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Abstract: We introduce a new Weyl invariant action for bosonic p-branes. The key ingredient is

the introduction of an auxiliary field that transform the non-linear conformal action into a quadratic

action. For these actions we construct, following the standard Dirac’s method, the canonical formalism.

Based in this construction we obtain the physical degrees of freedom of the system.

1. p-branes Actions

T he study of the dynamics of extended sys-

tems was introduced by Dirac in 1962 [1].

In this paper Dirac tried to describe elementary

particles as vibrational modes of a membrane.

After this initial step a general principle to de-

scribe the dynamics of extended systems in the

context of strings was developed by Nambu and

Goto [2, 3] that is known as the Nambu-Goto

action principle. This principle states that the

action of a extended system of p-dimensions (p-

brane) embedded in a D-dimensional space-time

is proportional to the world volume,

S[Xµ] = −T
∫
dp+1ξ

√
− det ∂iXµ∂jXνηµν ,

(1.1)

where ξi, i = 0, 1, . . . , p are the p+1 dimensional

world volume coordinates andXµ = Xµ(ξi), µ =

0, 1, . . . , D− 1 are the D space-time coordinates.
We assume a flat space-time with Minkowski met-

ric ηµν and signature (−,+, . . . ,+). The tension
of the object is given by the constant T which

has the necessary units for a dimensionless ac-

tion ([T ] = [mass](p+1)). This action has p + 1

dimensional diffeomorphism invariance given by

δXµ = εi∂iX
µ, (1.2)

where εi(ξ) are the parameters of the transfor-

mation.

In the case of string theory (1-brane), Schild

[4] proposed the introduction of an auxiliary field
∗J. A. Garcia, and R. Linares

e to eliminate the square root in (1.1). The

generalization of this idea for the p-brane action

(1.1) has the form [5]:

Ss[X
µ] =

∫
dp+1ξ

1

2

(
h

e
− T 2e

)
, (1.3)

here h is the determinant of the induced metric

hij = ∂iX
µ∂jX

νηµν . (1.4)

The action (1.3) is invariant under the diffeomor-

phisms (1.2), provided e transform as

δe = ∂i(ε
ie) (1.5)

i.e., e has the role of an einbein. Another inter-

esting property of the Schild action is that we

can get the limit of null tension that correspond

to the ultra relativistic limit of the p-brane. In

a more geometrical context Brink, et al [6] wrote

a different extension of the Nambu-Goto action,

now called the Polyakov action. For this action

instead of the auxiliary field e we introduce a

world sheet metric Γij . In the case of a p-brane

the Polyakov form of the action is

S[Xµ,Γij ] = −
T

2

∫
dp+1ξ

√
−Γ
(
Γij∂iX

µ∂jX
νηµν

−(p− 1)). (1.6)

Here Γij is the inverse of Γij and Γ denotes the

determinant. For any p-brane the action (1.6) is

invariant under diffeomorphisms,

δXµ = εi∂iX
µ, (1.7)

δΓij = ε
k∂kΓij + ∂iε

kΓkj + ∂jε
kΓik. (1.8)
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In the case of the 1-brane this action is also in-

variant under Weyl transformations δΓij = 2ωΓij.

Taking into account that the Weyl symmetry is

a very important factor in the quantization of

the string, several people tried to develop a Weyl

invariant extension of the action for the p-brane

[7]. This action reads as follows

S[Xµ,Γij ] = −T
∫
dp+1ξ

√
−Γ

(
1

p+ 1
Γij∂iX

µ∂jX
νηµν

)(p+1)/2
(1.9)

The action in (1.9) is invariant under the follow-

ing transformations

δXµ = εi∂iX
µ, (1.10)

δΓij = ε
k∂kΓij + ∂iε

kΓkj + ∂jε
kΓik

+2ωΓij, (1.11)

then, we obtain Weyl and diffeomorphism invari-

ance, but we have again, as in Nambu-Goto, a

non quadratic action. As a consequence of this

fact, the canonical formalism is not well defined,

since is not possible to get a Hamiltonian func-

tion of the coordinates and momenta but not of

the velocities. An attempt to develop the canon-

ical analysis of (1.9) was proposed in [8].

