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Abstract: We discuss the derivation of Newtonian potentials in the framework of quantum field

theory. We focus on two particular points: on long range forces i.e. forces which fall off as 1/rn

being mediated by light quanta like neutrinos or Goldstone bosons and on possible temperature de-

pendence of such forces arising in situations when the exchanged quanta are in a thermal heat bath.

Examples of the latter are cosmic relic photons and relic neutrinos. Among other things, we will

show that the existence of cosmic relic neutrinos modifies the long tail of the two-neutrino exchange

Feinberg-Sucher force drastically. Results concerning the potential mediated by two Goldstone bosons

are also presented.

1. Overview

One of the most important key concepts in the-

oretical physics, is the concept of a force intro-

duced by Newton some three hundred years ago.

Without any doubts, this concept continues to

play a fruitful role in physics, despite the fact

that classical mechanics has been superseded by

the more general quantum theory. Indeed, mod-

ern theories of interactions use the tools of quan-

tum field theory (QFT) as a general framework.

It bears therefore a certain charm when we can

span a bridge between classical mechanics and

QFT by deriving new forces, especially the long

range forces, within the framework of the lat-

ter. However, this is not the only reason which

makes the subject worthwhile as the following

rough classification of long range forces demon-

strates.

1. Quantum corrections to classical results. The

QFT can, of course, reproduce the classical long

range forces of electromagnetism and gravity. In

addition QFT predicts also quantum mechani-

cal corrections to these classical results. So, for

instance the Coulomb potential receives correc-

tions of the following type [1]

Vem(r) =
e2

r

[
1 + δV QMem (r)

]

δV QMem (r) =
2α

3π

(
ln(1/mer)− C − 5

6

)

− 2α
2e2

225π

1

(mer)4
(1.1)

where C = 0.577 and me is the electron mass.

The first correction (∼ α) is due to vacuum po-
larization and valid for mer � 1. The second
correction (∼ α2) has its root in the Heisenberg-
Euler Lagrangian (γγ scattering). Similarly, for

gravity using low energy effective field theory

techniques, one derives quantum corrections of

the form [2]

Vgravity(r) = −GNM1M2
r

[
1 + δV QMgravity(r)

]

δV QMgravity(r) = −
GN (M1 +M2)

r
+
127GN
30π2r2

(1.2)

2. New forces from old quanta. All forces in the

QFT arise from the exchange of quanta, mass-

less or very light in the case of long range forces.

Apart from the corrections to the classical results

given above, the next logical step is to search for

possible long range forces mediated by some light

particles in the experimentally established parti-

cle spectrum. Neutrinos, being either very light

or massless, are the natural candidates. This was
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suspected by Feynman [3] and demonstrated in

detail by Feinberg and Sucher [4]. We quote be-

low the more general results for massive neutri-

nos distinguishing between Dirac and Majorana

type [5]

VDirac(r) =
G2Fm

3
νgV g

′
V

4π3r2
K3(2mνr)

VMajorana(r) =
G2Fm

2
νgV g

′
V

2π3r3
K2(2mνr)

(1.3)

where gV and g
′
V are vector coupling constants

and Kn are modified Bessel functions. For mν =

0 both results reduce to the formula obtained

originally by Feinberg and Sucher, namely

VFS(r) =
G2F gV g

′
V

4π3r5
. (1.4)

Another famous example is the Casimir-Polder

force mediated by two photons between polariz-

able particles [6]. Its analytical form reads

VCP (r) = −23(α
2
E + α

2
B)− 14(αEαB)
(4π)3r7

(1.5)

where αE and αB are electric and magnetic po-

larizabilities of the external particle. It is worth-

while mentioning that it took some fifty years

to verify this force experimentally [7]. This also

shows that a technologically difficult task, not

possible at the moment, could still become fea-

sible in the future. We emphasize this, because

all forces we are discussing here are feeble and

difficult to detect experimentally.

3.New forces from new quanta. While going be-

yond the Standard Model we can, in principle,

encounter many other light quanta, mostly light

scalars, pseudo-scalars or true Goldstone bosons.

Famous examples are Axions [8], Majorons [9]

and scalars and pseudo-scalars in no-scale super-

gravity [10] and others [11]. A tower of mas-

sive gravitons is also possible by compactification

of extra higher space dimensions [12]. Hence a

search for long range forces mediated by such ex-

otic particles could be a harbinger of new physics.

For more details, especially regarding the exper-

imental aspect of such a search, we refer the

reader to [13].

4. New effects: temperature dependent forces.

From the point of view of QFT at finite tem-

perature, an exchange of quanta which are in a

thermal bath at a temperature T leads, of course,

to temperature dependent amplitudes and there-

fore also to temperature dependent forces. This

is indeed a curious prediction of QFT at finite

temperature. Physical examples of quanta in a

thermal heat bath are cosmic relic photons (mi-

crowave background radiation) and relic neutri-

nos (the latter not yet experimentally verified).

