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Abstract: These are introductory lectures on the correspondence between SU(N) gauge theories and

Superstring Theory in anti-de Sitter geometries (AdS). The subject combines a number of different

topics, including supersymmetric field theory, classical and quantum physics of black holes, string

theory, string dualities, conformal field theories (CFT), and quantum field theory in anti-de Sitter

spaces. We also discuss applications of this AdS/CFT correspondence to the large N dynamics of

pure QCD.

1. Introduction

The idea that non-abelian gauge theories can be

described in terms of a string theory [1, 2, 3] was

originally motivated by the duality symmetry of

scattering amplitudes and by the appearance of a

great number of hadronic resonances in strongly

coupled QCD, which persisted even for high val-

ues of the spin. The mass squared of the light-

est particle of a given spin J was observed to

be proportional to J , i.e. M2 = const.J . This

simple law successfully predicted the masses of

a few resonances, and it soon became clear that

such spectrum of particles follows from the sim-

ple assumption that mass and angular momen-

tum come from a spinning relativistic string.

It took many years to find a precise imple-

mentation of this idea. In 1997 Maldacena con-

jectured a duality between gauge theories and

superstring theories propagating on certain back-

grounds [4], which was later formulated in more

detail in [5, 6].1 The simplest example of this du-

ality involves supersymmetric SU(N) Yang-Mills

theory in 3+1 dimensions with four supercharges

(N = 4) and superstring theory compactified in
a space AdS5 × S5, where AdS5 is five dimen-
sional anti de Sitter spacetime, and S5 represents

a five sphere. Other examples involve superstring

1An extensive review on the AdS/CFT correspon-

dence, which includes a more complete reference list, can

be found in [7]. Other recent reviews include [8, 9].

theory compactified in singular ten dimensional

spacetimes and Yang Mills theories in p + 1 di-

mensions [10]. It is now widely expected that a

similar correspondence should hold for any quan-

tum gravity theory in a spacetime that is asymp-

totic to anti-de Sitter space.

Such correspondence also represents a con-

crete implementation [6] of another remarkable

conjecture by ’t Hooft [11]. Based on the en-

tropy formula of black holes, ’t Hooft conjec-

tured that a consistent quantum theory of gravity

must be holographic, in the sense that the funda-

mental degrees of freedom describing physics in

a given volume can be ascribed to the surface

enclosing that volume. Moreover, there must

be one degree of freedom for each Planck unit

area. The holographic idea was subsequently dis-

cussed by Susskind in [12] and the basic moti-

vation comes from the Bekenstein bound [13],

which asserts that the black hole entropy pro-

portional to the area in Planck units is the max-

imum physically possible entropy for any system

that can be placed in the same region.

Here we give a review on the subject and

point out some attempts to exploit these ideas to

understand ordinary QCD. Instead of presenting

a systematic and detailed description of the many

topics which are involved in this subject –which

is clearly impossible in two lectures– we will try

to provide just the basic ingredients of each field
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that are needed in order to understand the way

the AdS/CFT correspondence works, and how to

use it to make predictions for strongly coupled

gauge theories.

These lectures are organized as follows. We

will first briefly discuss the 1/N expansion in

gauge theories [14], which is one of the most com-

pelling arguments that support a connection with

string theory (section 2). We then introduce the

different string theories and string dualities (sec-

tion 3), and discuss brane solutions in string the-

ories and the role of anti-de Sitter spaces (section

4). Particular emphasis is made on the proper-

ties of D branes in string theory. Some elements

of conformal field theories and N = 4 supersym-
metric Yang-Mills theory are given in section 5.

In section 6 and 7 we describe the AdS/CFT cor-

respondence and holography. In section 8 we de-

scribe some attempts to use the correspondence

to compute glueball spectrum and other proper-

ties of strongly interacting non-supersymmetric

QCD.

2. 1/N expansion in gauge theories

Despite numerous progresses in the description of

QCD since it was proposed as a theory of strong

interactions, we do not yet have an analytic con-

trol or a detailed understanding of basic phenom-

ena, such as quark confinement.

The basic idea of the 1/N expansion, intro-

duced by ’t Hooft [2], is to consider the non-

abelian gauge theory with gauge group SU(N),

and express physical quantities as a systematic

expansion in powers of 1/N . The interactions

between hadrons is expected to be a O(1/N) ef-

fect. This means that in theN =∞ limit one can
consider the problem of confinement and hadron

mass spectrum without the complication of resid-

ual hadronic interactions.

At large N , QCD is expected to be a string

theory. This is supported by the following facts:

(1) Feynman diagrams are organized in a topol-

ogy expansion, just like string worldsheets.

(2) Experiments indicate a string-like behavior

(resonances and duality symmetry of scattering

amplitudes between different channels).

In addition, QCD contains string-like objects,

which are the electric flux tubes between quarks

and antiquarks. The energy increases linearly

with the quark-antiquark distance, thus causing

confinement.

Maldacena conjecture prescribes which is ex-

actly the string theory corresponding to SU(N)

supersymmetric Yang-Mills theory with four su-

persymmetry generators: it is type IIB super-

string theory on the space AdS5×S5 with string
coupling g = const.1/N .

The mechanism by which the 1/N expan-

sion leads to an expansion in topologies of a two-

dimensional space applies not only to gauge the-

ories but to more general models. To illustrate

this point and see how the 1/N expansion works,

we consider a general field theory, with degrees of

freedom Am transforming in the adjoint of U(N),

A b
ma = −A∗ amb , which do not need to be scalar
fields (the index m could be a Lorentz index).

The action is assumed to be of the form

S =

∫
ddx

(
tr
[
∂Am∂Am

]
+ gfmnptr

[
AmAnAp

]

+ g2hmnprtr
[
AmAnApAr

])
. (2.1)

Here fmnp and hmnpr are arbitrary couplings,

which do not depend on g and N . The inter-

action terms may also involve derivatives of the

field, for example, a term gf ′mnptr
[
AmAn∂Ap

]
.

