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Abstract: The arcane ADHM construction of Yang-Mills instantons can be very naturally under-

stood in the framework of D-brane dynamics in string theory. In this point-of-view, the mysterious

auxiliary symmetry of the ADHM construction arises as a gauge symmetry and the instantons are

modified at short distances where string effects become important. By decoupling the stringy ef-

fects, one can recover all the instanton formalism, including the all-important volume form on the

instanton moduli space. We describe applications of the instanton calculus to the AdS/CFT corre-

spondence and higher derivative terms in the D3-brane effective action. In these applications, we are

starting to uncover an interesting relation between instanton partition functions, the Euler charac-

teristic of instanton moduli space and modular symmetry. We also describe how it is now possible

to do multi-instanton calculations in gauge theory and we resolve an old puzzle involving the gluino

condensate in supersymmetric QCD.
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1. Introduction

There has been a wealth of progress in under-

standing semi-classical effects in supersymmet-

ric gauge theories in the last few years. In this

review we shall be concentrating on instantons

and one of the main goals is show how naturally

Yang-Mills instantons appear in string theory.

Instantons are solutions of the classical equa-

tions of gauge theory with finite action. Charge

k instanton effects come along with a factor

exp
(− 1

2g2

∫
F ∧∗ F + iϑ

16π2

∫
F ∧ F )

= exp
(− 8π2k

g2
+ ikϑ

) ≡ e2πikτ ≡ qk ∼ Λkb1 ,
(1.1)

where b1 is the first coefficient of the beta func-

tion. Certain quantities in SUSY gauge theory

are protected by powerful non-renormalization

theorems or “holomorphy”. In these cases, in-

stanton contributions are exact in the sense that

there are no perturbative corrections since these

would involve a series in the non-holomorphic

quantity g2. The classic example of such a pro-

tected quantity is the gluino condensate inN = 1

SUSY gauge theory: for gauge group SU(N) an

instanton calculation gives [1]〈 λ2
16π2

〉
=

2Λ3[
(N − 1)!(3N − 1)]1/N . (1.2)

Actually this appears to be a charge k = 1
N
effect

based on the power of Λ, so what is calculated is

the instanton contribution to the N -point func-

tion which is independent of the insertion points

by a SUSY Ward identity. Clustering is then

invoked (taking into account averaging over the

N physically equivalent vacua of the theory) to

extract (1.2).

Unfortunately, we have recently learned that

this procedure does not give the correct answer

for the gluino condensate [2].1 Suspicion should

have been aroused from the start, after all an

instanton calculation is a semi-classical method,

whereas the theory in question is in a strongly-

coupled confining phase. So although there are
1One of the reasons for believing in the result is due to

a topological field theory style argument along the lines

that the semi-classical approximation should be exact.

However, this only applies to the theory on a compact

spacetime, like the torus and not on R4.
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no perturbative corrections around the instanton

contribution there can be other non-perturbative,

but non-instanton, contributions. How can we be

sure that other configurations contribute to the

gluino condensate? We know this because in [2]

we calculated for the first time multi-instanton

contributions to multi-point functions of the gluino

and showed that clustering is violated: a sure

sign that other configurations must contribute.

Specifically, we calculated the contribution of k

instantons to the kN -point function, at large N

(which is enough to prove the point), and showed

in this limit

〈λ2(x1)
16π2

× · · · × λ
2(xkN )

16π2

〉 1
kN ∝ k , (1.3)

instead of being independent of k, if clustering

was respected in the instanton sector.

The message of this work is two-fold: firstly

we have demonstrated that multi-instanton cal-

culations are now technically feasible, particu-

larly in the large N limit where a number of im-

portant simplifications occur. Secondly, instan-

ton calculations will be valid only in a weakly-

coupled phase. This last point looks rather re-

strictive; however, this is not the case and one

can infer the value of a quantities like the gluino

condensate in a strongly coupled phase using a

two-stage procedure.

The idea is to modify the theory so that there

is a new coupling constant which in some limit

drives the theory into weak coupling, but which

in the opposite limit returns one smoothly to the

confining phase. Under suitable circumstances

the gluino condensate will be holomorphic in this

new coupling and the weak-coupled result can be

analytically continued to strong coupling. There

are at least two ways to achieve this and both

yield the correct answer for the gluino condensate

〈 λ2
16π2

〉
= Λ3 . (1.4)

Method 1. [3] Add matter fields to com-

pletely break the gauge group. For example, we

can add N − 1 chiral multiplets in the N + N̄ .
The resulting theory is in a weakly-coupled Higgs

phase for small values of the masses. When the

masses go to infinity, the matter fields decou-

ple and the theory is continuously connected to

the confining phase of the pure gauge theory.

The gluino condensate can now be calculated re-

liably. In this case the 1-point function is a one-

instanton effect.

