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Quantum gravity corrections to neutrino propagation
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Abstract: Massive spin-1/2 fields are studied in the framework of loop quantum gravity by consid-

ering a state approximating, at a length scale L much greater than Planck length, a spin-1/2 field in

flat spacetime. The discrete structure of spacetime at `P yields modifications to the field propagation

at scale L. Neutrino bursts (p̄ ≈ 105GeV ), accompaniying gamma ray bursts, that have travelled

distances L ≈ 1010 light years (ly) are considered. The dominant correction is helicity independent

and leads to a time delay of order (p̄ `P )L/c ≈ 104 s. To next order in p̄ `P , the correction has the

form of the Gambini and Pullin effect for photons.

A
s has been recently suggested in the lit-

erature [1], [2], [3], quantum gravity effects

might be at the edge of observability. One of the

proposed ideas is to look for modified dispersion

relations of photons with energy E and momen-

tum ~p, of the form

c2 ~p 2 = E2

(

1 + ξ
E

EQG
+O

(

E

EQG

)2
)

, (1)

where ξ is a parameter of order one and EQG

is a grand unified energy scale of order ≤ 1019

GeV. The above expression leads to the following

modification of the velocity in light propagation

v =
∂E

∂p
= c

(

1− ξ
E

EQG
+O

(

E

EQG

)2
)

, (2)

which implies an uncorrected retardation time

∆t, with respect to pulse propagation with ve-

locity c, given by

∆t ≈ ξ
E

EQG

L

c
. (3)

For cosmological distances L ≈ 1010 ly and EQG

≈ 1019GeV, the corresponding numbers are ∆t ≈

10−3 s, for E ≈ 20MeV and ∆t ≈ 10−5 s, for

E ≈ 0.20MeV. To detect such effects, an experi-

mental time resolution δt less than ∆t is required

∗
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Recent observational facts pointing towards

the possibility of measuring such effect are: (i)

some Gamma Ray Bursts (GRB) originate at

cosmological distances, (∼ 1010 ly) [4]. (ii) sensi-

tivities δ t up to submillisecond scale have been

achieved in recent GRB observations [5]. Sensi-

tivity will be improved with HEGRA and Whip-

ple air Cerenkov telescopes and by AMS and

GLAST spatial experiments.

The above points open up the possibility to

probe fundamental laws of physics at energy scales

near to Planck energy EP = 1.2 × 1019 GeV.

Indeed, quantum gravity effects could be at the

edge of observability [1, 2, 3].

Modifications to Maxwell’s equations in vac-

uum, induced by quantum gravity effects, have

been calculated by Gambini and Pullin [6], using

the canonical loop approach to quantum gravity

and by Ellis et al.[7], using string theory meth-

ods. The former approach leads to the following

dispersion relation

ω±(k) = |k| (1∓ 2 ξ `P |k|) , (4)

where ± refers to the helicities of the photon and

`P ≈ 10−33 cm is the Planck length. This par-

ity violating modification predicts helicity depen-

dent birrefingence effects.

On the other hand, in Ref. [7], a string the-

ory aproach suggests that a D-brane recoil in
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the quantum-gravitational foam induces a distor-

tion in the surrounding space, which modifies the

propagation properties. The corresponding dis-

persion relation is

ω(k) = |k|

(

1− ξ
k

MD

)

, (5)

with ξ > 0. This parity conserving modifica-

tion to Maxwell’s equations predicts a first or-

der helicity independent effect in the dispersion

relation, which is linear in the photon energy.

At this level of the approximation, no birrefrin-

gence effects are present. In this approach, the

red-shifted difference in the time arrival of two

fotons with present day energies E1 and E2 has

been calculated. For the BATSE data, when the

redshifts z of the GRB are known, a small sub-

set of coincident photon pulses corresponding to

channel 1 (20-50keV) and chanel 3 (100-300keV)

are fitted and ∆t is calculated [7]. No significant

effect in the data available is found. On the other

hand, none of the pulses studied exhibited a mi-

croburts structure on short time scales (≤ 10−2

s). Were this the case, the sensitivity of the anal-

ysis would be greatly improved.