The only thing that will matter for the N de-

pendence of Feynman diagrams will be the way

the coupling constant g appears in (2.1), and the

fact thatAbma are in the adjoint. Let us introduce

λ = g2N .

We now consider the limit N → ∞ and g2 → 0
with fixed λ. It is convenient to rescale Am as

A→ A/g, so that the action takes the form

S =
N

λ

∫
ddx

(
tr
[
∂Am∂Am

]
+fmnptr

[
AmAnAp

]

+ hmnprtr
[
AmAnApAr

])
. (2.2)

In this form, we see that a general Feynman di-

agram will have a factor N
λ
for each vertex and

a factor λN for each propagator. In addition, for

each loop of group indices, there will be a fac-

tor N , coming from
∑
a δ
a
a = N . Thus, if we
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denote by V,E, F the number of vertices, propa-

gators and group index loops, respectively, each

Feynman diagram will carry a factor

K = NV−E+F .

This N dependence dictates what are the domi-

nant Feynman diagrams. It is convenient to rep-

resent the propagator by a double line with op-

posite arrows [2] (i.e. viewing the adjoint repre-

sentation as a direct product of fundamental and

antifundamental representations). In this form,

each Feynman diagram can be viewed as a sim-

plex, where F is the number of faces, E is the

number of edges, and V is the number of vertices.

A theorem due to Euler relates the combination

V − E + F to the genus H (i.e. the number of
handles) of the surface:

V − E + F = 2− 2H .

Thus the perturbative expansion will be orga-

nized as a sum over topologies of a two-dimensional

surface. For example, a vacuum amplitude will

be given by a sum of the form

A(N,λ) =

∞∑
H=0

N2−2HAH(λ) .

In the limit of large N , only the leading term

survives. This corresponds to surfaces with no

handles. These are the planar diagrams.

The fact that in the largeN limit the pertur-

bative expansion of gauge theories is naturally

organized in an expansion in two dimensional

topologies indicates that at N � 1 gauge the-
ories should admit a string theory description.

Presently, only a few concrete examples of this

correspondence between string and gauge theo-

ries are known, as discussed below.

3. String theory

3.1 Generalities

Let us recall the basic features of string the-

ory [15]. Superstring theory unifies gravity and

gauge forces in a consistent quantum theory. Quan-

tum states are described by excitations of strings.

The theory has a single fundamental dimension-

full scale α′ = l2s (with dimension length2) and

T = 1/(2πα′) is the string tension. The masses
of string excitations are proportional to 1/ls. At

low energies, superstring theories reduce to a quan-

tum field theory of spin ≤ 2 particles (i.e. Ein-
stein theory coupled to other particles). They

have the property of supersymmetry. We remind

that this is a symmetry of the theory involving

transformations in spacetime, where the super-

symmetry generators are spinors, and two super-

symmetry transformations amount to a space-

time translation.

One can classify supersymmetric field theo-

ries according to the number of supersymmetry

generators. The maximum number of supersym-

metry generators that a relativistic theory can

have is 32. The basic reason for this bound is that

theories with a higher number of supersymme-

tries necessarily involve a massless particle with

spin greater than 2 in four dimensions. It is be-

lieved that a relativistic theory for such parti-

cles does not exist. This also implies that super-

symmetric field theories can be defined only in

d ≤ 11, since for higher dimensions spinors have
more than 32 components.

In d = 11, there is only one supersymmet-

ric field theory, where the supersymmetry gen-

erator is a Majorana spinor of 32 components.

This theory contains a spin 2 particle (the gravi-

ton) and it is known as eleven-dimensional su-

pergravity. The theory is not renormalizable as

a quantum field theory by perturbative expan-

sion around flat space. It is believed to describe

the low-energy regime of a consistent quantum

theory called M-theory.

In d = 10, there are two theories with 32

supersymmetries, type IIA and type IIB super-

gravity. The supersymmetry generators are two

Majorana-Weyl spinors of 16 components; in the

case of type IIA supergravity they have the op-

posite chirality, while for type IIB they have the

same chirality. They describe the low energy

regime of type IIA and type IIB superstring the-

ories.

In d = 10 one can also have a theory with

16 supersymmetries, i.e. a single Majorana-Weyl

supersymmetry generator. There are two types

of super multiplets, the gravity multiplet (leading

to type I supergravity) and the Yang-Mills mul-

tiplet (leading to 10d super Yang-Mills theory).

3
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The theory is anomaly free only if both theo-

ries are coupled together, and the gauge group is

E8 × E8 or SO(32). In the first case, the theory
describes the low-energy regime of E8 × E8 het-
erotic string theory. In the second case, the the-

ory describes the low-energy regime of either type

I superstring theory or SO(32) heterotic string

theory. These five superstring theories are re-

lated by duality symmetries (see below).

Let us consider the type IIA and type IIB

superstring theories. The 32 supercharges trans-

form under the Lorentz group as the direct sum

of two Majorana-Weyl spinor representations,

32 = 16+ 16′ .

The massless bosonic degrees of freedom are sep-

arated in two sectors called NSNS and RR sec-

tors. In both type IIA and IIB cases the NSNS

sector includes a metric gµν , an antisymmetric

two-form gauge potential Bµν , and a scalar (dila-

ton) field φ. The RR sector of type IIA theory

contains a one-form and a three-form gauge po-

tentials {Aµ, Aµνρ}. The RR sector of type IIB
theory consists of a pseudo-scalar field A, a two-

form Aµν and a four-form field Aµνρσ with self-

dual field strength.

The low energy dynamics of the massless fields

is governed by the effective action

S =
1

16πG10

∫
d10x
√−ge−2φ

[
R+ 4(∂φ)2

− 1
12
HµνρH

µνρ

]
+ (RR fields) (3.1)

16πG10 = (2π)
7g2l8s , (3.2)

Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν ,

where g is the string coupling constant. Note

that the string coupling constant is determined

by the expectation value of the dilaton field,

g = eφ0 .