Method 2. [4] Put the theory2 on a cylinder

R
3 × S1. In this case, the gauge field can have a
Wilson line around the S1. This breaks the gauge

group to U(1)r and so, generically, the theory is

in a Coulomb phase. For small value of the radius

the theory is weakly coupled and the gluino con-

densate can be calculated reliably. The result can

then be continued to large R and gives the value

of the gluino condensate in the uncompactified

theory. Interestingly, on the cylinder the topo-

logical charge is not constrained to be integer and

there are other finite action configurations which

arise as monopoles in the gauge theory whose

world-lines wrap the S1. The gluino condensate

now receives contributions from monopoles. For

a general gauge group there are r fundamental

monopoles (those which are not composite con-

figurations) whose magnetic charges are propor-

tional to the co-simple roots α∗i of g. However,
on the cylinder there is an additional solution,

the “affine” monopole, whose magnetic charge is

the lowest co-root α∗0 [5]. This solution is special
to the cylinder since it depends non-trivially on

the coordinate around the circle. Amazingly, an

instanton in the theory on the cylinder is a com-

posite configuration consisting of one of each of

the r + 1 fundamental monopoles. For small ra-

dius the theory is in a weakly-coupled Coulomb

phase and the fundamental monopole contribute

to a superpotential in the low energy effect action

of the 3-dimensional U(1)r gauge theory. This

superpotential depends on an r-vector superfield

X whose scalar component is

σ + τϕ , (1.5)

where σ is the dual U(1)r gauge field and ϕ is

the Wilson line. The superpotential has the form

of an affine Toda potential for (g(1))∗, matching
calculations via M theory [6]:

W (X) ∼

r∑
j=1

2
α2j
eiα

∗
j ·X + q 2

α20
eiα

∗
0·X . (1.6)

2This method works for and arbitrary gauge group G,

with Lie algebra g, and we will take r to be the rank.
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where α∗ = 2α/α2 are the dual roots. This po-
tential has c2 SUSY vacua (in agreement with the

Witten index) and the magnitude of the gluino

condensate in each of the vacua is

〈 λ2
16π2

〉
=

Λ3∏r
j=0(k

∗
jα
2
j/2)

k∗j /c2
, (1.7)

where k∗j are the dual Kac labels. Interestingly
in each vacua the monopole carry a fraction 1/c2
of topological charge which means that they re-

alize the old idea that an instanton is made up

of constituents.

The connection of superpotentials in SUSY

gauge theories compactified on a cylinder and in-

tegrable theories is more general. The most re-

markable example is the mass deformed N = 4
theory (or the N = 1∗ theory) [7]. The N = 4
theory consists of an N = 1 vector multiplet and
3 adjoint-valued N = 1 chiral multiplets, each of
which can be given a mass m1,2,3 which breaks

N = 4 → 1. For gauge group SU(N), the su-
perpotential for the theory compactified on the

cylinder is the complexified potential of the N -

body elliptic Calogero-Moser system:

W (X) ∼ m1m2m3
∑
α

℘(α ·X) . (1.8)

When expanded in q, terms can be identified with

particular configurations involving monopoles and

instantons [7]. This superpotential has some re-

markable modular properties and one can extract

a wealth of information from it [8].

2. Multi-Instantons and ADHM

We now need to get to grips with the calculus of

multi-instantons on R4 as described by ADHM

[10]. On first exposure, the ADHM construction

looks rather ad-hoc; however in the following sec-

tion we shall describe 2 ways to interpret it.

We start by considering a single instanton

in SU(N). This is constructed by taking an

SU(2) instanton, which has a scale size and posi-

tion in R4, and then orientating it inside SU(N),

which involves 4N − 5 additional “coset” param-
eters. Rather perversely, we want to describe

these moduli in the following way: firstly a′n,
which is (minus) the position of the instanton.

To this we add 2 complex N vectors wuα̇ subject

to the 3 constraints

(τc)α̇
β̇
w̄β̇wα̇ = 0 . (2.1)

(Obviously, we could easily solve the constraints

in this case.) The instanton solution is actually

independent of an auxiliary U(1) which rotates

wα̇ by a phase. The physical meaning of the

parameters is

a′n −→ −position in R4
ρ2 = w̄α̇wα̇ −→ size2

ρ−2wuα̇(τc)α̇β̇w̄
β̇
v −→ SU(2) ⊂ SU(N)

(2.2)

Multi-instantons are described by a non-abelian

generalization of this construction. The instan-

ton position a′n becomes a 4-vector of k × k her-
mitian matrices and there are 2k N -vectors wuiα̇,

i = 1, . . . , k. The generalization of (2.1) is the

famous set of ADHM constraints:

Bc ≡ (τc)α̇
β̇

(
w̄β̇wα̇ + ā

′β̇αa′αα̇
)
= 0 , (2.3)

where a′αα̇ = a
′
nσ
n
αα̇. The moduli space of k in-

stantons, Mk,N , is then given by {a′n, wα̇} mod-
ulo the ADHM constraints and modulo an aux-

iliary U(k) symmetry which acts as wα̇ → wα̇U ,
a′n → U †a′nU .
Before we leave this section, let us consider

three important things.