In this paper we present a different solution

to this problem. We construct an action equiva-

lent to (1.9) for which the standard rules of the

canonical approach can be applied. Then we

completely work out the algebra of constraints

of this theory. Following Schild [4] we introduce

an auxiliary field e to eliminate the power in the

integrand of the action (1.9) to get the following

expression

S[Xµ,Γij , e] =−T
2

∫
dp+1ξ

√
−Γ
(
e1−

2
p+1Γijhij

−e(p− 1)
)
. (1.12)

This action is invariant under Weyl symmetry if

the auxiliary field e changes as e → e exp(−ωd).
Thus the infinitesimal transformations of the fields

that leave the action invariant up to a boundary

term are

δXµ = εi∂iX
µ, (1.13)

δΓij = ε
k∂kΓij + ∂iε

kΓkj + ∂jε
kΓik

+2ωΓij, (1.14)

δe = εi∂ie− ω(p+ 1)e. (1.15)

An interesting point is that the transformation

law for the auxiliary field e is quite different in

the actions (1.3) and (1.12). In the case of Schild’s

action e is an einbein, whereas in (1.12) e is a

scalar under diffeomorphisms –like a space-time

coordinate Xµ(ξ)– and transform under confor-

mal transformations. The classical equivalence

between (1.9) and (1.12) is obtained from the so-

lution of the equation of motion for e and its sub-

stitution in (1.12). Meanwhile, the equivalence

between (1.6) and (1.9) with (1.1) is obtained

from the solution to the equation of motion for

the auxiliary field Γij and its substitution in the

respective action.

2. Canonical analysis of the confor-

mal action

In this section we develop the canonical formula-

tion of the action (1.12) and compute the algebra

of constraints.

To construct the associated canonical analy-

sis for the action (1.12) we assume that the topol-

ogy of the world-volume Mp+1 is of the form

Σp × <, where Σp is a p dimensional compact
manifold. Following the ADM construction we

introduce a shift vector Na (a = 1, ..., p) and a

lapse function N . Using these variables the met-

ric of the world-volume Γij can be rewritten as

Γ00 = −N2γ + γabNaN b,
Γ0a = γabN

b, (2.1)

Γab = γab.

With this metric the Lagrangian action (1.12) is

given by

S = −T
2

∫
dp+1dξ

(
e
p−1
p+1

N

[
− Ẋ2 + 2NaẊµ∂aXµ

+
(
N2γγab −NaN b

)
hab

]
− (p− 1)eNγ

)
.(2.2)

The fields content of this action is (Xµ, N,Na,

γab, e). The associated canonical momenta are

Pµ = T
e
p−1
p+1

N

(
Ẋµ −Na∂aXµ

)
, (2.3)

π ≈ 0, πa ≈ 0, πab ≈ 0, πe ≈ 0. (2.4)
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with the basic Poisson brackets

{Xµ(ξ), Pν(ξ′)} = δµν δp(ξ − ξ′),
{N(ξ), π(ξ′)} = δp(ξ − ξ′),
{Na(ξ), πb(ξ′)} = δab δp(ξ − ξ′), (2.5)

{e(ξ), πe(ξ′)} = δp(ξ − ξ′),

{γab(ξ), πcd(ξ′)} =
1

2
(δac δ

b
d + δ

b
cδ
a
d)δ
p(ξ − ξ′).

From the definition of the momenta we obtain
(p+1)(p+2)

2 + 1 primary constraints. The total

Hamiltonian associated to (2.2) is

HT =

∫
dpξ

(
N

2

( 1
T
e
1−p
p+1PµP

µ + Te
p−1
p+1 γγabhab

−Teγ(p− 1)
)
+NaPµ∂aX

µ

+λeπe + λπ + λ
aπa + λ

abπab

)
, (2.6)

here the λ’s are the Lagrangian multipliers asso-

ciated to the primary constraints. By using the

Dirac method the evolution in time of these con-

straints generate the following (p + 1)(p + 2)/2

secondary constraints

H =
1

2

(
1

T
PµP

µ + Te2−
4
p+1 γγabhab

−Te2−
2
p+1γ(p− 1)

)
≈ 0,

Ha = Pµ∂aXµ ≈ 0, (2.7)

Ωab = e
− 2
p+1hab − γab ≈ 0.

The evolution in time of these secondary con-

straints does not produce new constraints.

To split the constraints according to its first

or second class character we observe that the con-

straints Ωab and πab are second class. This are

p(p+1) constraints. Furthermore, from the range

of the matrix defined by the Poisson brackets be-

tween all the constraints, we conclude that there

are no more second class constraints.