Neutrinos could also provide an excellent ar-

ena to probe quantum gravity induced propaga-

tion effects. In fact, the most widely accepted

model of GRB, so called fireball model, predicts

the generation of 1014−1019 eV Neutrino Bursts

(NB) [8, 9]. Also, the planned Neutrino Burster

Experiment (NuBE) will measure the flux of ul-

tra high energy neutrinos (> 10 TeV) over a

∼ 1km2 effective area, in coincidence with satel-

lite measured GRB’s [10]. It is expected to de-

tect ≈ 20 events per year, according to the fire-

ball model. Hence, it should be possible to study

quantum gravity effects on astrophysical neutri-

nos that might be observed, or such observations

could be used to restrict quantum gravity theo-

ries.

Motivated by these interesting posibilities,

we have calculated the quantum gravity induced

modifications to neutrino propagation [11], using

the canonical loop approach.

1. Loop quantum gravity

For a recent review of this topic see for example

Ref. [12]. The Ashtekar-Barbero formulation of

classical general relativity produces the pair of

canonical variables [13]

{Ai
a(~x), E

b
j (~y)} = i h̄δij δ

b
a δ

3(~x − ~y) , (1.1)

where Ai
a(~x) is an SU(2) connection and Eb

j is

the inverse densitisized triad. In the connection

representation the quantum realization is based

upon wave functionals Ψ(Ai
a), which must be

further annhilated by the constraints: Gauss, dif-

feomorphism and Hamiltonian.

On the other hand, and in complete analogy

with Yang-Mills theories, one can decribe the sys-

tem in terms of fully gauge invariant quantities.

The first step is to introduce the parallel trans-

port matrix

Uγ(s1, s2) = P exp i

∫ s2

s1

Ai
a σi dx

a , (1.2)

where the integration is performed along the open

curve γ. Next, the manifestly SU(2) gauge in-

variant variables are constructed

T [α] = Tr Uα, T a1,...,an [α](s1, . . . , sn) =

= Tr [Ea1(1)Uα(s1, s2) . . . E
an(n)Uα(sn, s1)] ,

Π[γ](s1, s2) = ψ̄(γ(s1))Uγ(s1, s2)ψ(γ(s2)) ,

(1.3)

where α is a closed loop. Now, the wave functions

are functional of loops and open curves

Ψ(α1, . . . , αn, γ1, . . . , γm),

obtained by applying the above operators on a

suitable defined vacuum. An orthonormal ba-

sis for the loop states, which span the kinematic

auxiliary Hilbert space can be constructed using

spin networks: the spin network states. Phys-

ical wave functions have to further satisfy the

constraints. Spin network states are eigenstates

of the area and volume operators with finite, dis-

crete eigenvalues. In this way, the theory predicts

the discreteness of the space [14].

We will further need a loop state which ap-

proximates a flat 3-metric on Σ, at scales much

larger than the Planck length. For pure gravity

this state is called the weave [15]. Flat weave

states |W 〉, having a characteristic length L, are

constructed by considering collections of Planck

2
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scale loops. They are meant to be semiclassi-

cal states such that if one probes for distances

d >> L the continuous flat classical geometry is

regained, while for distances d << L the quan-

tum loop structure of space is manifest. In other

words, one expects a behavior of the type

〈W |q̂ab|W 〉 = δab +O

(

`p
L

)

,

when the mean value of the metric operator is

considered. A generalization of such an idea to

include matter fields is required. For our analysis

it will suffice to exploit the main features that a

flat weave with fermions must have. Such a state

is denoted by |W, ξ >, has a characteristic length

L and it is referred to simply as the weave.

2. The regularization

A significant progress in the loop approach was

made by Thiemann, who put forward a consis-

tent regularization procedure to properly define

the quantum Hamiltonian constraint of the full

theory [16]. It is based on a triangulation of space

with tetrahedra whose sides are of the order `P .