(i) In a supersymmetric theory, instantons

also have Grassmannmoduli which arise from the

fermion fields (see [3, 11–13]). In a SUSY gauge

theory with N supersymmetries (N = 1, 2, 4),
there are N gluino fields and the corresponding
Grassmann collective coordinates are k×k matri-
cesM′A

α , k×N matrices µA and N × k matrices
µ̄A, where A = 1, . . . ,N . These are subject to
fermionic analogues of the ADHM constraints:

FAα̇ ≡ µ̄Awα̇ + w̄α̇µA + [M′α, a′αα̇] = 0 . (2.4)

(ii) In order to do instanton calculations, we

need to known how to change variables in the

path integral from the fields to the collective co-

ordinates. A direct approach to this problem has

only been achieved in the cases k = 1, 2 [14, 15].

An alternative and tractable approach [16] is to

use the symmetries of the theory, and in this re-

spect SUSY is a very powerful symmetry, along

3
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with cluster decomposition to deduce the mea-

sure on the SUSY instanton moduli space at ar-

bitrary k. The resulting expression for the mea-

sure is fortunately rather simple:

Zk,N =

∫
d4a′ d2w d2NM′ dNµdN µ̄ δ(Bc) δ(FAα̇ )

VolU(k)
(
detL

)N−1 .

(2.5)

Here L is an operator on k × k matrices:
L · Ω = {w̄α̇wα̇,Ω}+ [a′n, [a′n,Ω]] . (2.6)

Given the measure in any of the supersymmetric

theories, the measure in QCD (N = 0) can be de-
duced by giving masses to the fermions and then

using renormalization group decoupling. Remark-

ably the resulting expression is also given by the

formula (2.5). It is now possible to write down

the k instanton measure in pure QCD, includ-

ing the one-loop fluctuation determinants, since

these can be extracted from the old instanton

literature [9]. Since, to our knowledge this has

never been written down, we do it here

ZQCD =

∫
d4a′ d2w δ(Bc)
VolU(k)

· detL · (det∆)−2 ,
(2.7)

where the fluctuation determinant is

(det∆)−2 = µ−kN/3(detL)−1e−
1
24π2

∫
d4x(I1+I2+I3) ,

(2.8)

where Ic(x) are all functions of the k × k matrix
f−1(x) = 1

2 w̄
α̇wα̇ + (a

′
n + xn1[k]×[k])(a

′
n + xn1[k]×[k]) ,

(2.9)

given by

I1(x) = trk
(
f∂nf

−1f∂nf−1f∂mf−1f∂mf−1

− 20f2)+ 4k

(1 + x2)2
,

I2(x) =

∫ 1
0

dt εmnpqtrk
(
f̃∂tf̃

−1f̃∂mf̃−1

× f̃∂nf̃−1f̃∂pf̃−1f̃∂q f̃−1
)
,

I3(x) = log det f �2 log det f .
(2.10)

Here, t is an auxiliary variable and f̃(x, t) is the

k × k dimensional matrix derived from f(x):
f̃−1(x, t) = tf−1(x) + (1− t)(1 + x2)1[k]×[k] .

(2.11)

In (2.7), µ is the mass parameter of the Pauli-

Villars regularization scheme. Of course we should

emphasize that QCD is not weakly coupled and

in the light of our previous discussion, we should

be rather careful in using the instanton approxi-

mation in this context.

In anN = 4 SUSY gauge theory the measure
(2.5) is not the complete story because in these

theories the action evaluated on the instanton

solution is not just the constant (1.1). In these

theories all but the 8 SUSY and 8 superconfor-

mal fermion zero modes, which are protected by

the corresponding symmetries, are lifted beyond

linear order at the classical level by the Yukawa

interactions of the theory [13]. This leads to a

4-fermion term in the instanton action:

π2

2g2 εABCDtrk(µ̄
AµB +M′αAM′B

α )

×L−1(µ̄CµD +M′βCM′D
β ) .

(2.12)

(iii) The moduli spaceMk,N is not a smooth

manifold: it has orbifold-type singularities that

occur when U(k) does not act freely. Physically

these are points where an instanton shrinks to

zero size, i.e. wiuα̇ = 0 for a given i. We can

illustrate this for the case of a single instanton in

SU(2). In this case, M1,2 = R
4 × R4/Z2, where

R
4 corresponds to position of the instanton while

the angular coordinates of the second R4 param-

eterize the SU(2) gauge orientation and finally

the radial coordinate of this factor is the scale

size. It is important to emphasize that these sin-

gularities are not evidence of any sickness in the

instanton calculus. In fact when calculating the

instanton contribution to any physical quantity

in field theory these short-distance singularities

are prefectly harmless.

There is a natural way to smooth, or blow

up, the singularities of Mk,N → M(ζ)k,N : simply
modify the ADHM constraints by adding a term

proportional to the identity matrix to the right-

hand side:

Bc ≡ (τc)α̇
β̇

(
w̄β̇wα̇ + ā

′β̇αa′αα̇
)
= ζc1[k]×[k] .

(2.13)

The new term prevents any component wuiα̇ → 0
and so instantons cannot shrink to zero size. For

example, in the case k = 1 and N = 2 described

4
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above, it is possible to show that the orbifold fac-

tor R4/Z2 becomes the Eguchi-Hanson manifold.

Remarkably, the smoothed moduli space M
(ζ)
k,N

describes instantons in non-commutative gauge

theory on a spacetime with non-commuting co-

ordinates [17]:

[xn, xm] = −iη̄cnmζc , (2.14)

where η̄cnm is a ’t Hooft eta symbol.