There are also higher derivative terms which can

be neglected at low energies.

3.2 String dualities

A duality is an equivalence between theories that

are seemingly different. In particular, the theo-

ries may have different fields, but nevertheless

the same spectrum and amplitudes. Typically,

duality symmetries appear when a quantum sys-

tem has two different classical limits.

An important duality symmetry of string the-

ory is T-duality. It has no analogue in field the-

ory. Consider for example that the dimension

x10 is compactified on a circle S
1,

x10 = x10 + 2πR .

String states will be specified by a set of quantum

numbers, but those relevant to T-duality arew, p,

where w is the number of times the string winds

around S1, and p represents the quantized (inte-

ger) momentum in the x10 direction. T-duality is

the remarkable property that physics is invariant

under the simultaneous exchange of R ↔ α′/R
and p ↔ w. Thus this symmetry relates a com-
pactification on a small distance with a compact-

ification on a large distance.

A T-duality transformation changes the chi-

rality of left handed fermions (or right handed

fermions, depending on the conventions). As a

result, it connects type IIA superstring theory

to type IIB superstring theory. Thus type IIA

superstring theory compactified on a circle of ra-

dius R is equivalent to type IIB superstring the-

ory compactified on a circle of radius α′/R. Wind-
ing states in one description correspond to mo-

mentum states in the other.

Another important duality symmetry is S-

duality, which relates weak g � 1 and strong

g � 1 coupling regimes. The strong coupling

limit of string theory is in general complicated,

but one can infer a possible S-duality symmetry

from the effective field theory. A crucial check

is the spectrum of supersymmetric states, which

can be compared to the dual candidate, since it

does not receive quantum corrections, i.e. it can

be extrapolated to g � 1. The basic reason can
be understood schematically as follows. Let Q be

a supersymmetry generator, and Z a gauge sym-

metry generator, so that its eigenvalues represent

some charge. Because they are symmetry gener-

ators, they must commute with the hamiltonian

H ,

[H,Z] = 0 , [Q,H ] = 0 .

The supersymmetry algebra is of the form

Q2 = H − Z .

4
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Consider a quantum state |Ψ〉 of energy E and
charge q, which is supersymmetric, i.e. which is

annihilated by Q, Q|Ψ〉 = 0. Thus
0 = 〈Ψ|Q2|Ψ〉 = 〈Ψ|H |Ψ〉 − 〈Ψ|Z|Ψ〉 = E − q
Hence E = q. This equality (called the BPS

condition) holds independently of the value of g,

since the above derivation relied only on symme-

tries. Therefore it must hold for g � 1 as well.
By introducing a new (“Einstein frame”) met-

ric gEµν = e
−φ/2gµν , the low-energy action of type

IIB superstring theory takes the form

SIIB =

∫
d10x
√−gE

[
R(gE)− 1

2
(∂φ)2

− 1
12
e−φHµνρHµνρ − 1

12
eφH̃µνρH̃

µνρ

]
+ ...

H3 = dB2 , H̃3 = dA2

This action is manifiestly symmetric under

gEµν → gEµν , φ→ −φ , H3 ↔ H̃3 .
This transformation exchanges g = eφ0 by 1/g =

e−φ0 , and thus it exchanges weak and strong cou-
pling regimes. This indicates that type IIB su-

perstring theory with coupling g is equivalent to

type IIB superstring theory with coupling 1/g,

a conjecture that passed numerous non-trivial

tests. Note that this duality exchanges states

with NSNS and RR charges.

The full S-duality symmetry group of ten-

dimensional type IIB superstring theory is the

SL(2, Z) group, which includes, apart from the

above transformation, shifts in the RR scalar field

A. More precisely, defining

τ =
A

2π
+ ie−φ = τ1 + iτ2

an SL(2, Z) transformation acting on τ is of the

form

τ → aτ + b
cτ + d

, ad− bc = 1 , a, b, c, d ∈ Z

This is reminiscent of a similar SL(2, Z) sym-

metry of N = 4 super Yang-Mills theory, with
parameter τ = θ

2π + i
4π
g2
YM

. As we shall see be-

low, this symmetry of super Yang-Mills theory

can be explained from the SL(2, Z) symmetry of

type IIB theory by the Maldacena conjecture.

The SL(2, Z) symmetry has also a simple ge-

ometrical interpretation. Type IIB theory arises

as dimensional reduction of the eleven dimen-

sional M-theory compactified on a 2-torus in the

limit the torus area goes to zero with fixed mod-

ular parameter. Then the SL(2, Z) duality sym-

metry of type IIB superstring theory is identified

with the modular symmetry of the 2-torus.

4. Black holes and black p branes

4.1 Reissner-Nordstrom black hole solution

in d = 4

In four-dimensional Einstein-Maxwell theory, a

general stationary solution is fully characterized

by mass M , charge q and angular mometum J .

For J = 0, one has the Reissner-Nordstrom black

hole with metric (G = 1)

ds2 = −λ(r)dt2 + 1

λ(r)
dr2 + r2dΩ22 , (4.1)

dΩ22 = dθ
2 + sin2 θdϕ2 ,

λ(r) = 1− 2M
r
+
q2

r2
=
1

r2
(r − r+)(r − r−)

r± =M ±
√
M2 − q2 , M ≥ q ,

q =

∫
S2
ε ρσ
µν Fρσ dx

µdxν

If M = q, then the inner and outer horizon co-

incide, r+ = r−, and we have an extremal black
hole. Let us examine the near-horizon geometry

of the extremal black hole. The metric takes the

form

ds2 ∼= −e2ρ/r+dt2 + dρ2 + r2+dΩ22 (4.2)

ρ = r+ log
( r
r+
− 1)

This describes the direct product of a two di-

mensional anti-de Sitter space-time AdS2 and a

2-sphere, i.e. AdS2 × S2.