In the real time approach to finite temperature

field theory the full propagator is a matrix out

of which we need for the actual calculations of

potentials only the 1-1 component given by

SfermionT (k) = (/k +m)[(k2 −m2 + iε)−1
+2πiδ(k2 −m2)(θ(k0)n+(T ) + θ(−k0)n−(T ))]
SbosonT (k) = (k2 −m2 + iε)−1
−2πiδ(k2 −m2)(θ(k0)n+(T ) + θ(−k0)n−(T ))

(1.6)

where n+ and n− are distribution functions for
particle and antiparticle, respectively. Tempera-

ture corrections to various long range forces have

been calculated in [14, 15, 16, 17, 18, 19].

5. Forces not derivable from QFT. We mention

here for completeness that an example of such a

force would be the Newtonian limit of Einstein’s

gravity with a cosmological constant Λ. For a

spherical object or point-like particle, the gravi-

tational potential reads

ΦΛ(r) = −GNM
r
− 1
6
Λr2 (1.7)

The second part, proportional to Λ, cannot be

derived from QFT. If certain recent experimental

indications of a non-zero cosmological constant

should be confirmed, the Λ-force in the Newto-

nian approximation would be “longest” out of the

long range forces in nature. For peculiarities of

the Newtonian limit in the presence of non-zero

Λ, see [20].

Before discussing concrete examples, a few

comments about the actual method to calculate

a potential from an amplitude M are in order.

There are essentially 2 equivalent methods. The

more standard one is to take the Fourier trans-

form of a matrix element in the static limit i.e.

approximating the four momentum transfer q by
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q ' (0,Q) (Q = |Q|).

V (r) =

∫
d3Q

(2π)2
exp(iQr)M(Q)

=
1

2π2r

∫ ∞
0

dQQM(Q) sinQr (1.8)

The other, more elaborate, method uses disper-

sion techniques and defines [21]

V (r) =
−i
8π2r

∫ ∞
4m2
dt[M]t exp(−

√
tr) (1.9)

where the integration variable t equals the four–

momentum transfer squared, q2. Here, [M]t de-
notes the discontinuity of the Feynman ampli-

tude across the cut in the real t axis.

In the next sections we will focus on two par-

ticular examples with slightly different emphasis.

The first example will be the two-neutrino ex-

change force (Feinberg-Sucher force). We will ex-

amine here the aforementioned temperature de-

pendence taking different thermal distributions

n±(T ). The second example deals with the two-
boson exchange force and emphasizes the differ-

ence between light pseudoscalar and Goldstone

bosons.

2. Two-neutrino exchange force

Given (1.8), the potential follows once we have

calculated the matrix element M using (1.6).

Let us start with a simple example of classical

Boltzmann-distribution.

a.Boltzmann-distribution: n± = e[(±µ−|k
0|)/T ].

With this distribution, the integrations involved

in the calculation of potentials can be easily done

by conveniently choosing the order in which they

are performed. The results can be expressed

again in terms of Bessel functions and read [15]:

V DiracT (r) = −G
2
Fm

4
νgV g

′
V

π3r
cosh (µ/T )

×
[
K1(ρ)

ρ
+
4K2(ρ)

ρ2

]
(2.1)

and

VMajoranaT (r) = −4G
2
Fm

4
νgV g

′
V

π3r

K2(ρ)

ρ2
(2.2)

where we have defined

ρ ≡ mν
T

√
1 + (2rT )2. (2.3)

For massless neutrinos (and µ = 0) both poten-

tials collapse to

VT (r) = −8G
2
Fm

4gV g
′
V

π3r

1

ρ4
(2.4)

which is the result given in reference [14]. We

see that for distances much larger than T−1 the
potential reads

VT (r) ' −G
2
F gV g

′
V

2π3r5
. (2.5)

When added to the vacuum result (1.4), the total

potential is

Vtot(r) ' −G
2
F gV g

′
V

4π3r5
(2.6)

that is, in the presence of a thermal neutrino

background, distributed according to the Boltz-

mann distribution, the original Feinberg-Sucher

force switches sign, i.e. a repulsive force turns

into an attractive one. On the other hand, for

(rT � 1), the temperature dependent potential
(16) behaves as follows

VT (r) ' −8G
2
F gV g

′
V T

4

π3r
(2.7)

which is negligible compared to the vacuum con-

tribution in equation (1.4).

b.Cold degenerate neutrinos: n+ = θ(µ− k0).
The main interest in such distributions is the

physics of supernova. Here we find for the po-

tential (assuming mν = 0)

VT (r) ' −2VFS(r)[1 − cos 2µr − µr sin 2µr]
(2.8)

which agrees with the result given in [14] and in

[22, 16].

c.Fermi-Dirac: n± = (e(k
0∓µ)/T + 1)−1

The result for mν = 0 can be written in the form

[16]

VT (r) = −G
2
F gV g

′
V

4π3r4

[
1− r d

dr

]
IT (r;µ) (2.9)

with the final result being expressible in terms of

the hypergeometric function F (a, b; c; z). Indeed,

we have

IT (r;µ) =
1

4r
[F (1,−2irT ; 1− 2irT ;−e−µ/T )

+ F (1,−2irT ; 1− 2irT ;−eµ/T )
+ F (1, 2irT ; 1 + 2irT ;−e−µ/T )
+ F (1, 2irT ; 1 + 2irT ;−eµ/T )
− 8πrT cos 2rµ csch 2πrT ], (2.10)
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Let us take nondegenerate neutrinos (µ = 0).