3. Meaning of ADHM

This all seems rather mysterious: we have a cu-

rious set of data and an auxiliary U(k) symme-

try. The first point to make is that the ADHM

constraints are generally intractable: one simply

cannot find a solution for k > 3. However, re-

cently we found a way to solve the constraints

for arbitrary k when N ≥ 2k as we describe
later. The rather arcane ADHM construction can

now be understood in two apparently different,

althought intimately related, ways:

The Math Way. [18] The ADHM construc-

tion is an example of a hyper-Kähler quotient.

One starts with R4kN+4k
2

, which is naturally

hyper-Kähler with a flat metric, and then im-

poses a triplet of constraints of the type (2.3).

Finally one mods out by an auxiliary symmetry,

in this case U(k), leaving a hyper-Kähler mani-

fold of dimension 4kN . It turns out that the mea-

sure on the ADHM moduli space ((2.5) withN =
0) follows geometrically from this quotient con-

struction as the measure induced onMk,N by the

flat measure on R4kN+4k
2

. Finally, the smoothed

space described by the modified ADHM constraints

(2.13) is a natural deformation of the quotient

construction which preserves the hyper-Kählarity.

The Physics Way. [13,19] The ADHM con-

struction naturally arises in the dynamics of D-

branes in string theory. The low energy collec-

tive dynamics of N coincident D(p + 4)-branes

in Type II string theory is described by a U(N)

SUSY gauge theory in p+ 5-dimensions with 16

supercharges. An instanton in the world-volume

theory of the D(p + 4)-branes is a soliton which

has 4 transverse directions in the higher dimen-

sional brane, i.e. is some kind of p-brane. The

remarkable thing is that it is precisely a Dp-

brane bound to the D(p + 4)-brane. In general

k Dp-branes bound to the N higher dimensional

D(p+4)-branes correspond to a charge k instan-

ton in a U(N) SUSY gauge theory.

In order to see how this plays out, we have

to consider the low energy collective dynamics of

the Dp-branes. This is described by a SUSY U(k)

gauge theory with 16 supercharges, but with ad-

ditional matter fields arising from the higher di-

mensional branes which break half of these super-

symmetries. To be more specific, let us suppose

that p = 3. In this case a theory with 16 su-

percharges is N = 4 SUSY gauge theory. Let us
analyse the spectrum of fields in terms of N = 1
supermultiplets. Along with the N = 1 vector
multiplet containing the gauge field, there are

3 adjoint-valued chiral superfields Φ, X and X̃ .

The 6 real scalars of these chiral multiplets de-

scribe the transverse positions of the D3-branes

and in particular X and X̃ describe the positions

of the D3-branes within the D7-branes, while Φ

describes the separation between the D3- and

D7-branes. Open string going between the D3-

branes and D7-branes give rise a N chiral mul-

tiplets Q and Q̃ in, respectively, the k and k̄

representations of the gauge group. The result-

ing theory has N = 2 supersymmetry and X and
X̃ form an adjoint hypermultiplet while Q and Q̃

form N fundamental hypermultiplets.

This gauge theory then describes the low en-

ergy dynamics of the D3-branes (in the presence

of D7-branes). Let us consider the space of vacua

of this theory. The theory has a Higgs branch

where the gauge group is completely broken (the

scalar components of) Φ = 0 and Q, Q̃, X and X̃

are non zero. The equations describing the Higgs

branch follow from the D and F -flatness condi-

tions and these precisely the ADHM constraints

(2.3) with the identifications

wα̇ =

(
Q†

Q̃

)
, a′αα̇ =

(
X† X̃
−X̃† X

)
. (3.1)

Hence there is a natural identification of Mk,N
and the Higgs branch of our N = 2 gauge theory.
Notice that this gauge theory, with gauge group

U(k), is not the originalN = 4 gauge theory that
lives on the D7-branes, which has gauge group

U(N). The Higgs branch describes a situation

in which the D3-branes lie inside the D7-branes

(Φ = 0). On the contrary the Coulomb branch,

5
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on which Q = Q̃ = 0, while Φ, X and X̃ are non

zero, describes a situation in which the D3-branes

have moved off the D7-branes. There are mixed

branches which describe situations in which some

of the D3-branes are on the D7-branes while some

have moved off into the bulk. The points where

Qi and Q̃i go to zero connect the different phases

and correspond to points where the D3-branes

can move off into the D7-branes. These are pre-

cisely the points where an instanton shrinks to

zero size. So in a certain respect, that we will

make explicit shortly, this stringy context leads

to a certain resolution of the orbifold singularities

of Mk,N .

