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1. Introduction

Styring theory is the only candidate we have so

far for a unification of all the fundamental in-

teractions including gravity. At low energies one

looks at the four dimensional field theory which

results from string theory defined at the Planck

scale. When one-loop effects are included in the

perturbative heterotic string [1] they predict a

unification of the gauge couplings at a scaleMstr. ∼
3.6 × 1017 GeV.
Unification of coupling constants is a neces-

sary phenomenon in string theory. Specifically,

at tree level, the gauge couplings αi = g
2
i /4π,

(i = 1, 2, 3, for the groups of the Standard Model

(SM) factors U(1)Y , SU(2)L, and SU(3)c re-

spectively) are related at the string scale by [2]

κ3α3 = κ2α2 = κ1α1, (1.1)

where κi, i = 1, 2, 3 are the affine levels, or Kac-

Moody levels, at which the group factor U(1)Y ,

SU(2)L, and SU(3)c is realized in the four–dimen-

sional string.

To calculate the Kac-Moody levels, the start-

ing point is the ten-dimensional heterotic string

with gauge group SO(32) or E8⊗E8 correspond-
ing to an affine Lie algebra at level κ = 1. A stan-

dard compactification [3] leads to a four dimen-

sional model with gauge group formed by a prod-

uct of non-abelian gauge groups Gi realized at

levels κi = 1, times U(1) factors. Building string

theories with non-abelian algebras at higher lev-

els (κ = 2, 3, . . .) is considerable more difficult

than at level one, and new methods for compact-

ification must be developed [4]. Now, the affine

levels for abelian U(1) factors can not be deter-

mined from algebraic procedures and their values

may be considered as free parameters in the four

dimensional string [5].

Then, the compactification of the heterotic

string to the four dimensional GSM ≡ SU(3)c ⊗
SU(2)L⊗U(1)Y could be achieved atMstr., with
κ2, κ3 = 1, 2, . . . n, an integer number, and κ1
a normalization free coefficient (κ1 > 1 in or-

der for the eR to be in the massless spectrum

of the four dimensional string [6]). The com-

pactification to a four dimensional simple gauge

group G(= SU(5), SO(10), E6, etc.) has also

been partially studied in the literature, with up-

per values for the integer κ levels calculated [7].

Also, strings with SU(5) ⊂ SU(5) ⊗ SU(5) and
SO(10) ⊂ SO(10)⊗SO(10) at levels κ2 = κ3 = 2
have been presented in Ref. [4].

The values attained by level κi play a fun-

damental role in string theories, because they fix

at the string scale the electroweak mixing angle

sin θW . Besides, they impose limits on possible

representations allowed at low energies [4], and

determine the conformal spin of the currents J

which are forced to be in the spectrum because of

charge quantization [6]. So, theories with differ-

ent κi values must have quite different physical

implications.

Today it is believed that Mstr. could be not

the perturbative value 3.6 × 1017 GeV, but a
smaller one (maybe as small as 1 TeV) [8] coming

from the non perturbative effects of the string.

This matter has not been settled yet, and it is

not crucial for the analysis which follows.
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2. Unified Theories

In a particular GUT model, the unification of the

three SM gauge couplings is properly achieved

if they meet together into a common value α =

g2/4π at a certain energy scaleM , where g is the

gauge coupling constant of the unifying group G.

However, since G ⊃ GSM , the normalization of
the generators corresponding to the subgroups

U(1)Y , SU(2)L, and SU(3)c is in general differ-

ent for each particular groupG, and therefore the

SM coupling constants αi differ at the unification

scale from α by numerical factors ci (αi = ciα).

As a matter of fact, if αi is the coupling constant

of Gi, a simple group embedded into G, then

ci ≡ αi
α
=
Tr.T 2

Tr.T 2i
(2.1)

where T is a generator of the subgroup Gi prop-

erly normalized over a representation R of G,

and Ti is the same generator but normalized over

the representations of Gi embedded into R (the

traces run over complete representations); so, if

just one standard doublet of SU(2)L is contained

in the fundamental representation of G (plus any

number of SU(2)L singlets), then c2 = 1 (as in

SU(5) [9] for example). In this way we proof that

for i = 2, 3, c−1i is an integer number.
The constants ci are thus pure rational num-

bers satisfying c1 > 0, and 0 < c2(3) ≤ 1. They
are fixed once we fix the unifying gauge structure,

and from pure algebraic arguments we must have

at the GUT scale

c−13 α3 = c
−1
2 α2 = c

−1
1 α1. (2.2)

In Table 1 we present the ci i = 1; 2; 3 val-

ues for most of the GUT groups in the litera-

ture; they are calculated using Eq.(2.1). The

canonical entry is associated with the following

nine groups: SU(5) [9], SO(10) [10], E6 [11],

[SU(3)]3 × Z3 [12], SU(15) [13], SU(16) [14],
SU(8) × SU(8) [15], E8 [16], and SO(18) [17].
The model [SU(3)]4×Z4 is taken from Reference
[18], SU(5)⊗SU(5) from [19], SO(10)⊗SO(10)
from [20], [SU(6)]3×Z3 from [21], [SU(6)]4×Z4
from [22], E7 from [23], [SU(4)]

3 × Z3 from [20],
and [SU(2F )]4 × Z4 (the Pati-Salam models for
F families) from [24].

