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Abstract: We discuss the thermodynamics of degenerate electron and charged vector boson gases

in very intense magnetic fields. In degenerate conditions of the electron gas, there is a dependence of

density with regard to field intensity for which the pressure transverse to the magnetic field vanishes,

leading to a transverse collapse. ForW bosons an instability arises because the magnetization diverges

at the critical field Bc = M
2
W /e. If the magnetic field is self-consistently maintained, either the

transverse collapse occurs at fields of order 2Bc/3, or the instability is avoided by some cooling

mechanism.

1. Introduction

Magnetic fields of order 1020G and larger have

been suggested to exist in the cores of neutron

stars [2]. The standard electroweak theory es-

tablishes a limit on the magnetic field, the crit-

ical upper bound being Bc = M
2
W /e ' 1.06 ·

1024 G. That instability can be seen from the ex-

pression for the W± ground state energy ε0q =√
M2W − eB, which becomes purely imaginary
for B > Bc. Fields of order Bc may have been

created at the electroweak phase transition (see[4],

[3]). In astrophysics, also the critical field Bc′ =

m2e/e ' 4.41 · 1013 G is relevant.
Nielsen, Olesen and Ambjørn [5],[6] showed

by considering static solutions of the equations

of motion of the electroweak gauge bosons (W

and Z) that the vacuum possesses the properties

of a ferromagnet or an antiscreening supercon-

ductor for B ∼ Bc. It thus seems relevant to
study the electroweak medium in a strong mag-

netic field of the order of the critical magnetic

fields. The implications of these results for as-

troparticle physics and cosmology are expected

to be interesting. Here we shall calculate the

∗This paper is based on ref. [1], written in collabora-
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magnetization due to the charged leptons and in-

termediate vector bosons in the standard model.

To start with we shall write some basic for-

mulae. The partition function Z which is ob-
tained from the density matrix leads to the ther-

modynamic potential Ω = −T lnZ involving the
contributions from the species of leptons and quarks

involved, which are considered to be in chemical

equilibrium among themselves through the boson

fields, described by equations among their chem-

ical potentials [8] of the sort µW+ = µν + µe+ ,

µdL + µW+ = µuL , µe+,W+ + µe−,W− = 0. From

this general thermodynamical potential we will

choose the electron and W sectors exhibiting in-

teresting effects in the astrophysical and cosmo-

logical scenarios respectively in the presence of

extremely strong magnetic fields (B ∼ Bc′ and
B ∼ Bc).

2. The thermodynamical potential

It is well known that the denser the Fermi gas,

the better the ideal gas approximation [7], which

is valid in presence of an external magnetic field.

In our case, the ideal gas thermodynamical po-

tential per unit volume of the electron-positron
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sector is Ωe = Ωse +Ω0e, where

Ωse = −
eB

4π2β

∞∑
n=0

an

∫ ∞
−∞
dp3 ln f

e
+f
e
− (2.1)

where fe± = (1 + e−(Eq∓µe)β) and the sum ex-
tends over all Landau quantum numbers Eq =√
p23 +m

2
e + 2eBn, the degeneracy factor is an =

2 − δ0n, and β = T−1. (Actually, this degener-
acy dissapears if we consider the anomalous mag-

netic moment of electrons; it plays a significant

role for fields B � Bc′ . For our present approx-
imation, we will ignore it). For W ’s, we have

ΩW = ΩsW +Ω0W

ΩsW =
eB

4π2β

∫ ∞
−∞
dp3 ln f

0W
+ f

0W
− +

eB

4π2β

∞∑
n=0

bn

∫ ∞
−∞
dp3 ln f

W
+ f

W
− (2.2)

where f0W± = (1 − e−(ε0q∓µW )β), fW± = (1 −
e−(εq∓µW )β), again we sum over all Landau quan-
tum numbers and the degeneracy factor is bn =

3 − δ0n, with ε0q =
√
p23 +M

2
W − eB, and εq =√

p23 +M
2
W + 2eB(n+

1
2 ).