However, there is more to this than an iden-

tification betweenMk,N and the Higgs branch of

the gauge theory. If we dimensionally reduce the

system to p = −1, so that we are describing a
system of D-instantons and D3-branes, then the

the partition function of the U(k) gauge theory

(which is now a 0-dimensional field—or matrix—

theory) can be identified with the measure on the

ADHM moduli space in the limit where bulk ef-

fects decouple from the branes, α′ → 0. The 4D
gauge field and Φ can be amalgamated into χa,

a = 1, . . . , 6, an adjoint-valued 6-vector. The

bosonic part of the partition function is

Zk,N =

∫
d4a′ d2w d6χd3D
VolU(k)

exp
(− trkχaLχa

+ α′4trk[χa, χb]2 − 2α′4trkD2 + itrkDcBc
)× · · · .
(3.2)

Here, Dc is an adjoint-valued 3-vector that arises

as an auxiliary field of the 4D theory. Now if we

take α′ = 0, then the integral over χa is Gaus-
sian and gives rise to a factor (detL)−3, while
the Dc are nothing but Lagrange multipliers for

the ADHM constraints! Notice that the resulting

partition function in this limit gives precisely the

the bosonic parts of the measure on the ADHM

moduli space in an N = 4 SUSY theory (2.5).
If we don’t take the α′ = 0 limit, then in a

sense we resolve the singularities of Mk,N since

the Dc no longer act as Lagrange multipliers for

the ADHM constraints, rather, the constraints

are smeared over a scale
√
α′. How does this kind

of resolution relate to the blow-up M
(ζ)
k,N? The

modifications of the ADHM constraints by the

parameters ζc can naturally be incorporated into

the stringy construction since they correspond to

Fayet-Illiopolos (FI) couplings in the U(k) gauge

theory, i.e. add −iζctrkDc to the exponent in
(3.2). There are consequently two different ways

to smooth Mk,N , via stringy corrections or via

FI couplings; however, we shall argue later that

they lead to the same effect.

Before we leave this section there are three

further issues that we mention.

(i) It is important that χa also couples to a

fermion bilinear:

ΣaABtrkχa(µ̄
AµB +M′αAM′B

α ) , (3.3)

for, when α′ = 0 and χa is integrated-out, a the
4-fermion interaction (2.12) is generated.

(ii) Hitherto, we have been considering the

situation where the N D(p+ 4)-branes are coin-

cident; however, what happens when they sep-

arate? Consider the case with p = −1. From
the point-of-view of the D3-branes the answer is

straightforward: the scalars which correspond to

the positions of the branes gain a VEV 〈ϕa〉, a
6-vector of N × N matrices, and one moves out
onto the Coulomb branch of the U(N) gauge the-

ory. This effect is then easily incorporated into

the D-instanton U(k) theory, by modifying the

following couplings:

wα̇χa → wα̇χa + 〈ϕa〉wα̇ , µAχa → µAχa + 〈ϕa〉µA .
(3.4)

These couplings have the form of mass terms for

wα̇. It turns out that the new couplings pre-

cisely reproduce the constrained instanton for-

malism [20] that describes instantons in theories

with VEVs. The effect of the extra coupling to

the VEVs is to suppress instantons of large size

in the instanton measure and superconformal in-

variance is explicitly broken.

(iii) It is worth commenting on the case when

N = 1 and the original gauge theory has gauge

group U(1). It is well known that abelian the-

ories do not have instantons; however, we can

still define the ADHM construction. In this case,

the ADHM constraints are explicitly solved by

taking wα̇ = 0 and a
′
n = −diag(X1n, . . . , Xkn). In

other words, these “abelian instantons” are point

like and moreover

Mk,1 = Sym
k
(
R
4
)
. (3.5)

6
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This space has singularities whenever 2 instan-

tons coincide. However, one finds that the gauge

potential that arises from the ADHM data is

pure gauge. Nevertheless, when we modify the

ADHM construction as in (2.13), in other words

consider instantons in a non-commutative the-

ory, then the abelian instanton solutions become

non-trivial. The deformed spaceM
(ζ)
k,1 is smooth;

for example, M2,1 = R
4 × R4/Z2, while the de-

formation replaces the orbifold factor with the

Eguchi-Hanson manifold. So we seeM1,2 =M2,1

and M
(ζ)
1,2 =M

(ζ)
2,1, a property that does not gen-

eralize to N > 1 and k > 2.

4. Calculations with Instantons

In this section we shall summarize a number of

interesting applications of the instanton calculus.

We will primarily be interested in the N = 4
theory with possible stringy corrections, FI cou-

plings and VEVs.

4.1 The AdS/CFT correspondence

The AdS/CFT correspondence realizes the old

idea that string theory describes large-N of gauge

theory [21]. In fact it is much stronger: N = 4
SUSY gauge theory is equivalent to Type IIB

string theory compactified on AdS5 × S5. As
usual with a duality it is hard to prove, since cal-

culations can only be done at weak coupling in

the gauge theory, g2N � 1, while—presently at
least—calculations on the string theory side can

only be done in the classical supergravity limit

where the radius of curvature R � √α′; which
means g2 � 1 while g2N � 1. Some quantities,
however, are protected against renormalization

in g2N , and the value calculated in the gauge

theory can be compared directly to the value ex-

tracted from the supergravity approximation to

string theory.

For us the relevant correlation functions in-

volve 16 dilatinos Λ on the supergravity side that

correspond to a certain composite operator in

the gauge theory. These correlation functions

receive contributions from D-instantons in the

string theory whose coupling dependence singles

them out as instanton contributions in the gauge

theory. The correspondence requires that the k

instanton contribution to the correlator, in the

infra-red and at leading order in 1
N , should be,

schematically, [22, 23]

〈
Λ(x1) · · ·Λ(x16)

〉
∼

√
N g−24 qk k25/2

∑
d|k
d−2

×
∫
d4Xdρ

ρ5

16∏
i=1

F(xi −X, ρ) .