In the canonical entry we have normalized

the ci values for some groups to the SU(5) num-

bers; for example, the actual values for SO(10)

are {c−11 ; c−12 ; c−13 } = {10/3; 2; 2} = 2{5/3; 1; 1},
and for SU(16) are {c−11 ; c−12 ; c−13 } = {20/3; 4; 4} =
4{5/3; 1; 1}. This normalization makes sense be-
cause the common factor can be absorbed in the

GUT coupling constant α; besides, physical quan-

tities such as sin2 θW , MGUT , etc., depend only

on ratios of the ci values.

c−13 can take only the values 1, 2, 3, 4 for one
family groups, or higher integer values for family

groups. c−13 = 1 when it is SU(3)c which is em-
bedded in the GUT group G; c−13 = 2 when it is
the chiral color [25] SU(3)cL × SU(3)cR which
is embedded in G, etc. For example c−13 = 4 in
SU(16) due to the fact that the color group in

SU(16) is SU(3)cuR × SU(3)cdR × SU(3)cuL ×
SU(3)cdL.

For some family groups c−12 take the values

1, 2, . . . F for 1, 2, . . . F families. Indeed, the ci
values for the F family Pati-Salam models [24]

[SU(2F )]4 × Z4 are {c−11 ; c−12 ; c−13 } = {(9F −
8)/3;F ; 2}; and for [SU(2F )]3×Z3 = SU(2F )L⊗
SU(2F )c ⊗ SU(2F )R × Z3 (the 2F color vec-
torlike version of the Pati-Salam models [26]),

{c−11 ; c−12 ; c−13 } = {(6F − 4)/3;F ; 1}.
In general, c−12(3) = 1, 2, . . . f , where f is the

number of fundamental representations of SU(2)L
(SU(3)c) contained in the fundamental represen-

tation of the GUT group. For example, c−12 =

4 in SU(16) because the 16 representation of

SU(16) contains four SU(2)L doublets; three for

(u, d)L and one for (νe, e)L.

The group [SU(4)]3×Z3 in Table 1 is not the
vector-like color version of the two family Pati-

Salam model, but it is the one family model in-

troduced in Ref. [20]. The group [SU(6)]4 × Z4
in the Table could be the three family Pati-Salam

model [24], or either the version of such a model

without mirror fermions introduced in Ref. [22].

E7 is defined in Ref[23].

Notice that the values for c−11 are integer

multiple of 1/3 for all the groups in the table,

which is due to the condition for having only

standard electric charges in the representations

of the particular group used as a GUT. Such con-
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dition reads

c−11 + c
−1
2 +

4

3
c−13 = 0 mod. 4 (2.3)

which is satisfied by all entries in the table (in

some entries the real values must be used instead

of the normalized ones).

3. String-GUTs

The logarithmic running through the “desert” of

the fundamental coupling constant is governed

by the following renormalization group equations:

α−1i (µ) = ηiα
−1 − bi

2π
ln

(
M

µ

)
+∆i (3.1)

where bi are the one-loop beta functions, M the

unification scale and ∆i the threshold and other

corrections.

GUTs (and SUSY-GUTs) were invented [9]

before strings, and they may exist by themselves

as independent physical entities. For the sev-

eral GUT models ηi = c
−1
i in Eq. (3.1), M =

MGUT is the GUT scale, and α = g
2/4π, with g

the coupling constant of the GUT group. How-

ever, it is a well known result that the loga-

rithmic running through the desert of the three

gauge couplings ciα
−1
i for the canonical values

{c1, c2, c3} = { 35 , 1, 1}, do merge together into
a single point, only when the SUSY partners of

the SM elementary particles are included in the

renormalization group equations at a mass scale

Msusy ∼ 1TeV [27]. This amazing result is not
upset when higher order contributions are taken

into account [28], and it provides the unification

scale MGUT ∼ 2 × 1016GeV.
Now, strings may exist without GUTs. If

this is the case, then the string must compact-

ify to four dimensions to the SM gauge struc-

ture GSM at a mass scale Mstring. The funda-

mental coupling constants still run according to

Eq. (3.1), where now M = Mstring, ηi = κi and

α = g2string/4π. When we solve Eqs.(3.1) using

the one loop SUSY beta functions (b1, b2, b3) =

(−11,−1, 3), and the canonical Kac-Moody lev-
els {κ1, κ2, κ3} = { 53 , 1, 1}, we get Mstr. = 2 ×
1016GeV, a factor of 20 smaller than its per-

turbative value. If we solve the equation for

M = Mstr. = 3.6 × 1017GeV, we get κ1 = 5
4

[29]. This is the so call string-GUT problem.

But it may happen that string-GUTs are real

objects. They exist if the string compactifies

in four dimensions not to GSM , but to a sim-

ple group G that acts as a unified group. If

this is the case, then M = MGUT = Mstr., and

ηi = c
−1
i = κi, which become two necessary con-

ditions for having a consistent string-GUT. In

this kind of theories not only the entire unifica-

tion of interactions is realized, but also the ad-

vantages of the GUT symmetry are available.

4. Conclusions

In this note most of the four dimensional string

Kac-Moody levels which could be related to GUT

theories are presented in Table 1, from where we

may visualize the wide spectrum available for the

values κi = c
−1
i , i = 1, 2, 3.

So far, almost the entire literature on four di-

mensional strings has been focused on the canon-

ical values κ2 = κ3 = 1, κ1 = 5/3, pointing

towards a canonical string-GUT model, or to a

string model without a relation to a particular

GUT. But as it is known, there are serious prob-

lems with the models constructed so far. Just

to mention a few we have: the string-GUT prob-

lem, the doublet-triplet problem [4], the failure

to produce a consistent low energy particle spec-

trum [4], etc. It may be feasible that the con-

struction of four dimensional string theories with

non-canonical κi values may cure some of the

mentioned problems (in the model of Ref. [18],

MGUT ≥ Mstr., and the doublet triplet problem
is not present at tree level).

κi, i = 1, 2, 3 values, different from the canon-

ical ones, are in general related to the existence

of non standard matter. That extra matter can

have a mass at an intermediate scale, or either

at the string-GUT scale.
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