The cornerstone of Thiemann’s proposal is the

incorporation of the volume operator as a con-

venient regulator, since its action upon spin net-

work states is finite. We use Thiemann’s regular-

ization for the Einstein-Dirac theory, which natu-

rally allows the semiclassical treatment here pur-

sued. The effective Hamiltonian is obtained by

considering the expectation value of the fermionic

sector of the quantum Hamiltonian constraint,

with respect to |W, ξ〉. Inside this expectation

value, operators are expanded around relevant

vertices of the triangulation and a systematic ap-

proximation is given involving the scales `P <<

λD << λC . Here λD , λC are De Broglie and

Compton wavelengths, respectively, of a light fe-

rmion. Corrections arise at this level.

The fermionic sector of the Hamiltonian con-

straint for a two-component spin- 12 field coupled

to gravity includes

H(1)(N) =

∫

d3xN
Ei

a

2
√

det(g)

(

iπT τiDaξ

+c.c.
)

, (2.1)

plus a Majorana fermion mass term. Besides, it

has two further terms: one kinetic-like and the

other containing the extrinsic curvature of Σ cou-

pled to fermions [16]. Here we discuss the term

(2.1) only. Upon regularization, the expectation

value 〈W, ξ|Ĥ(1)(N)|W, ξ〉, which we define as the

effective Hamiltoninan H
(1)
eff (N), becomes [16]

H
(1)
eff (N) = −

h̄

4`4P

∑

v∈V (γ)

8N(v)

E(v)
εijkεIJK

{

〈W, ξ|

×ξ̂B(v + sK(∆))
∂

∂ξA(v)
(τkhsK(∆))

AB×

ŵiI∆(v)ŵjJ∆(v)|W, ξ〉 − 〈W, ξ|τk ξ̂(v)
∂

∂ξ(v)
×

×ŵiI∆(v)ŵjJ∆(v)|W, ξ〉 − c.c.
}

, (2.2)

where

ŵkI∆ = Tr
(

τkhsI(∆)

[

h−1sI (∆),
√

Vv

])

. (2.3)

Here Vv is the volumen operator, restricted to act

upon each vertex v. An adapted triangulation

to the graph γ corresponding to the weave was

considered.
∑

v∈V (γ) runs over all the vertex of

the graph γ.

3. The calculation

Next, under the weave expectation value, we ex-

pand, around any vertex, all the quantities in-

volved: fermion fields, holonomies, and the op-

erators ŵiI∆(v), in powers of the corresponding

segments sa, having lengths of the order of `P .

The general form of the expectation values is

∑

v∈V (γ)

8N(v)

E(v)
< W, ξ|π̂A(v)∂a∂b . . . ξ̂B(v) ×

×R̂ab...AB(v, sI(v))|W, ξ > . (3.1)

To proceed with the approximation we think of

space as made up of boxes of volume L3 = d3 x.

Each box contains a large number of vertices of

the weave (L >> `P ), but is considered infinitesi-

mal in the scale where the space can be regarded

as continuous. In successive steps, we take (3.1)

to

∑

v∈V (γ)

8N(v)

E(v)
πA(v)∂a∂b . . . ξB(v) < W, ξ| ×

3
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R̂ab...AB(v, sI (v))|W, ξ >=

=
∑

Box

πA(~x)∂a∂b . . . ξB(~x)
∑

v∈Box

`3P
8N(v)

E(v)

× < W, ξ|
1

`3P
R̂ABab...(v, sI(v))|W, ξ > ,

=
∑

Box

πA(~x)∂a∂b . . . ξB(~x) d
3x N(~x) R̄ABab...