(4.1)

Here, {Xn, ρ} parameterizes a point in AdS5 and
the details of the expression for the integrand

may be found in [13]. What is remarkable about

(4.1) is that the k dependence is only through

the numerical pre-factor qkk25/2
∑
d|k d

−2. This
looks like a disaster because there seems little

chance that the integral over k instantons, with

its intrinsic complexity, would reduce to some-

thing that is simply a number times a one in-

stanton contribution.

The k-instanton contribution to the corre-

lators involves inserting into the measure, (2.5)

with N = 4 along with the 4-fermion coupling
(2.12), the 16 composite operators. This contri-

bution turns out to be calculable at leading order

in 1/N in a way that we summarize below [13]:

(i) For N ≥ 2k, and so certainly at large N ,
the ADHM constraints can be solved by a simple

change of variables: the biggest impediment to

progress with the ADHM construction proves to

be entirely benign. The idea involves changing

variables from the wα̇ to quadratic gauge invari-

ant variables

W α̇
β̇
= w̄α̇wβ̇ . (4.2)

The ADHM constraints are then linear in W α̇
β̇
,

as is apparent from (2.3), and the the δ-function

constraints in (2.5) may trivially be solved.

(ii) The 4-fermion term in the instanton ac-

tion (2.12) can be bilinearized by introducing a

6-vector of U(k)-adjoint variables χa. The Grass-

mann collective coordinates can then integrated-

out. The χa variables are precisely those that

arise naturally in the D-instanton/D3-brane sys-

tem described previously.

(iii) The remaining expression is then amenable

to a saddle-point approximation at large N . The

saddle-point solution has a very simple interpre-

tation. Each of the k instantons are embedded

7



Non-perturbative Quantum Effects 2000Nick Doreya, Timothy J. Hollowooda and Valentin V. Khozeb

in mutually commuting SU(2) subgroups of the

gauge group, as one might have expected on sta-

tistical grounds alone. Furthermore, and less in-

tuitive, is that they have the same size ρ and

sit at the same point Xn in spacetime; so at the

saddle point

w̄α̇wβ̇ = ρ
2δα̇
β̇
1[k]×[k] , a′n = −Xn1[k]×[k] .

(4.3)

Furthermore, the auxiliary variables χa have the

saddle-point value

χa = ρ
−1Ω̂a1[k]×[k] , (4.4)

where Ω̂a is a unit 6-vector. So the saddle point is

parameterized by a point in AdS5 × S5! Amaz-
ingly, instantons in the gauge theory act as a

probe that feel the ten-dimensional geometry of

the dual theory. Notice that the S5 part of the

geometry arises from the auxiliary variables χa.

(iii) The integral of the fluctuations around

the saddle-point solution assembles into some-

thing that is known: precisely the partition func-

tion of N = 1 10D SU(k) Yang-Mills dimen-

sionally reduced to 0 dimensions, where the 10D

gauge field is formed from the traceless parts of

a′n and χa. This is known to be proportional to∑
d|k d

−2 [24, 25].
Putting all of this together immediately solves

the puzzle alluded to above: any correlation func-

tion will look one instanton-like up to an overall

k dependent factor. In addition, one can show

that the k-dependence and overall factor of
√
N

are exactly reproduced. Instantons consequently

provide one of the most convincing pieces of evi-

dence in favour of the AdS/CFT correspondence.

We can also couch our result in terms of the

partition function of the D-instanton/D3-brane

system:

Zk,N =
N→∞

23−2kπ6k−25/2

√
Nk3/2

∑
d|k
d−2
∫
d4X dρ d5Ω̂

ρ5
· d8ξ d8η̄ , (4.5)

where X and ρ are the overall position and scale

size, respectively, while ξ and η̄ are the 8 SUSY

and superconformal fermion zero modes, respec-

tively. It is possible to generalize these kinds of

calculations to other AdS/CFT duals [26].

4.2 Instanton effects in D3-branes

The collective excitations of N D3-branes are

described at low energies by an N = 4 SUSY
gauge theory with gauge group U(N). However,

the minimal N = 4 Lagrangian is only valid

at low energy and there is an infinite tower of

the higher derivative interactions that come with

powers of α′, the string length scale. Some of
these, but not all are encoded in the Born-Infeld

Lagrangian. In [27], it was argued that in the

case of a single D3-brane, instantons contribute

to certain terms of order α′4, including one of the
form (∂F )4, where F is the abelian field strength.

Furthermore, the SL(2,Z) modular symmetry of

the Type IIB string theory, which is realized as

electro-magnetic duality in the D3-brane theory,

fixes the instanton contributions exactly. In fact

the coupling to this term in the effective action

involves the logarithm of the Dedekind eta func-

tion:

ln |η(τ)4| = −π3 Imτ − 2
∞∑
k=1

(qk + q̄k)
[∑
d|k
d−1
]
.