By a redefinition of the constraints H, Ha
and Tπe on the constraint surface, the algebra of
the complete set of 2p+ 3 first class constraints

can be closed up to quadratic pieces in second

class constraints. To that end we propose the

following complete set of constraints

First class:

π ≈ 0, πa ≈ 0, (2.8)

Tπe ≡ πe +
2

p+ 1
e−

2
p+1−1πabhab ≈ 0, (2.9)

T ≡ H+ 2
T
Pµ∂a(e

− 2
p+1πab∂bX

µ) ≈ 0, (2.10)

Ta ≡ Ha+2∂aXµ∂b(e−
2
p+1πbc∂cXµ) ≈ 0. (2.11)

Second class:

πab ≈ 0, Ωab ≈ 0. (2.12)

Denoting the first class constraints as Gr (r =

1, ..., 2p + 3) and the second class as χα (α =

1, ..., p(p+ 1)) the algebra has the general form

{Gr, Gs} = CtrsGt +Bαβrs χαχβ
{Gr, χα} = AsrαGs +Dβrαχβ ,
{χα, χβ} = Cαβ ,

where the explicit expressions of the structure

functions are given in [10].

To compute the algebra on the second class

constraint surface we introduce the Dirac bracket

[9],

{F , G}∗ = {F,G} (2.13)

+

∫
dpξ{F,Ωab(ξ)}γacγbd(ξ){πcd(ξ), G}

−
∫
dpξ{F, πab(ξ)}γacγbd(ξ){Ωcd(ξ), G}.

The relevant Dirac brackets between the canoni-

cal variables are

{Xµ(ξ), Pν(ξ′)}∗ = δµν δp(ξ − ξ′),
{N(ξ), π(ξ′)}∗ = δp(ξ − ξ′),
{Na(ξ), πb(ξ′)}∗ = δab δp(ξ − ξ′),
{e(ξ), πe(ξ′)}∗ = δp(ξ − ξ′),

{γab(ξ), πcd(ξ′)}∗ = 0, (2.14)

{γab(ξ), Pµ(ξ′)}∗ = e−
2
p+1 γacγbd

×
[
∂dXµ∂cδ

p(ξ − ξ′)

+∂cXµ∂dδ
p(ξ − ξ′)

]
,

{γab(ξ), πe(ξ′)}∗ =
2

e(p+ 1)
γabδp(ξ − ξ′).

The expressions for the Dirac brackets allow to

show that the constraint (2.9) generates the Weyl
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transformation. Using these relevant Dirac brack-

ets the full Dirac algebra of the densitized con-

straints is

{F [f ],Ωab[g]}∗ = {F [f ], πab[g]}∗ = 0,
{Tπe [f ], T [g]}∗ = {Tπe [f ], Ta[g]}∗ = 0,
{T [f ], T [g]}∗ = Ta[

(f∂bg − g∂bf)e(2−
4
p+1 )γγab

]
,

{T [f ], Ta[g]}∗ = T [f∂ag − g∂af ], (2.15)

{T [f ]a, Tb[g]}∗ = Tb[f∂ag]− Ta[g∂bf ].

We observe that the standard diffeomorphism al-

gebra for the p-brane is reproduced with different

structure functions that are now modified to pre-

serve the Weyl symmetry. The constraints anal-

ysis is consistent with the number of physical de-

grees of freedom. We haveD+1+(p+1)(p+2)/2

variables, 2p+3 first class constraints and p(p+1)

second class constraints. Then the number of

physical degrees of freedom per space-time point

is, D − (p+ 1).

3. Conclusions

From the above construction we see that the ac-

tion (1.12) have exactly the same physical de-

grees of freedom that the usual p-brane action

(1.6). However, the action (1.12) have an addi-

tional symmetry given by the Weyl invariance.

We hope that this new action can be useful in

the study of the quantization of the p-branes in

similar form to the case of the Polyakov action in

strings where the Weyl anomaly is the more easy

way to compute the critical dimension. The idea

of a Weyl invariant action for p-branes introduc-

ing an auxiliary field can be extendable to the

supersymmetric case [10] where the κ-symmetry

is now Weyl invariant. Furthermore, for the case

of d-branes it is also possible to consider this con-

struction using the action for d-branes proposed

in [11]. For d-branes it is also possible introduce

a dynamical field instead of an auxiliary field,

taking into account the Weyl symmetry.
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