4.2 Anti-de Sitter space

The anti-de Sitter space is a maximally symmet-

ric spacetime with constant negative curvature.

The space AdS2 that emerged in (4.2) can be

represented in R3 by a hyperboloid

x20 + x
2
2 − x21 = r2+

5
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More generally, the (p + 2)-dimensional anti-de

Sitter space AdSp+2 is the hyperboloid

x20 + x
2
p+2 −

p+1∑
i=1

x2i = R
2 (4.3)

where x0, xp+2, xi are coordinates of R
p+3 with

metric

ds2 = −dx20 − dx2p+2 +
p+1∑
i=1

dx2i (4.4)

In this representation, it is clear that the isom-

etry group is SO(2, p + 1). The space AdS is

homogeneous and isotropic and it has the max-

imal number of Killing vectors (equal to 12 (p +

2)(p+ 3)).

The Poincaré metric of AdS can be obtained

by writing

R2z−1 = xp+1 + xp+2 , v = −xp+1 + xp+2 ,

zn =
z xn

R
.

Inserting into (4.4) we get

ds2 =
R2

z2
[
dz2 − dz20 + dz21 + ...+ dz2p

]
. (4.5)

Because the metric is conformal to a flat metric,

the Weyl tensor of this space is identically zero.

For the Riemann tensor one has

Rµνρσ =
1

R2
(gµρgνσ − gµσgνρ) . (4.6)

Hence

Rµν = − p
R2
gµν .

By introducing a coordinate u = 1/z, the AdS

metric can also be written as

ds2 = R2u2
[− dz20 + dz21 + ...+ dz2p]+R2 du

2

u2
.

(4.7)

The spaceAdSp+1 has closed timelike curves,

which can be removed by considering the univer-

sal cover (see e.g. [18]). Then the boundary of

AdSp+1 is topologically S
p × R. This can be

seen from the hyperboloid representation (4.3).

In terms of the coordinates of metric (4.7), the

boundary is constituted of two components, a

single point at u = 0, and u = ∞, which is the
Minkowski space Rp+1. Thus the boundary of

AdSp+1 is a conformal compactification of the

Minkowski space Rp+1.

4.3 Black p-branes and D-branes

p-branes are extended objects which can be clas-

sified by their charges. A 0-brane represents a

point-like particle, a 1-brane represents a string-

like object, a 2-brane represents a membrane, etc.

Consider standard electromagnetism in four di-

mensions. For point-like configurations one can

define electric and magnetic charges as follows:

Qelec =

∫
S2
∗ F2 =

∫
S2
ε ρσ
µν Fρσ dx

µdxν ,

Qmag =

∫
S2
F2 =

∫
S2
Fµν dx

µdxν .

Just as a point particle or 0-brane couples to a

one-form gauge potential A1 = Aµdx
µ, a p-brane

couples to a p + 1 gauge potential Ap+1, with

field strength Fp+2 = dAp+1, and electric and

magnetic charges are defined by (d = 10)

Q
(p)
elec =

∫
S8−p

∗ Fp+2 ,

Q(p)mag =

∫
Sp+2

Fp+2 .

In ten dimensions, the electrically charged ob-

ject describes a p-brane, and the magnetically

charged object describes a 6− p brane.
We have seen that in type IIA and type IIB

theory there is an antisymmetric two-form Bµν
in the NSNS sector (which will give rise to black

strings and magnetic dual black five branes) and

there are in addition various gauge fields in the

RR sector. Objects which carry RR charges are

called D-branes. The corresponding geometries

are obtained by solving the equations of motion

of the low-energy string-theory effective action

S =
1

16πG10

∫
d10x
√−g

(
e−2φ

[
R+ 4(∂φ)2

]

− 2

(8− p)!F
2
p+2

)
. (4.8)

The extremal Dp-brane background is given by

ds2 = f−1/2(r)
[− dt2 + dx21 + ...+ dx2p]

+ f1/2(r)(dr2 + r2dΩ28−p
)
, (4.9)

e2φ = g2f
3−p
2 , f(r) = 1 +

R7−p

r7−p
, (4.10)

6
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∫
S8−p

∗Fp+2 = N , R7−p = cpgNl7−ps ,

cp = 2
5−pπ

5−p
2 Γ(

7− p
2
) .

The extremal Dp brane has mass

mass

Vp
=

N

(2π)plp+1s

1

g
, (4.11)

where Vp represents the volume of the Dp-brane.

What makes a D-brane special is the fact that

in string units the mass is proportional to 1/g.

Since the gravitational field produced by an ob-

ject is proportional to the mass times the Newton

constant G10 ∼ g2, this means that it vanishes
as g → 0. This indicates that for g � 1 D-branes
must admit a flat theory description. Such de-

scription was found by Polchinski [16], and it has

led to many important results. The observation

of [16] is that, in the limit g � 1, a D-brane can
be represented by a (p + 1)-dimensional hyper-

plane defined as a place where open strings can

end (Dirichlet branes). If there are several hy-

perplanes, there can be open strings with ends

attached to different D-branes. It can then be

shown that N Dp-branes carry exactly N units

of (p+ 1)-form RR charge.

The low energy effective theory of open strings

on N coinciding Dp-branes (obtained by taking

the limit α′ → 0) is U(N) gauge theory in p+ 1
dimensions with 16 supersymmetry generators

[17]. The gauge coupling is related to the string

coupling by g2YM = 4πg. As g is increased, the

gravitational field of Dirichlet branes grows and

they eventually become black p branes. The con-

nection between low energy D-branes and gauge

theories indicates that, in a suitable low-energy

limit, it should be possible to describe black branes

by a strongly coupled field theory.

If one D brane is separated from the others

the gauge group is broken as U(N)→ U(N−1)×
U(1). There are 2(N−1) gauge bosons which get
a mass. These are the strings which go from the

N−1 D-branes to the D-brane that was separated
(the factor 2 arises because there are two possible

orientations).