(4.6)

Here, the first term is a tree-level contribution,

while the other terms come from k instantons

and k anti-instantons, respectively.

We can relate the k-instanton terms in the ef-

fective action of the D3-brane predicted by Green

and Gutperle [27] for the case N = 1 (without

FI and VEV terms) to the k-instanton parti-

tion function modded out by the integral over

the overall k-instanton position in R4 and its su-

perpartners (the 8 supersymmetric fermion zero

modes)

Ẑk,1(ζ, α
′) =

∑
d|k
d−1 . (4.7)

Here, the FI coupling ζ, absent at the start, arises

as a source.

What is interesting about the string result

(4.7) is that in order to have a non-trivial contri-

bution when ζ = 0, it is absolutely essential to

have the α′ corrections in the D-instanton/D3-
brane system. Another way of seeing this is that

superconformal invariance must be broken. It

turns out that when ζ 6= 0 we can legitimately

8
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set α′ = 0 to yield:

Ẑk,1(ζ, 0) =
∑
d|k
d−1 , (4.8)

which is then a statement about the integral over

the resolved centered moduli space M̂
(ζ)
k,1, where

M
(ζ)
k,N = R

4×M(ζ)k,N . Note that the integral (4.7)
does not actually depend on the α′ coupling; a
fact that we shall return to in §4.3.
The whole story of D-instanton corrections

to the D3-brane effective action generalizes to

the non-abelian case of N D3-branes [28]. In this

case, it is necessary that the D3-branes are sep-

arated by adding VEVs 〈ϕ〉 so that theory is in
a Coulomb phase. In this case, there is general-

ization of (4.7):

Ẑk,N (ζ, α
′, 〈ϕ〉) = N

∑
d|k
d−1 . (4.9)

It is possible to prove this using Morse theory

arguments. First of all, one can set α′ to zero in
(4.9). If the VEVs vanished, the latter quantity

is Gauss-Bonnet-Chern integral on M̂
(ζ)
k,N (see the

next section). Turning on the VEV has the effect

of introducing a Morse function on M̂
(ζ)
k,N and us-

ing standard arguments the integral Ẑk,N (ζ, 0, 〈ϕ〉)
localizes onto the critical point set. These are the

submanifold of M
(ζ)
k,N where

wα̇χa + 〈ϕa〉wα̇ = 0 . (4.10)

The VEV 〈ϕa〉 is a 6-vector of diagonal N × N
matrices. The critical points correspond to as-

sociating each instanton with a particular D3-

brane; in other words a partition k = {k1, . . . , kn},
where ku ≥ 0. For each partition the critical
point set is a product of abelian, N = 1, instan-

ton moduli spaces:

Mk1,1 × · · · ×Mkn,1 . (4.11)

Localizing the integral on the critical point sets

gives us a relation of the form

Zk,N (ζ, 0, 〈ϕ〉) =
∑
{kj}
Zk,1(ζ, 0)× · · · × Zk,1(ζ, 0) .

(4.12)

Notice that we have not separated out the center-

of-mass integrals yet. Each factor Zk,1(ζ, 0) leaves

8 unsaturated Grassmann integrals; hence, most

of the partitions in the sum have more than 8 un-

saturated Grassmann integrals and will not con-

tribute to Ẑk,N (ζ, 0, 〈ϕ〉). Only the partitions
where all k of the instantons live on the same

D3-brane will survive, and there are N of these;

so

Ẑk,N (ζ, 0, 〈ϕ〉) = N Ẑk,1(ζ, 0) = N
∑
d|k
d−1 .

(4.13)

What is striking about this result is that for N >

1 it holds only for nonvanishing VEVs, i.e. in the

Coulomb phase, but nevertheless the right-hand

side of (4.9) is independent of 〈ϕ〉.

4.3 The Euler Characteristic of M̂k,N

This section investigates the relation between var-

ious physical quantities extracted from the brane

system and the Euler characteristic of instanton

moduli space [28]. The Euler characteristic χ of

resolved (centered) moduli space M̂
(ζ)
k,N was de-

duced from the Morse theory analysis of Naka-

jima [29] (see also [30]):

1 +

∞∑
k=1

χ(M̂
(ζ)
k,N )q

k =
1∏∞

j=1(1− qj)N
. (4.14)

Notice that the generating function above is, up

to a factor of q−N/24, η−N , where η is the Dedekind
eta-function and, as such, has interesting modu-

lar properties. In fact there is a very intrigu-

ing more general relation between the generating

functions of the Euler characteristics for instan-

tons in gauge theories defined on different 4 man-

ifolds, and the characters of 2-dimensional con-

formal field theories [31]. The question is how

this relates to the the resulting partition func-

tion of the D-instanton/D3-brane system, with

the centre-of-mass and the 8 SUSY zero modes

factored off, denoted

Ẑk,N (ζ, α
′, 〈ϕ〉) . (4.15)

where the dependence on FI couplings, VEVs

and α′ is indicated.
Conventional wisdom suggests that the quan-

tity Ẑk,N should yield the Euler characteristic of

M̂k,N as we shall now explain. The point is that

the measure over the instanton moduli space in
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an N = 4 gauge theory has the 4-fermion term
(2.12). The 4-index tensor that appears is noth-

ing but the Riemann tensor of M̂k,N and saturat-

ing the fermion integrals from the action brings

down powers of the Riemann tensor contracted in

such a way that the resulting integral over M̂k,N
is precisely the Gauss-Bonnet-Chern (GBC) in-

tegral. On a compact manifold this would give

the Euler characteristic. However, our manifold

is non-compact and in this case the GBC inte-

gral only gives the bulk contribution to the Euler

characteristic and there can be additional bound-

ary contributions arising from either the bound-

ary at infinity or from the orbifold singularities.