The Euler-Heisenberg vacuum terms are, for

the electron-positron field,

Ω0e =
e2B2

8π2

∫ ∞
0

e−m
2
ex/eB

E(x)dx

x
, (2.3)

where E(x) = x−1 cothx − x−2 − 1/3. For the
charged gauge bosons one obtains,

Ω0W = −
e2B2

16π2

∫ ∞
0

e−M
2
W x/eB

W (x)dx

x2
, (2.4)

where W (x) = (1 + 2 cosh 2x)/ sinhx − 3x−1 −
7x/2. We observe that (2.4) diverges at B = Bc,

leading to a vacuum instability.

The mean density of particles minus antipar-

ticles (average charge divided by e) is given by

Ne,W = −∂Ωe,W /∂µe,W . We assume that there
is always a background charge of opposite sign,

to preserve electrical neutrality. We have

Ne =
eB

4π2

∞∑
0

an

∫ ∞
−∞
dp3(n

+
e − n−e ), (2.5)

where n±e = [exp(Eq ∓ µe)β + 1]−1.

In the degenerate limit one gets

Ne =
eB

2π2

nµ∑
0

an
√
µ2e −m2 − 2eBn, (2.6)

where the integer nµ = I[(µ
2
e −m2)/2eB].

For W -s,

NW =
eB

4π2

∫ ∞
−∞
dp3(n

+
0p − n−0p) +

eB

4π2

∞∑
0

bn

∫ ∞
−∞
dp3(n

+
p − n−p ) (2.7)

where we define n±0p = [exp(ε0q ∓ µW )β − 1]−1,
n±p = [exp(εq ∓ µW )β − 1]−1.
The magnetization is given by the contribu-

tion of electrons and charged vector bosons. It

depends on the density of particles plus antipar-

ticles, and it is,

MW,e = −∂ΩW,e/∂B (2.8)

where (by callingM0e,0W = −∂Ω0e,0W /∂B),

Me = −
Ωse
B
− e

4π2

∞∑
0

an

∫ ∞
−∞
dp3
eBn

Eq
(n+e + n

−
e )

+M0e, (2.9)

and in the degenerate limit [9],

Me =
e

4π2

nµ∑
0

an[(µe
√
µ2e −m2 − 2eBn−

(m2 + 4eBn) ln
µe +

√
µ2e −m2 − 2eBn√
m2 + 2eBn

]

+M0e, (2.10)

and

MW = −
ΩW
B
+
e2B

8π2

[∫ ∞
−∞

dp3

ε0q
(n+0p + n

−
0p)

]
−

e2B

4π2

∞∑
0

bn(n+
1

2
)

[∫ ∞
−∞

dp3

εq
(n+p + n

−
p )

]

+M0W . (2.11)
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Figure 1: Oscillations of the relative magnetization

M/M0, (M0 = em
2
e/4π

2) as a function of the rela-

tive magnetic field B/Bc′ up to saturation

3. Equation of state

At this point it is especially interesting to discuss

the equation of state of the system. The total

energy-momentum tensor, whose spatial diago-

nal components are the pressures along the coor-

dinate axis, may be obtained by starting from the

quantum statistical average of its standard field-

theoretical expression Tµν =< Tµν >s where Tµν =
∂L
∂Aµ,ν

Aµ,ν − δµνL [10]. Here L is the total La-
grangian, and after doing the statistical average,

its place in the energy-momentum tensor is taken

by Ω (since Ω = −β−1 ln < e
∫ β
0
dx4
∫
d3xL(x4,x) >s).

The energy-momentum tensor is then,

Tµν = (T
∂Ω

∂T
+µ
∂Ω

∂µ
)δ4µδν4+4FµρFνρ

∂Ω

∂F 2
−δµνΩ,
(3.1)

where Fµρ is the electromagnetic field tensor av-

erage. For Fµρ = 0, (3.1) reproduces the usual

zero field case Tµν = pδµν−(u+p)δ4µδν4, u being
the energy density. For the electrically charged

particles, we obtain different equations of state

for directions parallel and perpendicular to the

magnetic field,

p3 = −Ω, p⊥ = −Ω−BM. (3.2)

This anisotropy in the pressures p3, p⊥ leads to
a magnetostriction effect in the quantum magne-

tized gas of charged particles. In classical the-

ory (3.2) is the Maxwell stress tensor M < 0

and p⊥ > p3, which produces a flattening effect
in white dwarfs and neutron stars models [12],