5. Conformal field theories

and N = 4 SYM
5.1 Conformal group

The conformal group is constituted of transfor-

mations that preserve the metric up to a scale

factor, gµν(x) → gµνΩ2(x). This group incorpo-
rates Poincaré transformations and scale trans-

formations. The generators are the usual Lorentz

generators Mµν , the Poincaré translation opera-

tors Pµ, and in addition generators D and Kµ.

The conformal group is isomorphic to SO(d, 2),

with the identification

Mµν =Mµν , Mdµ =
1
2 (Pµ −Kµ) ,

Mµ(d+1) =
1
2 (Pµ +Kµ) , Md(d+1) = D .

The scaling dimension ∆ of an operator ϕ(x) is

dictated by the transformation rule under scaling

of coordinates:

D : xµ → λxµ , ϕ(x)→ ϕ′(x) = λ∆ϕ(λx)

Primary operators are the lowest dimension oper-

ators and they are annihilated by Kµ at x
µ = 0.

Representations of the conformal group are la-

belled by the scaling dimension ∆ and the Lorentz

representation.

Two and three-point correlation functions of

primary fields are entirely determined by confor-

mal symmetry. For example

〈ϕ(x)ϕ(x′)〉 = const. 1

|x− x′|2∆

To combine the conformal algebra with the su-

persymmetry algebra, additional fermionic gen-

erators Q̃ must be included, which arise from

[K,Q] ∼ Q̃. As a result, the number of fermionic
generators in the superconformal algebra is dou-

bled with respect to the non-conformal case. For

example, for a field theory with particles of spin

≤ 1, the maximal number of supercharges of the
supersymmetry algebra is 16, and the maximal

number of fermionic generators in a superconfor-

mal field theory is 32.

5.2 N = 4 super Yang-Mills theory
Non-supersymmetric 3+1 dimensional pure Yang-

Mills theory is scale invariant, but it has β 6= 0

7
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at quantum level. An example of superconfor-

mal field theory is N = 4 U(N) super Yang-Mills
theory in 3+1 dimensions, which has exact con-

formal invariance (β = 0 to all orders). It con-

tains 16 supercharges, which under the Lorentz

group transform as four spinors (QAα , Q̄
A
β̇
), A =

1, 2, 3, 4, where Qα, Q̄β̇ are Weyl spinors. An

SU(4) rotation of the four spinors is an automor-

phism of the supersymmetric algebra. As a re-

sult, the Lagrangian is invariant under SU(4) ∼
SO(6) global transformations (R-symmetry).

The degrees of freedom of the theory are as

follows:

i) A vector field Aµ in the adjoint representation

of SU(N) which is a singlet under SO(6).

ii) Six real scalars Xa in the 6 vector represen-

tation of SO(6), which transform in the adjoint

representation of SU(N).

iii) Four Weyl fermions λAα transforming in the

adjoint of SU(N) and 4 spinor representation of

SO(6) (corresponding to the fundamental repre-

sentation of SU(4)).

The lagrangian of the theory can be derived by

dimensional reduction of d = 10 N = 1 super
Yang-Mills theory:

L = − 1

4g2YM
Tr
[
FMNF

MN
]− i
2
Tr
[
λ̄ΓMDMλ

]
(5.1)

Here λ is a Majorana-Weyl 16 spinor of SO(1, 9).

Upon reduction, we have the decomposition

SO(1, 9)→ SO(1, 3)× SO(6)
under which

16 = (2, 4) + (2̄, 4̄)

The ten-dimensional gauge field gives rise to a 4d

gauge field plus six scalar fields:

AM = (Aµ, Xa) , M = (µ, a) ,

µ = 0, 1, 2, 3 , a = 4, ..., 9 .

The dimensionally reduced Lagrangian is then

obtained as usual by assuming that fields depend

only on xµ. It takes the form

L = − 1

4g2YM
Tr

(
FµνF

µν + 2DµXaD
µXa

−[Xa, Xb]2
)
− i

2
Tr

(
λ̄ΓµDµλ+ iλ̄Γa[Xa, λ]

)

(5.2)

6. AdS/CFT correspondence

We now have the basic elements to understand

the correspondence between string theory onAdS

spaces and conformal field theories. Let us con-

sider type IIB superstring theory in the presence

of N D3 branes. String theory on this back-

ground contains two types of excitations, closed

and open strings. Closed strings propagate on

the bulk, whereas open strings are attached to

the D3 branes and go from one D3 brane to an-

other.

For energies much less than 1/ls, only mass-

less excitations appear. The effective action for

massless fields is of the form

I =

∫
d10x LIIB +

∫
d4x Lbrane ,

where LIIB is the effective lagrangian of type IIB
string theory, which contains the supergravity ac-

tion discussed in section 4 plus higher derivative

terms, and Lbrane is the lagrangian for the low-
energy theory on the brane.

Let us now take the limit α′ = l2s → 0 (low
energy limit). The gravitational coupling is (see

eq. (3.2) )

8πG10 = κ
2 ∼ g2α′4 → 0 .

Thus in this limit gravitational interactions and

higher-derivative terms in the string effective ac-

tion vanish. As discussed before, in the limit

α′ → 0, Lbrane reduces to the lagrangian of U(N)
super Yang-Mills theory in d = 3+1 dimensions.

Thus the resulting theory is N = 4 U(N) SYM
and free gravity propagating on the bulk space-

time.

Let us now make use of the supergravity de-

scription for the same configuration. We have

seen in section 4 that D-branes are extended ob-

jects with RR charges which, having a nonzero

mass, produce a gravitational field. They are de-

scribed by the solution (see eq. (4.9)

ds2 = f−1/2(r)
[− dt2 + dx21 + dx22 + dx23]

+ f1/2(r)(dr2 + r2dΩ25
)

(6.1)

F0123r = ∂rf
−1 , e2φ = g2 = const , (6.2)

f(r) = 1 +
α′2R4

r4
, R4 = 4πgN .