One immediate problem with our integral is

that due to superconformal invariance the inte-

gral over the overall scale size of the configuration

is divergent. In addition the integrals over the 8

superconformal zero modes are not saturated by

any fermionic insertions. This is evident from

our large-N expression for Zk,N in (4.5). The

way to deal with this is to break superconfor-

mal invariance by blowing up the singularities of

M̂k,N to give the smooth, but still non-compact,

space M̂
(ζ)
k,N . This is achieved by including the

FI couplings ζ. The integral over the scale size

is now rendered convergent and the 8 supercon-

formal zero modes are lifted. Factoring off the

integrals over the overall position and 8 SUSY

zero modes, gives the GBC integral in the large

N limit:

Ẑk,N (ζ, 0, 0) =
N→∞

23−2kπ6k−13/2
√
Nk3/2

∑
d|k
d−2 .

(4.16)

We can also calculate the k = 1 case with arbi-

trary N exactly [28]:

Ẑ1,N(ζ, 0, 0) =
21−2N (2N)!
N !(N − 1)! . (4.17)

These expressions are not integers and there must

be contributions coming form the boundary at in-

finity. In particular, on the basis of the formula

(4.14), we expect χ(M̂
(ζ)
1,N ) = N . For k = 1 and

N = 2 we can calculate the surface contribution

and show how the (4.14) calculation is consis-

tent with (4.17). In this case Ẑ1,2(ζ, 0, 0) =
3
2 ,

while χ = 2. Recall that the singular space

M̂1,2 = R
4/Z2 while the blow-up M̂

(ζ)
1,2 is the

Eguchi-Hanson manifold. In [32], the authors

calculate the Euler characteristic of this space

and show that it receives a bulk contribution of
3
2 , matching (4.17), and—importantly for us—a

boundary contribution of 12 .

For the case k = 1 at least (and arbitrary

N) one can alter the asymptotic behaviour of

the GBC integral so that there is no contribution

from infinity and the bulk integral yields directly

the Euler characteristic χ = N . This modifica-

tion involves moving onto the Coulomb branch

of the N = 4 theory by introducing VEVs as in
(3.4). We then find by explicit calculation [28]

Ẑ1,N (ζ, 0, 〈ϕ〉) = N . (4.18)

Interestingly, moving out onto the Coulomb branch

can be interpreted as introducing a potential on

the moduli space. This potential has precisely N

critical points whose number saturates the value

of the integral as one might have expected from

standard Morse theory arguments. In fact, in a

similar way for general k, there is a more refined

potential that arises from giving all the fields

twisted masses [28], which lifts all the flat direc-

tions and has a number of isolated critical points

which yields directly the result of Nakajima [29].

To complete the story of k = 1 we can also cal-

culate explicitly

Ẑ1,N(0, 0, 〈ϕ〉) = N − 2
1−2N (2N)!
N !(N − 1)!

≡ Ẑ1,N (ζ, 0, 〈ϕ〉)− Ẑ1,N (ζ, 0, 0) .
(4.19)

It remains to be seen whether similar relations

hold for arbitrary k; however, we feel that it

should be possible to relate Ẑk,N (ζ, 0, 〈ϕ〉) and
Ẑk,N (0, 0, 〈ϕ〉) by investigating the behaviour of
the integrals near the singularities. The quan-

tity Ẑk,N (0, 0, 〈ϕ〉) is particularly interesting be-
cause it appears in the mismatch between the

microscopic couplings and the effective couplings

in Seiberg-Witten theory of the mass deformed

N = 4 theory [33].
Up till now, we have not considered the effect

of the stringy couplings. Actually, turning on the

α′ couplings has no effect; in other words,

Ẑk,N (ζ, α
′, 〈ϕ〉) = Ẑk,N (ζ, 0, 〈ϕ〉) . (4.20)

as long as either ζ or 〈ϕ〉 are non-vanishing so
that the right-hand side is well defined. We have
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already seen in (4.9) this is implied by a gener-

alization of the Green-Gutperle analysis to N >

1. There is another way to motivate this result

from completely different considerations involv-

ing ideas of Cohomological Field Theory [24]. In

a very small nut-shell, the integral Ẑk,N (ζ, α
′, 〈ϕ〉)

has a nilpotent BRST-type symmetry derived from

its supersymmetry. The α′ couplings can be shown
to be Q-exact and hence can be set to 0, as long

as the resulting integral is well defined.

There is clearly a lot of interesting relations

between the Euler characteristic of instanton space

and various physical quantities in the gauge/string

theory that remain to be uncovered.
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