[13]. In the present quantum case, for diamag-

netic media alsoM < 0 leading again to a flat-

tening effect. But for positive magnetization, the

transverse pressure exerted by the charged par-

ticles is smaller than the longitudinal one by the

amount BM. This effect is actually present in
the quantum vacuum in a magnetic field: by cal-

culating the pressure of vacuum from the Euler-

Heisenberg formula, one obtains a negative trans-

verse pressure, which can be attributed to the

electron-positron virtual pairs. In a medium,

the extreme case is found for magnetic fields,

eB � T 2, when the electrons are confined to the
Landau ground state n = 0. (In what follows we

will ignore the vacuum contribution to electron-

positron pressure and magnetization, which is

justified at the scale of densities and fields con-

sidered below). We have Ωe = −BMe where,

Me =
e

2π2
[µe
√
µ2e −m2 −

m2 ln
µe +

√
µ2e −m2
m

] (3.3)

and µe '
√
(2π2Ne/eB)2 +m2, Ne being the

electron density. As µ2e > m
2, the expression

(3.3) is always positive the system behaves as

paramagnetic or ferromagnetic. But one of the

most important effects we have in this limit is

that the transverse pressure vanishes,

p⊥ = −Ωe −BMe = 0. (3.4)

The effect (3.4) is of pure quantum origin and

it is easy to understand since all electrons are

confined to the Landau ground state, and the

quantum average of their transverse momentum

vanish. If we consider a white dwarf star in which

the predominating contribution to the pressure is

from the electron gas, the vanishing of p⊥ means
that the gravitational pressure (of orderGM2/R4

where R is the geometric average radius of the

star) cannot be compensated and an instability

appears leading to a transverse collapse, i.e., the

resulting object (a neutron star or a black hole)

would be ellipsoidal, in this case stretched along

the direction of the magnetic field, as a cigar (a

more quantitative study of the problem would

require solving the Einstein equations). It is in-

teresting to find the critical conditions for the oc-
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currence of this confinement to the state n = 0,

and in consequence, for the collapse. We have,

nµ = I(
µ2e −m2
2eB

) =
2π4N2e
e3B3

∼ 4.75× 10−20N
2
e

B3
,

(3.5)

and the condition for I(x) < 1 might be found

in some astrophysical conditions, e.g., for Ne ∼
1030, B = 3.36 × 1013 G, it is enough that B ∼
Bc′ to satisfy it. For densities of the order of

neutron stars, where a background of electrons

and protons exist, if Ne = 10
39, the previous

condition, if valid, would lead to B > 1019G.

4. Degenerate W gas

The W population in the Landau ground state

is significant if d =
√
M2W − eB ≤ T . In the

degenerate limit, e.g. for
√
M2W + eB/T � 1,

one can neglect the contribution from excited

Landau states and by taking only the n = 0

term in (2.11), one can approximate the first two

terms, since the main contribution to the inte-

grals comes from very small momenta,

MW = −
eT

4π

√
d2 − µ2W+

eBT

4π

1√
d2 − µ2W

+M0W .

(4.1)

The first term, is the diamagnetic contribution

which vanishes as T → 0. The third is the vac-
uum contribution, which is asymptotically

M0W ∼ −
2Ω0
B
− eM

2
W

16π2
ln(M2W /eB − 1),

whose most important term is the second one

which contributes para- or ferromagnetically for

B > M2/2e, having a logarithmic divergence

as B → Bc. That term has a negative contri-
bution to the transverse pressure of vacuum for

fields in the interval Bc/2 < B ≤ Bc. The first
term of M0W contribute diamagnetically. But

for B → Bc the dominant term in (4.1) is the
second, which is also para- or ferromagnetic, hav-

ing a stronger divergence (inverse square root)

than the vacuum term. To have a more explicit

form for (4.1), one must write µW in terms of the

charge density. When confined to the Landau

ground state [1] and taking N ≥ 1039, T ∼ 10−8
ergs and B ≤ Bc, one is left with

MW '
eNW

2d
. (4.2)

The most important consequence is that the

contribution of this magnetization to the trans-

verse pressure of the W gas would be negative

(see (2.11)), and ifMWB contributes more than

the pressure of other species, (the partial pres-

sure p3 = ΩW even decreases as B → Bc) an in-
stability occurs since the total pressure would be

negative. Thus, for stability (also to prevent W

decay), we must assume some background able

to keep the total pressure p⊥ ≥ 0.
The cases considered previously are a sort

of condensation for fermions and bosons in the

n = 0 state, but some sort of Bose-Einstein con-

densation actually takes place [11] for bosons.