8
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There are two types of low-energy excitations in

this background: massless particles in the bulk,

and string excitations close to the horizon at r =

0. Indeed, because of the large redshift in the

vicinity of the horizon, an excitation near the

horizon of energy E is measured by an observer

at infinity with energy

E∞ = f−1/4E ∼ r
α′
(E
√
α′) (6.3)

Taking the same α′ → 0 limit as in the previous
description, with r/α′ ≡ u fixed (so r → 0), then
a given string excitation of “level” n = α′E2 has
a finite energy E∞ at infinity. In this limit the
metric (6.1) becomes

ds2 = α′
[
u2

R2
(− dt2 + dx21 + dx22 + dx23)

+ R2
du2

u2
+R2dΩ25

]
(6.4)

Comparing with metric (4.7) we see that this is

the space AdS5×S5. It represents the geometry
of the extremal black D3 brane metric near the

horizon (this is similar to the result of section 4

whereAdS2×S2 arised as the near-horizon geom-
etry of the extremal Reissner-Nordstrom black

hole).

In sum, there are two different descriptions

of the same configuration:

a) the weak-coupling description of the D3 branes

in terms of open strings with Dirichlet boundary

conditions, which in the limit α′ → 0 led to N =
4 U(N) SYM theory;

b) Superstring theory on a background D3 brane

geometry, which in the same limit led to super-

string theory on AdS5 × S5.
Therefore type IIB superstring theory on AdS5×
S5 must be equivalent to N = 4 U(N) SYM

theory in 3+1 dimensions. This is the Maldacena

conjecture [4]. The parameter N appears in the

string theory through the radius of AdS5 (which

has the same radius as S5), viz. R2 =
√
4πgN ,

and the Yang-Mills coupling is given by g2YM =

4πg.

When the curvature is� 1
α′ , the string exci-

tations can be ignored and one simply has su-

pergravity theory on AdS5 × S5. This is the
case for R2 � 1, which requires gN � 1. Since

gN =
g2YMN

4π = ’t Hooft coupling, the supergrav-

ity approximation is valid at strong ’t Hooft cou-

pling. Because g < 1 (for perturbative string

theory to apply), the condition gN � 1 implies
N � 1.
An important test of the conjecture is that

symmetries on each side match exactly. The type

IIB superstring theory on AdS5×S5 has the fol-
lowing symmetries:

1) the SL(2, Z) duality group described in sec-

tion 3;

2) 32 supersymmetries, which are left unbroken

by the AdS5 × S5 background;
3) The SO(2, 4) isometry of AdS5.

4) The SO(6) isometry of S5.

This is precisely the symmetry of N = 4 U(N)
SYM theory. Indeed, it has duality symmetry

SL(2, Z) under transformations of τ = θ
2π+i

4π
g2
YM

;

the SO(6) R symmetry described in section 5.2;

the SO(2, 4) conformal symmetry; and 32 su-

persymmetry generators of the superconformal

group.

Let us examine the validity of the various ap-

proximations in detail. It is convenient to choose

units to set α′ = 1√
gN
. Then the gravitational

coupling is

√
G10 ∼= g(α′)2 = 1

N
.

Corrections due to massive string excitations (i.e.

α′ corrections) will be of order O( 1√
gN
). This is

also seen from the fact that the masses of the

string states are M2str ∼
√
gN and go to infinity

as λ = g2YMN →∞. The masses of Kaluza-Klein
states of the sphere are of order O(1/R0), with

R20 = R
2α′ =

√
gNα′ = 1. Thus M2KK = O(1).

String loops will be of order O(1/N2).

The two descriptions, perturbative YM and

supergravity, apply in different regimes: classical

gravity applies for R2 � α′, and this requires
g2YMN � 1. Perturbative Yang-Mills requires

g2YMN � 1.

7. Field/Operator correspondence

and Correlation functions

7.1 CFT correlators from supergravity

Deformations of the super Yang-Mills lagrangian

9
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by adding gauge invariant operators correspond

to changing the asymptotic values of string fields

at infinity. For example, consider the string cou-

pling

g = eφ(∞)

Changing g =
g2YM
4π amounts to add a marginal

operator in the Yang-Mills theory of the form

Tr F 2.

At the boundary u = ∞, the string fields
are general functions of xµ, which play the role

of sources for operators in the Yang-Mills field

theory. Correlation functions are obtained by the

prescription [5, 6]

〈exp
[∫
d4xφ0(x)O(x)

]
〉 = Zstring

(
φ0(x)

)

∼= exp [− Isugra(φ0)] (7.1)

where

φ0(x) = φ(x, u)

∣∣∣∣
u=∞

So each field propagating in AdS is in correspon-

dence with a CFT operator. For example, con-

sider a massive scalar field in AdSd+1 of mass m.

It can be shown [6] that this is associated with a

CFT operator of scaling dimension ∆,

∆ =
d

2
+

√
d2

4
+R2m2 .

The relation (7.1) suggests a generalization

of the AdS/CFT correspondence to general string

vacua of the form AdS5×X5. Equation (7.1) can
indeed be viewed as the definition of conformal

field theory correlators in terms of the string the-

ory partition function on a general space of the

form AdS5 ×X5. Most of these backgrounds do
not preserve any supersymmetry, so they define

non supersymmetric conformal field theories in

four dimensions. More generally, one can use any

ten-dimensional string solution that looks near

infinity like Y ×X , where Y is an Einstein man-
ifold. Finding the dual field theory in general

cases is difficult, except for the cases which have

a D-brane interpretation, whose low-energy the-

ory is understood.

