

2

y2

)
− 2(2− ξ)(1 − ξ) 1

yz

−(6 + ξ)
(
y

z
+
z

y

)
+ 2

(
y2

z
+
z2

y

)
− 4yz

]
.(13)

What remains to be done is to perform the

phase space integrations and to add in the one-

loop contributions. In this calculation we per-

form the requisite two-fold phase space integra-

tion over the full (y, z) phase space. As in [6, 8]

the infrared singularities are regularized by intro-

ducing a gluon mass. The infrared singularities

in the tree graph and one-loop contributions can-

cel and one remains with finite remainders. It is

quite clear that the finite result is independent

of the specific regularization procedure.

For the sake of completeness we include in

our results also the unpolarized hadron tensor

components which are needed for the normal-

ization of the longitudinal spin-spin asymmetry.

The O(αs) corrections (tree plus loop) read

H1U+L(αs)=N

[
3

2
(4 − ξ)(2− ξ)v + 1

4
(192+

−104ξ − 4ξ2 + 3ξ3)t3 − 2(4− ξ)
(
(2− ξ)×

(t8 − t9) + 2v(t10 + 2t12)
)]
, (14)

H2U+L(αs)=Nξ

[
3

2
(18− ξ)v + 3

4
(24− 8ξ − ξ2)×

×t3 − 6
(
(2− ξ)(t8 − t9) + 2v(t10 + 2t12)

)]
, (15)

H
1(`1`2)
U+L (αs)=N

[
(88− 78ξ − 5ξ2 + 3ξ3) 1

2v
+

−(2− ξ)(20 + 3ξ) +
√
ξ(32 + 12ξ + 3ξ2)

−
(
16− 42ξ + 31ξ2 − 4ξ3 + 8(4− 3ξ)v3

)
t3

v2

+2(4− 3ξ)
(
(2− ξ)(t8 − t16) + 2v(t10 + 2t12) +

−(4− ξ)(8− 3ξ − ξ2) t13
4v2

)
− 2(8− 10ξ +

+ξ2)t14 + (32− 88ξ + 76ξ2 − 19ξ3) t15
v3

]
, (16)

H
2(`1`2)
U+L (αs)=Nξ

[
− (54− 65ξ + 3ξ2) 1

2v

3
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+58− 56
√
ξ − 3ξ − 3ξ

√
ξ +

(
2 + ξ − 4ξ2 +

−8v3
)
t3

v2
+ 2

(
(2 − ξ)(t8 − t16) + 2v(t10 + 2t12)

)

+(96− 140ξ + 35ξ2 − 3ξ3) t13
2v2
− 2(10 +

+3ξ)t14 + (8− 20ξ + 13ξ2) t15
v3

]
(17)

where we have used an overall normalization fac-

tor N = αsNCCF q
2/4πv. The unpolarized ha-

dron tensor componentsH1U+L(αs) andH
2
U+L(αs)

including the O(αs) rate functions ti (i = 3, 8, 9,

10, 12) have been calculated before in [8]. In ad-

dition to the rate functions calculated in [8] the

spin-spin contributions bring in a set of new rate

functions ti (i = 13, 14, 15, 16). The new set of

rate functions needed in the present application

is given by

t13 = ln

(
1 + v

2−√ξ
)

,

t14 = ln

(
4

ξ

)
ln

(
1 + v

2−√ξ
)
+ 2Li2

(
2−√ξ
2

)
+

−2Li2
(√
ξ

2

)
+ Li2

(
1− v
2

)
− Li2

(
1 + v

2

)
,

t15 =

(
ln

(
1 + v

1− v
)
+ ln

( √
ξ

2−√ξ
))2

−4Li2
(√
1− v
1 + v

)
+ 2Li2

(
2−√ξ
1 + v

)
+

+2Li2

(
1− v
2−√ξ

)
, (18)

t16 = ln

(
1 + v

1− v
)
ln

(
4v4

ξ(1 + v)2

)

−Li2
(

2v

(1 + v)2

)
+ Li2

( −2v
(1− v)2

)

+
1

2
Li2

(
− (1− v)

2

(1 + v)2

)
− 1
2
Li2

(
− (1 + v)

2

(1− v)2
)
.

We are now in the position to discuss the nor-

malized longitudinal spin-spin correlation func-

tion 〈P ``〉 which is defined as

〈P ``〉 = σ
(`1`2)

σ
=
σ(↑↑)− σ(↑↓)− σ(↓↑) + σ(↓↓)
σ(↑↑) + σ(↑↓) + σ(↓↑) + σ(↓↓) .

(19)

The mean 〈P ``〉 is taken with regard to all phase-
space variables including the beam-event orien-

tation variables.

Figure 1: Energy dependence of O(1) and O(αs)

mean longitudinal spin-spin correlations 〈P ``〉 in
e+e− → tt̄(g)

Figure 2: Energy dependence of O(1) and O(αs)

mean longitudinal spin-spin correlations 〈P ``〉 in
e+e− → bb̄(g). The vertical line indicates the bb̄-

threshold

Let us now present our numerical results. In

Fig. 1 we plot the mean longitudinal spin-spin

asymmetry 〈P ``〉 against the c.m. energy √q2
for top quark pair production. The longitudi-

nal spin-spin asymmetry rises from its thresh-

old value of 〈P ``〉 = −1/3 to around 〈P ``〉 =
−0.9 at √q2 = 1000GeV . The O(αs) correction
to the asymmetry amounts to less than 1% in

the q2-range from above tt̄ threshold to
√
q2 =

1000GeV . In Fig. 2 we present our results on

〈P ``〉 for bottom quark pair production starting
from bb̄ threshold (where 〈P ``〉 = −1/3) up to√
q2 = 100GeV . For the lower q2-values from

threshold to about 30GeV the O(αs) corrections

are quite small. Starting at around
√
q2 = 30GeV

the O(αs) correction become larger. The Born

term contribution very quickly acquires its asymp-

4
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Figure 3: Energy dependence of O(1) and O(αs)

cross section in e+e− → tt̄(g)

totic limiting value 〈P ``〉 = −1 due to the fact
that the corrections to the leading term are quadratic

in the ratio m/
√
q2. Contrary to this the O(αs)

curve remains below the naive limiting value of

−1. From the limiting formula

〈P ``〉 = −
1 +
αs

π
−
[
4αs
3π

]
1 +
αs

π

(20)

one concludes that a large part of the deviation

is made up by the anomalous contributions. For

example, at the position of the Z pole the limit-

ing value of the anomalous contribution to 〈P ``〉
amounts to 〈P ``〉(anom) = 0.048 (αs(mZ) =
0.118). From the full calculation one finds 〈P ``〉
(Born) = −0.996 and 〈P ``〉(αs) = −0.964. Thus
the deviation of 〈P ``〉 from its naive value of
〈P ``〉 = −1 can be seen to arise to a large part
from the anomalous contribution.

Fig. 3 and Fig. 4 show the cross section for the

tt̄ and bb̄ production respectively, the O(αs) cor-

rection enhances the cross section near threshold.
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