=

∫

d3x N(~x) πA(~x)∂a∂b . . . ξB(~x) R̄
ABab... ,

(3.2)

where the box-averaged tensor R̄ABab...(~x) lives

in the Lie algebra of SU(2) and it is constructed

from I2×2, τk , δij , εijk and
0
e kc. In order to re-

gain the flat spacetime kinetic term of the fermion

Hamiltonian we also demand |W, ξ〉 to produce

the adequate normalization leading to the deriva-

tive term in the flat space Dirac equation. By

expanding (2.2) at different orders in powers of

s one can systematically determine all possible

contributions. The order of magnitude of the

corresponding expectation values of the gravita-

tional operators is estimated according to

〈W, ξ| . . . , Aia, . . . ,
√

Vv , . . . |W, ξ〉 ≈

≈ . . .
1

L
, . . . , `

3/2
P . . . . (3.3)

4. The modified neutrino equation

¿From the effective Hamiltonian obtained accord-

ing to the steps described in the previous section,

and including the remaining terms in the Hamil-

tonian cosntraint [17], we obtain the following

equation, up to order `2P
[

ih̄
∂

∂t
− i h̄ Â ~σ · ∇+

Ĉ

2L

]

ξ(t, ~x) +

+m (α− β ih̄ ~σ · ∇) i σ2 ξ
∗(t, ~x) = 0 ,

with

Â =

(

1 + κ1
`P
L

+ κ2

(

`P
L

)2

+
κ3
2
`2P ∇2

)

,

Ĉ = h̄

(

κ5
`P
L

+ κ6

(

`P
L

)2

+
κ7
2
`2P ∇2

)

,

α = 1 + κ8
`P
L
, β =

κ9
2h̄
`P ,

B̂ = Â

(

Ĉ

L
+ 2αβm2

)

. (4.1)

The dispersion relation corresponding to (4.1) is

E2
±(p, L) = (A2 +m2β2) p2 +m2 α2 +

(

C

2L

)2

± B p , (4.2)

where A,B,C have been expressed in momen-

tum space. The ± in Eq. (4.2) stands for the

two neutrino helicities. Since typically for neu-

trinos λC >> λD , our approximation is mean-

ingful only if L ≤ λD. In this way we make

sure that Eq.(4.1) is defined in a continuous flat

spacetime, where the fermionic fields are slowly-

variying. For the purpose of estimating orders of

magnitude we take

L = λD =
1

p̄
, (4.3)

where p̄ is the magnitude of the mean momen-

tum of the neutrino. Up to leading order in `2P
we obtain

E±(p̄) = E±(p,L)|p=p̄, L=1/p̄ ≈ p̄+
m2

2p̄
+

+ `P

(

(θ2 ± θ4)p̄
2 + (θ1 ± θ3)m

2
)

+

+(θ5 ± θ6)`
2
P p̄3, (4.4)

where we are assuming that all θi are non-zero

numerical quantities of order one. The velocities

are

v±(p̄) =
∂E±(p, L)

∂p
|p=p̄, L=1/p̄ = 1−

m2

2p̄2
+

+κ1(`P p̄)∓ κ7
(`P p̄)2

2
. (4.5)

5. Numerical estimations

An order of magnitude estimation for the mod-

ifications to propagation properties arising from

the present analysis is obtained by taking the

following values for the corresponding neutrino

quantities,

m = 10−9 GeV, p̄ ∼ 105 GeV,

L = 1010 l y = 0.5× 1042
1

GeV
. (5.1)

The first interesting parameter is the time de-

lay of neutrinos traveling at velocities v± with

respect to those traveling at speed c

∆tν =
L

c
(1−

v±
c
) = κ1

L

c
(p̄ `P )

≈ κ1 0.3 × 104 s. (5.2)

4
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This number dominates over the delay due to the

mass term m2

2p2 , which is ≈ 10−10 s.

First order corrections to the neutrino dis-

persion relations which are helicity-independent

and linear in the energy, have been also derived

in Ref.[18], using a string theory approach. The

above expression for the time delay, though he-

licity independent, has the same form ∼ `P p̄ as

the one obtained in Ref.[6].

Finally, the time delay of arrival between the

two polarizations is

∆t± =
L

c2
(v+ − v−) = κ7

L

c
(p `P )

2

≈ κ7 × 10−11 s. (5.3)
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