7.2 Black hole entropy and holography

Black holes obey the fundamental laws of ther-

modynamics with an entropy S = Area
4G . In statis-

tical mechanics, the entropy is derived from the

logarithm of the number of states of energy M

(with given total charge and total angular mo-

mentum). Classically, a black hole is completely

characterized by mass, charge and angular mo-

mentum and therefore it cannot have any en-

tropy. It is an old problem to understand what

are the states of quantum gravity –which are un-

observable in the classical theory– that provide

the precise degrees of freedom to derive the black

hole thermodynamical entropy by a statistical-

mechanics counting.

The fact that for a black hole S = Area
4G in-

dicates that in quantum gravity the number of

states inside a given volume is proportional to the

area of the surface enclosing such volume. This

led ’t Hooft to formulate its Holographic princi-

ple: nature should be “holographic” in the sense

that there should exist a description in terms

of degrees of freedom living on the boundary of

space.

The AdS/CFT duality is holographic, since

gauge fields are degrees of freedom which “live”

on the boundary of AdS5 (which is ∼ R4), and
they describe, just as a hologram, the interior.

This was worked out in detail in [6], where this

point of view was first advocated. Holography

not only requires that the bulk spacetime can be

described by degrees of freedom on the bound-

ary, but it also prescribes that there should be

a single degree of freedom for each Planck unit

area. This point is also satisfied in the AdS/CFT

correspondence by virtue of the so-called UV/IR

connection [19].

8. Models for QCD

8.1 Non-supersymmetric gauge theories

from D branes

The low-energy theory of a D4 brane is super

Yang-Mills theory in d = 4+ 1 dimensions. Sup-

pose that the dimension x4 is compactified on a

circle S1 of radius r0. There are two possible

boundary conditions for fermions:

a) Periodic. This choice respects supersymmetry

(since fermions and bosons obey the same bound-

ary conditions) and leads to N = 4 SYM theory
in 3+1 dimensions.

10
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b) Anti-periodic. This breaks supersymmetry

completely. Fermions acquire masses of order

1/r0 and scalar particles get masses by loop cor-

rections. The resulting theory is non supersym-

metric U(N) Yang-Mills theory in 3 + 1 dimen-

sions with no matter fields.

Thus a supergravity background describing

4+1 Yang-Mills theory with antiperiodic fermions

can be used as a model of standard (non su-

persymmetric) large N QCD. This idea was ex-

ploited by Witten in [20]. In order to construct

the relevant supergravity background, we start

with the non-extremal D4 brane metric with the

euclidean time τ describing the x4 dimension.

Because this is related to a finite temperature

case (with temperature TH = (2πr0)
−1), fermions

obey antiperiodic boundary conditions in the com-

pact euclidean time dimensions, τ = r0θ, θ =

θ + 2π. The metric and dilaton are given by

ds2 =
8πλu

3u0

[
u2
[− dx20 + dx21 + dx22 + dx23]

+
u2

9u20

(
1− u

6
0

u6
)
dθ2+

du2

u2(1− u60
u6
)
+
1

4
dΩ24

]
, (8.1)

e2φ =
8πλ3u3

27u30

1

N2
,

where

u0 =
1

3r0
, λ = g2YMN .

The coupling is of order 1/N . The glueball spec-

trum is obtained by solving the equations of mo-

tion for the string fields in this background. Note

that the metric is independent of N , which shows

that to leading order in 1/N the glueball spec-

trum will be independent of N , as expected in

large N theories. It can be shown that the model

exhibit confinement in the form of an area law for

Wilson loops [20]. An explicit Wilson loop calcu-

lation –based on the Nambu-Goto action for the

string dynamics– shows that the potential be-

tween quarks and antiquarks is linearly increas-

ing at large distances (see [21] and references

therein). Some other interesting features of this

model were explored e.g. in [22, 23, 24, 25]. Be-

low we will study the glueball spectrum.

We have obtained this model as Kaluza-Klein

reduction of 4 + 1 dimensional super Yang-Mills

theory, which as a quantum field theory is non-

renormalizable. The 3+1 dimensional descrip-

tion applies in a regime where the masses MKK
of Kaluza-Klein particles with non-zero momen-

tum components along S1 are much larger than

the glueball masses. These are typically of or-

der of the string tension M2glue ∼ σ, which in the
present case is σ = 4

3λu
2
0. On the other hand,

Kaluza-Klein particles have masses

MKK =
1

r0
∼ u0 .

Demanding this to be much smaller than Mglue
implies that λ → 0. However, this is a regime
where the supergravity approximation does not

apply. To keep eφ fixed in this limit requires

u0 → 0, which lead to a metric which is singular
at u = 0 (in fact, the extremal D4 brane met-

ric). A generalization of this model based on the

rotating D4 brane was proposed in [26], and in-

vestigated in detail in [27], [28], [29]. This allows

to decouple the Kaluza-Klein states associated

with the S1 direction, but, as discussed below,

there still remain extra unwanted Kaluza-Klein

states. Other approaches to QCD using super-

gravity can be found in [30, 31].

8.2 Glueball spectrum

Glueball states are conventionally represented by

JPC , where J is the spin, and P,C denote par-

ity and charge conjugation quantum numbers.

Consider the scalar glueball 0++. The lowest di-

mension operator with 0++ quantum numbers is

O = Tr F 2µν . The supergravity mode that cou-
ples to this operator is the dilaton field fluctu-

ation φ̃. This follows from the D-brane action,

which is of the form I ∼ ∫ d4xe−φTr F 2µν + ....
Glueball masses are obtained e.g. by looking for

particle poles in correlators 〈OO〉. From the pre-
scription

〈exp
[
−
∫
d4xφ̃0(x)O

]
〉 = e−ISG(φ̃0) (8.2)

ISG(φ̃0) =

∫
d10x
√
ge−2φφ̃∇2φ̃+ ...

it follows that masses will be determined by the

eigenvalues of the equation

∂µ
[√
ge−2φgµν∂ν φ̃

]
= 0 . (8.3)

11
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Solutions are of the form

φ̃ = ϕ(u)eik.xY (Ω4) , (8.4)

with kµ being the momentum in R
4 and Y (Ω4)

the spherical harmonic of the four-sphere Ω4. The

boundary conditions are as follows:

i) at the lower endpoint u = u0 we must demand

∂uϕ = 0.

ii) at u =∞ there are two independent solutions,
ϕ ∼ const. and ϕ ∼ u−6. To have a normalizable
solution one must require ϕ ∼ u−6.
As a result, the spectrum is discrete.