For small momentum and magnetic fields strong

enough B ∼ Bc, the term 1/d dominates and the
main contribution to the W propagator comes

from the low momentum gauge bosons [9, 11].

At any temperature, a spontaneous magneti-

zation would appear in the condensate of charged

bosons, say W+, even at zero external field H =

B − 4πM = 0. This spontaneous magnetization
could self-consistently maintain the microscopic

field B = 4πMe,W .

5. Self-consistent magnetization con-

dition

Let us assume the magnetization large enough

to maintain the internal field B self-consistently.

Let us assume very large densities in the medium,

such that µe � m. The dominant term in (2.11)
is (4.2) ∼ eNW /2d. At such field intensitiesMW

diverges, but if we write the self-consistency con-

dition for the W sector, we have

B = 4πM = 2πeNW
d

(5.1)

Let us write eB = x2M2W and since 0 ≤ x ≤ 1,
we get easily the expression

x2
√
1− x2 = 2πe

2NW

M3W
= A. (5.2)

As M3W /e
2 ∼ 1049 cm−3, even for NW exceeding

largely the nuclear density, A can be extremely

small (For A ∼ 1, NW ∼ 1048 cm−3. For such
densities, the horizon of events is ∼ 10−2 cm).
By writing y = x2

√
1− x2 we have a curve hav-

ing an increasing branch starting from x = 0 up

4
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to a maximum at xM =
√
2/3, y = A1 = 2

√
3/9,

compatible with a density NW ∼ 1048 cm−3. But
the transverse collapse would have taken place

at much lower densities: since the W contribu-

tion to Ω is negligibly small, the pressure p3 =

−Ω comes essentially from the fermion (electron)
background. From (3.5), for B ∼ Bc, the vanish-
ing of p⊥ takes place at Ne ∼ 1046 cm−3. We
have also a decreasing branch from x = xM to

x = 1, compatible with densities smaller than

1048 cm−3. Thus, when solving (5.2), which leads
to a cubic equation, for A > A1, we will not

have real solutions. However, for A ≤ A1 we
have two real positive solutions for x ( coincid-

ing for x2 = 2/3). For A � 1, these solutions
are x1 =

√
A+A2/2 and x2 =

√
1−A2. The

first solution means that B increases with in-

creasing NW , (up to the value BM = 2MW/3e).

In the second solution B decreases as a func-

tion of NW , its limit for NW → 0 being Bc.

This obviously indicates that the expression for

the magnetization must include the contribution

from Landau states other than the ground state,

which leads to a diamagnetic response to the

field. This would compensate the increase of the

self-consistent field with increasing NW to keep

B < Bc.

This can be shown to occur from formula

(2.11). If we name NWg the ground state den-

sity and NWn the density in other Landau states

(NW = NWg +
∑
NWn), for B > BM = 2Bc/3 ,

∂B/∂NWg < 0 and ∂B/∂NWn > 0 and excited

Landau states start to be populated. The con-

densate in the ground state decreases in favor of

the increase of the population in excited Landau

states, which starts to grow and contribute dia-

magnetically to the total magnetization keeping

it M = B < Bc. But for the system reacting

in this way, an enormous amount of energy (and

angular momentum) would be required, of order

respectively NWMW and NW (Here we neglect

the running of MW ).

6. Conclusions

We conclude, first, that if a degenerate electron

gas is confined to its Landau ground state, its

transverse pressure vanishes. This phenomenon

establishes a limit to the magnetic fields expected

to be observable in white dwarfs, and even in

neutron stars. Second, that the instability of the

vacuum in magnetic fields B ∼ Bc, when it takes
place in a hot and dense medium, is avoided,

since either a transverse collapse is produced at

fields of order 2Bc/3, or else the self-consistent

magnetization prevents the instability by a mech-

anism leading to a cooling of the system.
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