After some algebra we obtain IT (r;µ = 0) in the

form

IT (r;µ = 0) =
1

2r
[1− 2πrT csch 2πrT ] (2.11)

such that the temperature dependent potential

for nondegenerate relic neutrinos is:

VT (r) = −VFS(r) ×
[1− πrT csch 2πrT (1 + 2πrT coth 2πrT )]

(2.12)

where VFS(r) is the Feinberg-Sucher potential.

At large distances (i.e. rT � 1) the tempera-
ture dependent effect exactly cancels the vacuum

component,

VT (r) ≈ −VFS(r) (2.13)

This is, indeed, a drastic effect of relic cosmic

neutrinos. It makes the long tail of the Feinberg-

Sucher force effectively non-operative. Note that

the new scale set by the temperature is T−1 '
1mm. In a supra-millimeter range a future ex-

periment searching for the Feinberg-Sucher force

should give a zero result due to cosmic relic neu-

trinos!

3. Two-boson exchange forces

In the following we will need two generic interac-

tions: one of heavy Higgses (called in the follow-

ing H) with fermions and of two light or massless

pseudoscalars a with the heavy scalars H . We

assume that the pseudoscalars do not have tree

level coupling to the fermions. Contracting the

heavy Higgs propagator, the Feynman diagram

looks formally the same like the diagram respon-

sible for the Feinberg-Sucher force, of course with

the internal fermions exchanged by bosons [17].

For two-boson forces arising from yet different

Feynman diagrams see [23].

a.Light pseudoscalar. Consider the case of some

generic non-derivative interaction terms of the

form

Lint = gHff f̄ fH, L′int = gHaaaaH (3.1)

where f are standard fermions, H is the heavy

Higgs with massmH and a is the very light pseu-

doscalar with mass ma. It is convenient to define

global coupling constants as

G(q2) ≡ gHff gHaa
q2 −m2H

, G′(q2) ≡ gHf′f′ gHaa
q2 −m2H

(3.2)

To compute the potential we now use equation

(1.9) and obtain for the discontinuity

[Γ]t =

∫
d4k

(2π)6
δ(k2 −m2a)δ(k̄2 −m2a)θ(k0)θ(k̄0)

=
1

8π

√
1− 4m

2
a

t
. (3.3)

with [M]t = −i2G(0)G′(0)[Γ]t which has to be
inserted into (1.9) to compute the final expres-

sion [17].

V (r) = −G(0)G
′(0)

4π2r

∫ ∞
4m2a

dt[Γ]t exp(−
√
tr)

= −G(0)G
′(0)ma

8π3r2
K1(2mar)

' −G(0)G
′(0)

16π3r3
(3.4)

where the last expression is valid for rma � 1.
b.The case of Goldstone bosons. It is now conve-

nient to use the following derivative interaction

L′′int = g̃HaaH(∂µa)(∂µa). (3.5)

We define also over-all coupling constants G̃(q2)

and G̃′(q2) in analogy to (3.2). As in the preced-
ing case we start with the dispersion theoretical

definition of the potential i.e. eq. (1.9) where we

denote now the matrix element by M̃ given by

M̃ ' −2iG̃(0)G̃′(0) · Γ̃
Γ̃ =

∫
d4k

(2π)4
i

k2
i

k̄2
(k · k̄)2 (3.6)

where as before k̄ = q − k. For the discontinuity
we obtain

[
Γ̃
]
t
=
qµqν

(2π)2

∫
d4k δ(k2)δ(k̄2) kµkν

=
qµqν

(2π)2
π

2

[
1

3

(
qµqν − 1

4
gµνq

2

)]

=
t2

32π
(3.7)

with q2 = t as usual. It remains to calculate

the integral transform of this discontinuity. To

distinguish the potential from the results in the
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preceding section we will call the potential due

to two pseudoscalar exchange arising from the

interaction (3.5), Ṽ . For the latter we get [17]

Ṽ (r) = − G̃(0)G̃
′(0)

128π3r

∫ ∞
0

dt exp(−√tr)t2

= −15G̃(0)G̃
′(0)

8π3r7
. (3.8)

Had we used a non-derivative coupling scheme for

the Goldstone boson interaction with heavy Hig-

gses we would get in the zeroth order (GG′)(q2 =
0) = 0 and only in the next order (GG′)(q2) ∝
q4. This actually means that the calculations

with the two different coupling schemes yield the

same result which is also a consequence of a gen-

eral theorem. The latter ensures independence

of physical results on the parameterization of the

fields [24].
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