Consider for example SO(5) singlets, φ̃ =

ϕ(u)eik.x. Using the metric and dilaton given in

eq. (8.1) we obtain

1

u3
∂u
[
u(u6 − u60)∂uϕ

]
= −M2ϕ(u) , M2 = −k2

(8.5)

This equation was solved numerically in [23]. In

this way one finds supergravity predictions for

masses of the 0++ glueball and its resonances.

Non-singlet SO(5) states have no analogue

in QCD since there is no SO(5) global symmetry

in pure QCD. Thus those states should decouple

in the limit λ → 0 [24]. As mentioned above,
also Kaluza-Klein states with momentum in the

fifth dimension θ should decouple in order for

the theory to be 3 + 1 (rather than 4 + 1) di-

mensional. However, the QCD model (8.1) has a

single scale in the geometry u0 and, to the lead-

ing supergravity approximation, all masses are of

the same order. The parameter λ enters in next-

to-leading order supergravity calculations, giving

corrections to masses which are suppressed by

powers of 1/λ. The supergravity approximation

does not apply in the limit λ→ 0, where the de-
coupling of extra states should occur. Solving the

full string theory on this background for small λ

should provide a good description of largeN pure

QCD with no extra unwanted particles, but this

is a difficult problem.

It is therefore of interest to look for more gen-

eral supergravity models of QCD which can be

more effective and useful in computing glueball

masses. The idea is to look for geometries with

the same asymptotics and same D-brane charges.

We can think of them as adding “irrelevant” de-

formations to the Yang-Mills lagrangian, so that

the theory is in the same universality class, but

Kaluza-Klein states are heavy and decouple. No

hair theorems imply that the most general model

of this kind (i.e. based on a regular geometry

with only D4 brane charge) is obtained from a ro-

tating D4 brane parametrized by charge, mass,

and two angular momenta. The corresponding

models were investigated in [26], [27], [28], [29],

and the spectra of 0++ and 0−+ glueballs and
their resonances were determined in the full two-

parameter space [29]. The two extra parameters

of these models originate from the angular mo-

menta of the D4 brane. These models include

Witten model (8.1) as a special case. For large

values of these parameters Kaluza-Klein states

of S1 are heavy and decouple. Comparing to

the results obtained in lattice QCD, one finds a

very interesting agreement [27]. Using as input

the lattice value of the 0++ glueball mass, the

mass of the first resonance 0++∗ is 2.55, to be
compared with the lattice calculation of 2.8. For

the 0−+ state and the resonance 0∗−+, one finds
masses equal to 2.56 and 3.49, respectively, which

are very close to the lattice values 2.59±0.13 and
3.64 ± 0.18 (the simplest model (8.1) gives 2.00
and 2.98). The lattice values are for N = 3, and

supergravity results are expected to receive cor-

rections of order 1/N2.

Another interesting physical quantity that

can be computed in this model is the gluon con-

densate. From the relation Z(T ) = e−F/T , where
F is the free energy of the supergravity back-

ground, one has [25]

〈 1
4g2YM

Tr F 2µν(0)〉 = −
F

V T
. (8.6)

The free energy of the background can be com-

puted by the usual formulas of black hole ther-

modynamics. In this way one finds [27]

〈 1
4g2YM

Tr F 2µν(0)〉 =
1

12π

N2

λ
σ2 , (8.7)

where σ is the string tension. This formula is

universal in the sense that it does not depend on

the angular momentum parameters.

One can also compute the topological suscep-

tibility χt, which is a measure of the fluctuations

12
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of the topological charge of the vacuum,

χt =
1

(16π2)2

∫
d4x〈Tr FF̃ (x) Tr FF̃ (0)〉 .

(8.8)

The Witten-Veneziano formula [32, 33] relates

the topological suceptibility of SU(N) Yang-Mills

theory without matter fields to the mass of the

η′ boson in SU(N) Yang-Mills theory with Nf
quarks, M2η′ =

4Nf
f2π
χt. The supergravity calcu-

lation gives an expression of the form χt ∼ λσ2
[25, 27].

9. Conclusion

Let us summarize the salient features of the spe-

cific string models of large N gauge theories con-

sidered here. These gauge theories can be de-

scribed by string theories, where strings fluctu-

ate in higher dimensions. In the Yang-Mills field

theory description, the existence of such extra

dimensions is reflected in infinite towers of oper-

ators associated with radial modes and Kaluza-

Klein states of the supergravity description.

In general, for N � 1, we expect that any
gauge theory should have a string theory descrip-

tion, though it may not have a classical super-

gravity description. The supergravity approxi-

mation can be justified provided curvatures and

dilaton coupling eφ are small everywhere. When-

ever the gravity solution contains the AdSp+2
space on some slices, the dual field theory of the

boundary will inherit the SO(2, p+1) symmetry

group and, consequently, it will be a conformal

field theory.

Many interesting quantities can be calculated

in the regime λ� 1, where the supergravity ap-
proximation applies. These include correlation

functions, spectrum of operators or states, Wil-

son loops and thermal properties. The specific

QCDmodel obtained by reduction of 4+1 dimen-

sional SYM theory reproduces many qualitative

aspects of QCD, but in the supergravity approx-

imation the model contains extra light states.

Some open questions include a formulation

of holography in Minkowski space, using the cor-

respondence to address the information problem

of black holes, and calculations with controlled

approximations in QCD.
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